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Chapter 1

Executive summary

Buildings with a high insulation standard show an increased fraction of solar and internal gains

in�uencing the building energy balance. The reaction of conventional heating controls is often not

satisfying especially for buildings with a high thermal mass. An intelligent heating control with a

knowledge about additional gains and the buildings reaction on it is able to anticipate these gains

leading to both a reduced energy consumption and a comfort improvement.

The �Development and Test of Modern Control Techniques Applied to Solar Buildings� with the

mentioned properties was the objective of the project which is described in this report. Four

algorithms using di�erent mathematical approaches were developed by the partners FUL, INSA,

NOA and ISFH. They have in common the use of the climatic conditions not only at present but

with s short time prediction for the control.

The developed algorithms were investigated in simulation environments and test buildings. Partner

UNN was responsible for the comparative evaluation of the algorithms with the help of simulation

tests. A special simulation environment was developed by partner FUL and UNN in the frame of

this project. Experimental tests have been carried out by the developing institutes each of them

providing a test building. The buildings di�er with regard to their use, climatic conditions and

thermal properties.

The tests showed that all approaches are suitable in principle for an intelligent heating control

leading to energy savings of up to 15% during the in-between season and comfort improvements

compared to conventional controls. The investigations showed further, that an evaluation only on

the basis of energy consumption and a comfort indicator is not su�cient to re�ect the di�erent prop-

erties necessary also for practical application. The computational load, the possibility to adapt to

di�erent buildings and changes of the building behaviour and the suitability for an implementation

into a standalone microcontroller have been regarded as well.

One algorithm has been chosen to be implemented into the �nal hardwarewhich was provided by the

industrial partner INGA. It is a microcontroller which works as stand-alone device. Experimental

tests on a real building showed that the microcontroller is able to control the heating with almost

the same quality as a PC with the implemented software. The hardware is now available for

demonstration objects.
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Chapter 2

Objectives of the project

The objective of this project was to develop, test and compare modern innovative control techniques

for energy (HVAC) systems applied to buildings presenting a relatively high solar fraction. This

means not only the so called �Solar Buildings� but every building with reduced transmission and

ventilation losses, such as newly built low energy buildings as well as old refurnished buildings.

Since the trend goes to these types of buildings, an adapted control of the energy system becomes

an important factor for a further reduction of the fossil energy consumption.

The e�ciency of energy systems for such buildings is indeed heavily relying on the operation of

an adequate control system, taking into account the characteristics of the building, the external

climate and the internal loads not only in the present state but with a short time prediction. This

may lead to considerable energy savings while preventing the overheating risk.

Within this project, new control paradigms have been investigated:

� Predictive and adaptive control,

� Expert systems,

� Fuzzy logic,

� Neural networks.

The scienti�c institutes ISFH, FUL, INSA and NOA each had to develop control algorithms based

on one of the named methods.

Expected scienti�c and technical achievements of the project were:

� Development of 4 algorithms using the mentioned approaches for the heating control of solar

buildings,

� test of the algorithms in simulation and experiment

� comparative evaluation of the 4 di�erent modern control strategies,

� implementation of a selected algorithm into a standalone hardware,

� test and optimization of the hardware in experiment.

The algorithms should have the following properties:

1. consideration of solar radiation in the control strategy,

8
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2. selfadaptation of the controller to building and climatic parameters or an user-friendly pos-

sibility for their input making the control system transparent to the user,

3. prediction of the climatic conditions for at least 24 hours,

4. wide applicability of the controller to the building type and the climate.

These properties should lead to a saving of fossil fuel energy while improving the thermal comfort.

The development should be carried out from the beginning with respect to the required properties

of the hardware:

1. cheap computing unit and sensors usable

2. easy installation and con�guration by an expert

3. easy operation also by a layperson

4. applicable to the most common heating systems and buildings without remarkable structural

changes

To ensure, that the algorithms are developed according to the requirements, speci�actions had to

be made in the beginning of the project. During the project the speci�cation had to be checked

and corrected if necessary. The industrial partner (INGA) had to accompagny the development

continously and give advice if necessary.

The algorithms should be tested in a simulation environment to be developed in the framework of

the project. After the optimization with the help of simulation the algorithms should be tested

in the experimental environments of the partners. Each of the developing institutes (ISFH, FUL,

INSA,NOA) has a test building available which should be used to validate the functionality of the

algorithms also in practice.

The comparative evaluation of the 4 di�erent modern control strategies should show advantages and

disadvantages, optima and limits of application for the most common building types and typical

climates in Europe. It should be carried out in simulation by UNN.

According to the test results an algorithm should be selected to be implemented in a standalone

controller hardware to be provided by the industrial partner. The test was to be carried out in an

experimental environment. Results of the test should be communicated to the industrial partner

to be implemented in an optimized controller prototype.

The project was divided into the following tasks (see table 2.1

Table 2.1. Tasks planned in the project

Task Activity

1 Speci�cations

2 Developement and implementation of control algorithms

3 First testing phase

4 Realization of �rst stand-alone prototype

5 Second testing phase

6 Realization of the �nal version of the prototype

Fig. 2.1 shows the interdependance between the di�erent tasks and the project partners.
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1. YEAR
Project  Preparation 

 (all)
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Figure 2.1. Interdependance between the tasks and the project partners



Chapter 3

Introduction and control concept

In this part of the report, �rstly the problem and the concept for its solution is described. After

that the contributions of the partners to the project and their results are presented. Four di�erent

algorithms have been developed by each of the institutes ISFH, FUL, NOA, INSA. A comparative

evaluation by simulation have been carried out by partner UNN. The hardware for a standalone

device was provided by the industrial partner INGA. The corresponding sections �rstly describe

the concept used by this partner to ful�ll his part of work, followed by the results.

The indoor climat in buildings can be in�uenced by di�erent technical building equipment. Heating-

, ventilation and air-conditioning systemsmust hold temperature and indoor humidity on an accept-

able level for the user. The control of the equipment is however di�cult because of proportionally

long dead times and time constants of the controlled system .
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Figure 3.1. Measured course of indoor temperature (Ti), irradiance (Isued) and heating power (Pheat) on 5th
March 1996 in the experimental house of ISFH

The control of the supply temperature of the heating system after the room temperature is for

example rare in use at the hot-water central heating with radiators. Rather one tries to supply

the radiator with a su�cient heating power. This power is then limited by an additional fast

11
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controller in he room (e.g. radiator thermostatic valve). The necessary heating power is determined

into dependence of the outside temperature and her provision made by a feedforward control.

Advantages of this method are the comparatively fast reaction to heating demand or overheating

appearances in the room. It is adverse that the supply temperature to be provided must lie in

general over the actually necessary value to ensure the controlability and to satisfy di�erent user

demands. This can lead to unnecessary heat losses of the pipes High temperatures further a�ect

negatively the possibility of the imbedding of burning value boilers or thermal solar plants in the

heating circuit.

Furthermore can be observed (Fig. 3.1) that conventional controls react unsatisfactorily to ad-

ditional energy inputs by internal gains or solar irradiation, especially for buildings or heating

systems with high time constants. The problem is due to the way of the control which takes only

current measurands into account. A conventional control for example only then reacts to the solar

irradiation, if it causes an overheating.

At this time a large part of the energy already is however in the building since the entries a�ect the

indoor temperature time delayedly. Both the solar irradiation and internal gains can frequently be

predicted. It seems reasonable therefore to take the predicted in�uences into account already in

advance. A suitable approach consists in the use of the model based predictive control.

Target of the project, whose results are explained in the report on hand was the development of a

predictive heating regulator which in addition self-adapts to the building and the heating system.

The indoor temperature is regulated with help of the supply temperature of the heating system of

the building. The controller acts on the supply temperature via the 3-way valve for the mixture of

heating water of the return pipe and heating water of the heating device. The kind of heat supply

is not part of the considerations. Condition for the control of the inddor temperature with the

supply temperature is a nearly constant mass �ow in the heating system.

The indoor temperature is measured in a reference room. Criteria for the choice of this room and

considerations of the applicability of the concept are given in the report. The approach choosen

allows furthermore the the adaption of the control algorithm to other heating systems without

problems (e.g. air heating systems, �oor heating systems, heating systems with the heating power

as manipulated variable).

The de�nition of the speci�cations in task 1 was mainly a collective work that took place during the

kick-o� meeting in Brussels and that was de�nitely concluded at the �rst co-ordination meeting in

Hameln. A description of the results of this task can be found in chapter 5. The following chapters

give reports of the work performed by each of the collaborating institutes.



Chapter 4

Work performed by ISFH

Authors: Ute Thron and Dr. Dirk Christo�ers

4.1 The ISFH control algorithm

The ISFH control algorithm was developed in a �rst version in Task 2. A number of tests have been

performed to check the behaviour of single parts of the algorithm, that led to a design used for the

�rst tests. The results of the simulation and experimental tests performed in task 3 and 5 were used

for a further optimisation. The problems that occured at the implementation into the standalone

hardware again required an optimisation of the algorithm especially concerning the memory and

the calculation time, which in�uenced also the mathematical base that could be used. The concept

of the algorithm presented in this section is the result of all optimizations within the project.

4.1.1 The control and measurement concept

In the control algorithm for predictive and adaptive heating control developed by partner ISFH,

the indoor temperature is regulated by means of the supply temperature of the heating system.

The developed algorithm calculates a set value of the supply temperature for the next time step

(15 min). A fast PID conventional control algorithm regulates a 3 way valve to adjust the supply

temperature according to this set value. It is assumed that the required heating power is provided

by the heater. The kind of heat supply and its e�ciency is not regarded here. The only requirement

was, that the necessary maximum power is not higher than for a conventional control. With the

used control concept, there is already an advantage compared to conventional control. The concept

requires to provide the building only with no more heating power as necessary to reach the indoor

set value. A conventional control with a heating curve always needs a surplus of heating power to

be delivered to the building. The necessary power for a heating-up depends on the user-de�ned

indoor temperature set points. A limitation of the heating power is possible by �xing the maximum

allowable supply temperature step in the algorithm.

The indoor temperature is measured in a reference room. This room must meet the following

requirements:

� it must be one of the main living rooms,

� the window direction must correspond to the main solar aperture of the building,

� disturbances, e.g. by high internal gains or frequent window or door openings, should be

small

13
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The two �rst conditions have to be ful�lled absolutely. The indoor temperature sensor must

be attached radiation protected and distant from electrical equipments. The thermostatic valve

is removed from the radiator in the reference room, since otherwise it changes the e�ect of the

supply temperature on the indoor temperature in an unde�ned way. All other rooms keep their

thermostatic valves. This variant presupposes that the estimated supply temperature provides all

rooms with su�cient heating power. This can be guaranteed by adjusting the mass �ow in the

reference room radiator.

The solar irradiation is measured in the direction of the main receiving areas of the passiv solar

components of the building.

For larger buildings with various orientations of the living rooms, or occasional shading of some

rooms, it is useful to de�ne several zones. The indoor temperatures of these zones are controlled

separately, by corresponding algorithms. An extra mixing valve is then necessary for every zone.

However, for larger buildings several circiuts are already available in most cases.

Seasonal dependences, such as a shading by neighbour buildings in winter time, can be learned

by the parameter identi�cation procedure, using the database from the last days, with the largest

weighting on current mesurements. The outdoor temperature sensor must be �xed at the northern

side of the building. A radiation protected place is absolutely necessary, since otherwise the outside

temperature and irradiation, i.e. the input values for the model identi�cation, would interfere.

4.1.2 The controlled system

Fig. 4.1 shows a general system with di�erent inputs and one output. In our case the output, i.e.

the indoor temperature, is the controlled variable.

 Unmeasured
disturbances

Manipulated
variables

Measured
disturbances

Struktural or
dynamic
changes

measured
controlled
variable

Measurment
 noise

System
+

+

Figure 4.1. In�uences on the controlled variable [MR95]: besides the manipulated variables, there act a number of

disturbances, which are partly measurable. Furthermore, the dynamic behaviour of the system can change during
the control process. Additionally, measurement noise interferes with the signal of the controlled variable.

The system inputs are often called driving forces. Inputs which can be changed are called manipu-

lated variables, the others are disturbances. The disturbances can partly be measured. A model of

the system describes the relation between the main driving forces (the manipulated variables and

the most important disturbances) and the system output.
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The system is the building with its structure and the heating system with pipes and radiators. The

system output (controlled variable) is the indoor temperature. To be able to control the indoor

temperature, it is necessary to know the system behaviour, i.e. the consequences of the di�erent

system inputs to the system output. The system behaviour is described with a model, which takes

into account the most important in�uences. As measured driving forces for the indoor temperature

are regarded:

� the supply temperature of the heating system (manipulated variable)

� the ambient temperature (measured disturbance)

� the irradiance (measured disturbance).

Actually, the temperature di�erences act as driving forces. The supply temperature or the outdoor

temperature can change the indoor temperature only if they are not equal to it. Tests showed that

the best control behaviour is achieved, when taking the di�erences to the mean value of the set

indoor temperature, instead of the temperatures themselves.

All other in�uences (e.g. wind speed, air humidity, internal gains etc.) are regarded as unmeasured

disturbances. The con�nement to the main three driving forces is due to several reasons: every

further input requires another sensor and increases the price of the device, furthermore it increases

the number of model parameters to be identi�ed, and therefore the model error and the calculation

time are enlarged. The reaction of the control algorithm to unmeasured disturbances has been

investigated in simulation tests, described in section 4.2.3.1.

According to the project goals, the controller to be developed, should be applicable to a large

variety of buildings and heating systems. Therefore the creation and validation of a special model

for every possible building is not practical. It is more promising to leave the model identi�cation

to the controller itself, after installation. Since the building behaviour may change with time, (e.g.

due to seasonal depending wall humidity) the model estimation should be repeated from time to

time. Before starting the process, the controller should only know a very general model structure

that can cover the dynamic behaviour of many building types and heating systems. Both, physical

or black box models are suitable. During the process the parameters of the model are identi�ed.

In the application described here - the predictive adaptive heating control of a solar building- step

response models are used to predict the system output. The step responses are calculated from

a transfer function model (ARX), since the direct identi�cation of the step response coe�cients

was too inaccurate. The parameters of the ARX-model are identi�ed each time step. For the

identi�cation a recursive least sqares method is used. The model and the identi�cation is described

in more detail in section 4.1.4.

4.1.3 The concept of predictive control

From a number of approaches which are covered by the name �predictive control� the Generalized

predictive control (GPC) has been chosen [Cla94].

A conventional feedback control only takes into account the current measured value of the controlled

variable and the current setpoint. On the other hand, GPC considers a discrete function e(k+ jjk)
which is formed by the di�erence between the future set values yr(k+jjk) and the future controlled
variable ŷ(k + jjk) (see �g. 4.2).

e(k + jjk) = yr(k + jjk)� ŷ(k + jjk) : (4.1)

That means that a prediction of the controlled variable (indoor temperature) is necessary. A

model M with the parameter vector � serves for the prediction of the future behaviour of the
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system. The model must be estimated before the calculation of the manipulated variable ist

started. The prediction can be divided into 2 components, the free and the forced system response.

The free system response ŷo(k + jjk) is the expected behaviour of the controlled variable ŷ(k + j)
if no future control moves are applied. That means the free system response only results from past

system inputs (manipulated variable and measured disturbance). The forced system response is

the additional term due to a given sequence of future control moves. The predictions are made at

time k for a prediction horizon k + j = P .

For linear systems the total prediction of the system output or controlled variable can be determined

by superposition:

ŷ(k + jjk) = yf (k + jjk) + yo(k + jjk) : (4.2)

futurepast

set value

predicited 
controlled variable

manipulated 
variable

e(k+j|k)

u(k+j|k)

k k+1 k+3 k+P

y(k+j|k)

yr(k+j|k)

k+M

Figure 4.2. Example for the course of manipulated and controlled variable for predictive control [MR95]. At the

current time k the di�erence between predicted controlled variable ŷ(k + jjk) and future set value yr(k + jjk) is
calculated up to the prediction horizon P . The future course of the manipulated variable u(k+ jjk) up to the control
horizon M is calculated to achieve a good approximation of the set value

A schematic representation of the calculation procedure is shown by illustration 4.3 [Cla94].

The di�erence between set value and free system response is calculated using eq. 4.1. The forced

system response should be an optimal future course of the manipulated variable which is calculated

by the control algorithm. The future sequence of control moves should be chosen in a way that

the set values are reached fast, but without too much control e�ort. This is achieved by the

minimization of a cost function of the form:

J =
PX

j=N1

Qj(yr(k + j)� ŷ(k + jjk))2+
MX
j=1

Rj�u(k + j � 1)2 : (4.3)
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past control 
moves

future 
control moves u

free  system 
response y0

forced 
system response yf

Total 
system
response

future
set values

future 
deviations

Model

 cost
function J

constraints

+_++Model

Optimizer

future
disturbances

past 
disturbances 

Figure 4.3. Calculation procedure for the manipulated variable. A model of the system serves for the prediction

of the free system response (controlled variable). It is compared to the set value. The deviations are used in the

optimizer to calculate the future sequence of the manipulated variable.

The �rst term of the cost function contains the future deviation from the set value, the second the

future changes of the manipulated variable. The terms can be weighted by altering the parameters

Qj und Rj , which can be time dependent.

Cost functions, which take the actual height of the control variable into account, can be de�ned as

well. This seems to be very interesting, especially with regard to the application presented here.

The manipulated variable is the supply temperature or the heating power. The optimizer would

weight between comfort and energy demand then.

An investigation with the simulation environment was carried out to check the applicability of

both cost functions for the predictive heating control. It was an aim of the development introduced

here, that the user votes whether he prefers more comfort or saving energy. Therefore a comfort

parameter cl was introduced. By changing this parameter the user can adjust the weighting in the

cost function:

R = 9�cl
�

und Q = 1 = const

The user is allowed to change the comfort parameter cl in the limits 0. . . 9 (9: maximum comfort,

0: maximum energy saving). For cl = 9 only the deviation of the indoor temperature from its

set value plays a roll in the cost function. Then the controller tries to reach the set value as fast

as possible. The parameter � determines the upper limit of R and is di�erent for the two cost

functions examined here. The choice of the upper limit R was derived from simulations of the test

building. It was evaluated, what comfort losses can be expected from a user in the mode �maximum

energy saving�.

Figure 4.4 shows the behaviour of the control with a cost function, which weights between the

deviation from set value (indoor temperature) and the manipulated variable (supply temperature)

itself. A remaining deviation with increasing weighting of the manipulated variable can be clearly

seen. On the other hand, a low weighting of the manipulated variable leads to oscillations of the

heating power. For this reason the cost function weighting the control increment was used for the
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Figure 4.4. Simulated heating power and indoor temperature for di�erent weights between the deviation of the

indoor temperature from its set value and the level of the supply temperature. Using the comfort parameter cl = 9
(R = 0 and Q = 1) only the deviation from the set value of the indoor temperature is e�ective. For cl = 0 is R = 0:05
and Q = 1.

control algorithm.

Applied to the control of the indoor temperature via the supply temperature, this means that

the parameter R reduces the control moves of the supply temperature rather than the supply

temperature itself. This avoids temperature oscillations but no savings in heating energy are

caused yet. Therefore the energy reduction mode was implemented into the control algorithm as

follows: The user changes the parameter cl = 0::9 to choose a weighting between comfort and

energy reduction mode. Then, R and Q are calculated, if the current measured indoor temperature

is smaller than the set point. If the indoor temperature exceeds the set point, R = 0 and Q = 1
results, with the e�ect of reducing the supply temperature as fast as possible.

The simulated indoor temperature and the heating power are shown in �gure 4.5, for the same

period as in �gure 4.4. Concerning the deviations from the set value and the stability of the

heating power an improved behaviour can be stated here. Both the maximum values of the heating

power and the consumed heating energy are reduced signi�cantly at the mode �maximum energy

saving�, in contrast to the comfort mode. In the energy saving mode the set point of the indoor

temperature is reached substancially slower. This also allows a contribution of the passiv solar

gains to the room temperature rise with reduced overheating danger.

From the minimisation of the cost function, a calculation procedure of the so called controller gain

is to be derived. Similar as in conventional control, the multiplication of the controller gain with

the set point deviation of the controlled variable (the sequence of future values) gives the optimal

sequence of the manipulated variable. Only the �rst value of the optimal sequence is applied and

the calculation is repeated at the next time step.
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Figure 4.5. Simulated heating power and indoor temperature for di�erent weights between the deviation of the

indoor temperature from its set value and the increment of the supply temperature. cl = 9 ) R = 0, Q = 1 and
cl = 0) R = 1, Q = 1

4.1.4 Model identi�cation

Investigations on the model identi�cation method showed that the direct determination of the

impulse or step response coe�cients from the measurements with the least squares method is not

suitable. Because of the large number of the coe�cients to be determined, large errors arise, which

often cause uninterpretable step response coe�cients. Therefore other models were examined with

regard to their suitability to describe the dynamic system behaviour.

The model should contain as little information about the building as possible, so that the general

validity and the transferability to other buildings is unrestricted. In addition, the number of the

parameters to be identi�ed should be minimized. Transfer function models ful�l both conditions,

provided that they are not of too high order.

Suitable transfer function models are the ARX and the ARMAX model with the mentioned driving

forces as inputs and the indoor temperature as output.

Since an instantaneous e�ect of the inputs on the output is physically not possible for a building,

a model is chosen with a delay time step. Both ARX and ARMAX models of di�erent order were

identi�ed using measurements from the test building. The tests showed, that an ARX model of

2nd order with one delay is excellent for the system description. Models of higher order do not

lead to any noticeable improvement.

The used ARX model can be written as:

y(n) + a1y(n� 1) + a2y(n� 2) = b11u1(n� 1) + b12u1(n� 2) +

+b21u2(n� 1) + b22u2(n� 2) +

+b31u3(n� 1) + b32u3(n� 2) (4.4)

where y is the indoor temperature, u1 the di�erence between outdoor temperature and mean set



4.1 The ISFH control algorithm 20

indoor temperature, u2 the solar irradiance and u3 the di�erence between supply temperature and

mean set indoor temperature.

The identi�cation of the model parameters is carried out with the help of the least squares method.

Because of the considerably reduced memory need, a recursive identi�cation method (RLS) was

chosen. In case of the recursive model identi�cation, the parameters of the previous time step and

the actual input quantities are used to get a one step forecast of the system output. The forecast

value is compared with the measured output value. If di�erences occur, the model parameters are

corrected.

Only the parameter set of the preceded time step and the input quantities for the model of the

last n time steps must be kept in memory (n order for the ARX model, here n=2). For this

application with slowly varying parameters a RLS with exponential forgetting is suitable. With

help of measurements of the experimental houses of the ISFH the behaviour of identi�ed parameters

and the calculated system output was examined in dependence of the chosen forgetting factor.

In [Lju95] forgetting factors � = 0:95 : : :0:995 are recommended. Smaller factors indicate that old
measurements get less weighted. Therefore the choice of the forgetting factor must depend on how

fast the parameters of the system change.
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Figure 4.6. Measured and simulated indoor tempera-
ture for � = 0:999
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Figure 4.7. Parameters of the ARX-model for � = 0:999
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Figure 4.8. Measured and simulated indoor tempera-

ture for � = 0:99
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Figure 4.9. Parameters of the ARX-model for � = 0:99
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The �gures 4.6 to 4.9 show that the choice of a high forgetting factor is suitable. Small forgetting

factors lead to unstable model parameters, since the data base is small. The indoor temperature

course correspondingly gets bad reconstructed. A forgetting factor � = 1 weights all past measure-
ments equally � this isn't desired either since certain seasonal �uctuations are expected. Because

of the results shown here a forgetting factor of 0.999 was selected for the algorithm. Such factor

weights e.g. the measurements of 9 days ago still with about 42% in the identi�cation.

With the identi�ed model parameters the step responses necessary for the indoor temperature

prediction can be calculated by setting the respective input vector to the unity vector and the

other inputs to zero.

4.1.5 Prediction of the indoor temperature

The prediction of the indoor temperature is calculated by a superposition of the convolution sums

of the inputs with their step responses

T̂i(k + jjk) =

jX
i=1

ŝi�û(k + j � ijk) +
N�1X
i=j+1

ŝi�u(k + j � i) + ŝNu(k + j �N) +

+
N�1X
i=j+1

f̂1i�d1(k + j � i) + f̂1Nd1(k + j �N) +

+
N�1X
i=j+1

f̂2i�d2(k + j � i) + f̂2Nd2(k + j �N) (4.5)

f is the dynamic matrix of the step responses of the disturbances indicated by the �rst index.

The disturbance variable changes are given with �d. This is the standard approach at predictive

control: the prediction takes past control variables and disturbance variables however only future

control variables (still to be determined) into account.

In the development presented here this principle is extended, that also future predicted disturbance

steps are included:

T̂i(k + jjk) =

jX
i=1

ŝi�û(k + j � ijk) +

jX
i=1

f̂1i��d1(k+ j � ijk) +

jX
i=1

f̂2i��d2(k + j � ijk) +

+
N�1X
i=j+1

ŝi�u(k + j � i) + ŝNu(k + j �N) +

+
N�1X
i=j+1

f̂1i�d1(k + j � i) + f̂1Nd1(k + j �N) +

+
N�1X
i=j+1

f̂2i�d2(k + j � i) + f̂2Nd2(k + j �N) (4.6)

The future disturbance steps are calculated from the predicted course of the outside temperature

and the solar irradiation (see section 4.1.6).

4.1.6 The weather forecast

The weather forecast provides the future disturbance variable courses required in eq. 4.6. The

courses of outside temperature and irradiation must be prognosticated depending on the choice of
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the prediction horizon for di�erent horizons. An external supply (e.g. over a meteorological service)

or an internal forecast of data measured on base stood by the choice. At present an external forecast

isn't available in a corresponding timing resolution for Germany yet. The German meteorological

service (Deutscher Wetterdienst) o�ers 3 h interval forecasts only with a verbal description of the

clouds degree which can be used to quantify the irradiance. The costs for the connection arising at

present moreover are still relatively high in comparison with the savings to heating cost. Because

of that for the development presented here an internal forecast was integrated in the algorithm. In

the future probably however an external forecast in corresponding quality will be at the disposal.

The modular structure of the algorithm then makes straightforwardly an exchange of the forecast

routine possible. Therefore the e�ort for the development of the weather forecast was held smally.

Practical conditions were the available measurements and the request for short computing time

and low memory need. To keep the costs of the regulator little the necessary sensors equipment

was reduced as much as possible, i.e. for the prediction of irradiance and outdoor temperature only

the measurements of these values themself were available.

For the calculation of the courses of the predicted outside temperature and irradiance an approach

described in [Sta95] has been used and developed. The courses are approximated by cos-functions

which are multiplied by the amplitude (the expected maximum irradiance of the day). The period

of the function is adapted by a time function.

The time function for the irradiance is zero at 35 min before sunrise and 35 min after sunset and has

its maximum at 12 h solar time. The expected maximum irradiance of the day is calculated by �tting

previous measurements of the last 75 min with a decreasing weighting of older measurements. So

irradiation �uctuations resulting from clouds are smoothed (these don't make themselves noticeable

anyway because of the integrating system behave) and the prediction can follow weather trends.

Before sunrise, the maximum irradiance of the past day is used.

The time function of the outdoor temperature has its minimum on sunrise and its maximum on

14:30 h solar time. The cos-function for the approximation is added to a constant value equal to

the last mesured minimum outdoor temperature. The di�erence between maximum and minimum

used is the result of a weighted mean of the present and the past day.

Results of the forecast of the irradiance and outside temperature can be found in section 4.3.2.1.

A program �owchart is enclosed in the appendix.

4.1.7 The structure of the algorithm

The illustration 4.10 shows the structure of the complete developed algorithm as well as his inte-

gration into hard and software.

The software can be subdivided into two levels which are called with various time step. The outer

loop contains the measurement (i.e. recording of sensors, AD-conversion, data saving) as well as

the control of the supply temperature with a PID algorithm. This loop is called every 10 s. The

inner loop is called to every whole quarter of an hour. It contains the real predictive adaptive

algorithm that calculates a set value supply temperature set value for the coming 15 min.

During every call of the inner loop at �rst the mean average values of the measurements of the

former 15 min are calculated. They are saved to the later evaluation on the harddisk in the case of

the PC control. Then the data are given to the data storage which keeps the 15-min mean average

values of the respectively last 98 time steps. These are needed for the weather forecast. For the

model identi�cation only the current and the measurements of the past 2 time steps are necessary

(see eq. 4.4).

To every whole quarter of an hour after start of the process a counting index n is increased by one.

As soon as n > 2 is valid, the model identi�cation is started since data are su�ciently available then.
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A check of the quality of the determined model parameters is carried out within the subroutine of the

model identi�cation (recident). If the di�erence between the model output (indoor temperature)

and the measured indoor temperature of the last 24 hours lies within prede�ned tolerances, the

model can be used for the predictive algorithm. The currently prede�ned tolerance is 5 K per time

step, i.e. 120 Kh for 96 time steps. The model check is executed for the �rst time after 24 hours after

start of the controller. At su�cient model quality the predictive part of the algorithm is started.

If the model check should turn out negative, then the classic supply temperature calculation with

the heating curve is activated for the next 24 hours. This gives the algorithm time to learn the

system behaviour with a larger database. After failing the model check three-times repeatedly (at

the earliest after 72 hours) the parameter matrices are set to their starting values and the complete

identi�cation process is started of the front.

For the start of the predictive part of the algorithm three conditions must be ful�lled.

� the counting index n must be larger than 96, so that data are su�ciently available for the

weather forecast

� the model quality must be su�cient

� the current measured indoor temperature may not lie below the set point any more than 4 K

The latter condition is primarily a protection against a malfunction of the algorithm of any manner,

to prevent from a too strong undercooling of the building.

In the predictive algorithm at �rst the weather forecast procedure (weatpred) is called, which

updates the the matrix of the predicted irradiation and outside temperature. The call of the

procedure for the calculation of the controller gain (cgain) is then carried out. Weather forecast

and controller gain are given to the procedure predalg. In this procedure, at �rst the indoor

temperature forecast is updated on base of the new measurements and the predicted irradiation

and outside temperature (measured disturbance variables). The multiplication of the di�erence

between set point and predicted indoor temperature with the controller gain gives the sequence of

the manipulated variable (set value of the supply temperature for the time intervall 15 min).
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Figure 4.10. Program �owchart of the algorithm for predictive adaptive heating control developed by ISFH and
his integration into hard and software. The time steps for the call of he program parts are given on the left hand

side. The names of subroutines are bold.
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4.2 Simulation tests of the ISFH-algorithm

First the developed algorithm was thoroughly examined with the help of simulations. The e�ects

of di�erent parameters on the control response could this way be tested and the results could

be used for resettings in the experimental tests. On the other hand comparisons with a classic

control strategy could be made under the same conditions. The additional unmeasured disturbances

occurring in the practical operation were simulated in a sensitivity analysis and her e�ects on the

control response were estimated.

In this chapter, at �rst the environment used for the simulations is explained. In the result part

at �rst a parameter study is described where no disturbances act on the system. After this the

control response was examined with measured and unmeasured disturbances.

4.2.1 The simulation environment used by ISFH

The simulations have been carried out with the program TRNSYS in combination with MATLAB.

The simulation environment consists of 3 main parts:

1. a building description �le,

2. a �le for the description of the simulation components and their combinations,

3. the algorithm for the calculation of the supply temperature in MATLAB.

Two building models were used for the tests: The �rst is a model of a test room of the Bâtiment

Académique of project partner Fondation Universitaire Luxembourgeoise (FUL) in Arlon/ Belgium.

This model was provided by the project partner. This model only was used to check the operation

of the control algorithm also in other buildings.

The second model which was created by ISFH was used for the parameter variations. This is a model

of the experimental house of the ISFH. It consists of 11 thermal zones. The indoor temperature

is controlled by the algorithm only in the reference room. All other rooms are controlled by the

TRNSYS-internal perfect heating. A component to describe a radiator which was provided by

partner FUL was used to calculate the heating power into the reference zone from the supply

temperature given by the control algorithm. It was assumed, that the supply temperature is

perfectly controlled by the valve and that no heat losses in pipes do occur.

The model quality was checked by a comparison for the ISFH building with measurements. The

mean deviation of the simulated and measured heating energy during a heating period is 9.7%.

While a very good agreement was found during the winter months, the di�erences are relatively

high during the in-between season. Since the in principle dynamic behaviour of the building was

well simulated however he model is suitable for the simulation tests.

Results of a comparison between di�erent simulations are transferable to the real case. A direct

comparison between and simulated building and control behaviour isn't however sensible because

of the variety of not ascertainable in�uences in a real building.

A TRNSYS description �le has been written to combine all components necessary for the simulation.

Figure 4.11 shows a block diagram of the components (types) and its combination. As time step

of the simulation 15 minutes was used since this corresponds to the time step for the call of the

control algorithm.

The types 151 and 182 as well as the were provided by partner FUL. For the simulations measured

weather data from the meteorological station of ISFH from the year 1995 have been used.
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Figure 4.11. Block diagram of the TRNSYS de�nition �le for the simulation of a building with di�erent heating

control strategies

4.2.1.1 Simulation of the reference control

The control which was installed in the experimental buildings before the installation of the new

control was taken as a reference (conventional or classical control). It is the calculation of the

supply temperature set point with a heating curve and a control of the room temperature with

thermostatic valves on the radiators. For the classical heating control, the supply temperature

is a linear function of the outdoor temperature, whose parameters are time-dependent. Fo the

experimental houses, the following heating curve was in practical use:

TV orlauf = 20+ bw� Ta (4.7)

where bw = 35 during day (6-22 h) and bw = 15 during night. The thermostatic valves were set

by the user. It was assumed that the indoor temperature setpoint is at 20 �C during day and

18 �C during night. The mass �ow was set constant, because the radiator type did not allow a

mass �ow variation. The function of the radiator thermostatic valve is therefore simulated by a

variation of the supply temperature entering the radiator. It is assumed, that for a completely

closed valve the supply temperature is equal to the indoor temperature and for a fully open valve

the supply temperature remains unchanged. Between the closing and opening point, a linear course

is assumed. The closing point is 1.5 K above the indoor temperature set point the opening point

0.5 K below. Furthermore a hysteresis of 1 K between opening and closing has been simulated.

Both mechanical and electronical thermostatic valves are on the market. Electronical valves o�er
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the possibility to de�ne an indoor temperature set point for day and night. Then the indoor tem-

perature is controlled also during night. A mechanical thermostatic valve, which is not manipulated

by hand, opens during night completely. This leads to more heat transfer to the room. Between

the di�erent valves it was distinguished with the indoor temperature set value which was used to

calculate the supply temperature entering the radiator.

4.2.2 Results of the simulation tests

In this section the results of the simulation experiments are presented. It was target of the ex-

aminations to test the consequence of di�erent parameters in the algorithm and to determine the

in�uence of single elements of the control on the overall result. The comparison with a simulated

classical control serves to judge the qualities of the new control with regard to energy savings and

thermal comfort. A sensitivity analysis serves for the estimate of the in�uence of unmeasured

disturbances which can occur in real operation.

4.2.2.1 Control behaviour without in�uence of disturbances

The in�uence of irradiation, outside temperature and additional energy sources can be removed

in the simulation in simple way. In the case of the climate for example, one uses weather data

at which the outside temperature is constant and the irradiation in all directions is zero. In that

way one can test, whether and under which conditions the algorithm in principle is able to follow

a setpoint. Parameter studies have been carried out by varying the comfort parameter cl, the

number of step response coe�cients used for the free system response SAK, the prediction horizon

P and the control horizon M . Figure 4.12 shows the control behaviour without disturbances for
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Figure 4.12. Simulated control behaviour for constant climatic conditions and variable indoor temperature set

point, Tsupp: supply temperature, Ti: Indoor temperature, IB: ISFH-building model, FB: FUL-building model,

cl = 9, P = 10, M = 5, SAK = 100, the �rst 4 days after start of the predictive adaptive control at hour 25

an indoor temperature set value of 20�C during day (6-22 Uhr) and a night setback to 18�C. The

algorithm needs a learning phase of about 80 hours for the ISFH building model till he has included
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the dynamic reaction of the inside temperature to the supply temperature completely. After that

period the algorithm regulates exactly on the set point. After hour 80 identical trapezium pro�les

of the inside temperature course are created every day since due to the constant weather conditions

and the missing of disturbances no more information is added to the data.

For the FUL building model is the studying phase substantially shorter (already �nished before

hour 25) since it has a considerable smaller time constant. The non-reaching of the night set

point results from the constant boundary conditions of the reference zone, that lead to a thermal

equilibrium at about 19 �C for the chosen constant weather conditions.

In the following the in�uence of di�erent parameters of the algorithm is examined at constant

weather conditions.

The comfort parameter cl controls the weighting of set point deviation and control variable change

in the cost function.

It can be changed in prede�ned limits cl = 0::9 to choose a weighting between comfort and energy

reduction mode by the user (9: maximum comfort, 0: maximum energy saving). The course of

the indoor temperature and the heating power for di�erent comfort parameters simulated with the

ISFH bulding model is shown in �gure 4.13. Constant climatic condition have been assumed for

this simulation.
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Figure 4.13. Simulated control bahaviour of the predictive adaptive control algorithm without in�uence of distur-
bances � indoor temperature, P = 10, M = 5, SAK = 100

The various weighting a�ects in the cost function the control response can be recognized clearly.

If the change of the control variable doesn't get weighted at all (cl = 9), the set point trajectory is
followed almost ideally. Merely the limitations of the control variable and the building sluggishness

prevent an ideal rectangle pro�le. At high comfort parameter the resulting control variable changes

are corresponding high. The agreement of the inside temperature with the set point deteriorates

at increasing weighting of the control variable change. As explained above, the weighting of the

control variable change is reduced on zero at transgression of the set point. This is the reason for

the fast temperature drop when the night setback is switched on. The lower limit for the weighting

of the deviation from set value (or the upper limit of the weighting of the control variable change)
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Figure 4.14. Simulated control bahaviour of the predictive adaptive control algorithm without in�uence of distur-

bances � heating power, P = 10, M = 5, SAK = 100

was �xed arbitrarily. For this was assessed, which comfort losses still have to be expected of an

energy reduction willing user.

The in�uence of the other parameters is discussed in section 4.2.3.

4.2.3 Control behaviour with in�uence of disturbances

In�uence of the comfort parameter

The simulated in�uence of the comfort parameter is shown here in a period for weather data of

march 1995 (hours 1945-2045). The �gures 4.15 and 4.16 show the simulated course of the indoor

temperature and the corresponding heating power for di�erent comfort parameters. The �gure

show that the heating power is reduced for a smaller comfort parameter. The small weighting of

deviations from the set point leads to a more sluggish reaction on changes in the set value. On

days with a high irradiance, the overhaeting risk is reduced considerably. Though on days with

low irradiance the agreement of set value and real value is worse. The heating power is reduced

correspondingly at smaller comfort parameters.

A simulation for a full year for di�erent comfort parameters was carried out with the weather data

of the year 1995. Figure 4.17 shows the monthly mean values of the heating energy inputs into the

reference zone for di�erent control strategies. For a classical control with electronical thermostatic

valve as a reference, the monthly heating energy can be represented as a percentage (Figure 4.18).

The simulations show, that the new control in comparison with the classic control leads to energy

savings. The savings are the lowest within the winter months and at the highest within the in-

between season. By reducing the comfort parameter on can reduce the heating energy consumption

further. The height of the diminution has the same seasonal dependence. For a comparison, also

the TRNSYS-internal ideally fast control is drawn. Due to the way of calculation, the seasonal

dependence di�ers from those of te other controls shown.
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Figure 4.15. Simulated zone temperature for di�erent comfort parameters cl, for weather data of 23.3.-26.3.1995,

furthermore the irradiance on the south facade is drawn
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Figure 4.16. Simulated heating power for di�erent comfort parameters cl, for weather data of 23.3.-26.3.1995

Illustration 4.18 shows, that the quantitative assessment of the possible energy savings strongly de-

pends on the reference and the select comparison period. For a whole heating period the simulation

with the ISFH building model gives the results indicated in table 4.1.

To the assessment of the thermal comfort the time integral of the di�erence between simulated
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Figure 4.17. Monthly mean values of the heating energy input into the reference zone for di�erent control strategies

simulated with the ISFH building model (weather data 1995)

Table 4.1. Simulated heating energy savings for the reference zone of the ISFH building model in a heating period

(weather data 1995)

Comfort parameter reference: thermostatic

valve Tset=20 �C

reference: thermostatic

valve Tset=18/20 �C

cl = 0 17.8 12.9

cl = 5 13.6 8.5

cl = 9 7.2 1.7

indoor temperature and set point was used.

Abw =

Z te

ta

Ti� Tisoll dt (4.8)

The calculation was executed for a negative and positive deviation from the set point separately,

only for the timesteps in which there was a heating on energy requirement. In addition, only the

times on which the day set point was sedate were judged.

The sums of the complete heating period are written down on table 4.2. Overheatings natu-

rally occur more within the in-between season while sub-temperatures have to be more frequently

found within the winter months. For the new control algorithm substantially less temperature

transgressions occur than for the control with radiator thermostatic valve. The transgressions are

hardly di�erent for di�erent comfort parameters of the new control. This has to be explained

with the predictive mode of operation of the new control with which future overheatings are rec-

ognized and turned away already in advance by a corresponding control strategy. In comparison

sub-temperatures occur more frequently at the new control.

In the cost function the change of the control variable is judged more strongly at small comfort

parameter, what leads that the indoor temperature is increased more slowly.
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Figure 4.18. Monthly mean values of the heating energy input into the reference zone for di�erent control strate-

gies simulated with the ISFH building model (weather data 1995) referred to a classical control with electronical
thermostatic valve as a reference

Table 4.2. Time integral of the deviation of the simulated indor temperature from its set value in a heating period

(weather data 1995). Only the times on which the day set point was sedate were judged.

Control strategy Abw for Ti < Tiset
[Kh]

Abw für Ti > Tiset
[Kh]

classical, mech. thermostatic valve -267 514

classical, elektron. thermostatic valve -404 468

new cl = 0 -1574 319

new cl = 5 -1077 328

new cl = 9 -447 345

In�uence of the number of step response coe�cients

The number of step response coe�cients used for the calculation of the free system response must

be �xed before the start of the control. Since it in�uences the calculation time considerably, it

should be reduced as much as possible, without loosing to much information about the dynamic

behaviour of the system. The tests showed that the in�uence within the range SAK = 20::1000
is low for the ISFH building model for a high comfort parameter. The reason is the correction of

the free system response on every time step with current measured data which compensates for an

erroned modelization. A further reason is the fact that the most information about the dynamic

system behave is contained in the �rst part of the step response, which has'nt been in�uenced by

the variation. At high comfort parameters, the current deviations from the set value are more

important than future ones, thats why the in�uence of SAK remains low. For smaller comfort

parameters, the in�uence is a little higher. A value of SAK = 100 has been chosen for the control

program used in experimental testing as a compromise between precision and calculation time.

In�uence of control and prediction horizon
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The control horizonM and the prediction horizon P must also be �xed before the control process.

The prediction horizon estimates the number of timesteps in the future for which the di�erence

between predicted value and set value is taken into account by the cost function. The control

horizon is the number of timesteps in the future for which the control moves are taken into account

by the cost function.

The �gure 4.19 shows the comparison of the control response with di�erent prediction horizons P

for a comfort parameter cl = 5.
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Figure 4.19. Simulated indoor temperature of the reference zone for di�erent prediction horizon P with in�uence

of measured disturbances (weather data: 6.1.-9.1.1995) , control horizon M = 5, comfort parameter cl = 5 number

of step response coe�cients SAK = 100, set value of indoor temperature = 20/18 �C, control horizon M = 5

As shown in the graph, the choice of the prediction horizon has a considerable in�uence on the

quality of the control. If the control horizon is too long, the control reacts to early on future steps

of the set value. If it is too short, only a few time steps are considered in the cost function. Then

the weighting of the control moves gets more important.

The variation of the control horizon M in the limits of 1. . . 5 did'nt show signi�cant dependence of

the control response of this parameter.

For the control program used in experimental testing P = 10 and M = 5 has been used.

In�uence of the weather prediction

The e�ect of the weather forecast on the control response was determined with help of the simu-

lation of the two extreme cases in the forecast quality. An ideal weather forecast doesn't have any

di�erences on the weather terms occurring actually. Such forecast was created in the simulation by

reading the weather data into the forecast algorithm. In the other extreme case the algorithm has

no information about the future outdoor temperature �uctuations or energy inputs by irradiation.

This case was simulated by setting the future course of the outdoor temperature constant to the

last value measured and the future irradiation to zero. Figure 4.20 shows the simulated indoor tem-
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peratures for both cases and weather prediction used in the developed algorithm (see section 4.1.6).

The heating power for the correspondig days are drawn in �gure 4.21. For the estimation of the
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Figure 4.20. Simulated indoor temperature for di�erent weather predictions, ISFH building model with �oor
heating cl = 8, weather data 2.3.-5.3.1995, in addition the irradaince on th south facade is plotted for the simulation

period

in�uence of the quality of prediction, a simulation with the ISFH building model was used. The

heat capacity of the radiator was set to 5722 kJ
K
. This is the thermal capacity of a 15 cm thick

concrete �oor, which was set to simulate a �oor heating. The heat capacity of the pipes and the

water was neglected here. 1.

Since the available heating system reacts comparatively fast in the experimental house, a more

sluggish system was used for this simulation. Overheating phenomena occur substantially more

often and a�ect more the advantages of the inclusions of future disturbance variables in the control

strategy.

Table 4.3. Heating energy input into the reference zone and time integral of deviation from set value of indoor

temperature (weather data 1.1.-31.3.1995), number of step response coe�cients SAK = 100, control horizon=
prediction horizon=20, cl = 8, set value of indoor temperature = 18/20 �C

weather predic-

tion

heating energy in ref-

erence zone [kWh]
Abw für Ti < Tiset
[Kh]

Abw für Ti > Tiset
[Kh]

no 820 -129 153

ideal 796 -238 108

ISFH 816 -152 148

If one compares the two forecast extreme cases then it can be observed that the control with ideal

forecast of gains by irradiation reduces the heating power early. Through this the indoor temper-

ature elevation caused by irradiation isn't as high as without forecast. The indoor temperature

courses for the internal weather forecast by the ISFH control lie between the two extreme cases.

1In comparison the estimated heat capacity of the radiator used for the other simulations was 60 kJ

K
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Figure 4.21. Simulated heating power for di�erent weather predictions, ISFH building model with �oor heating

cl = 8, weather data 2.3.-5.3.1995

It has to be remarked that the absolute height of the overheatings caused by irradiation depends

of further building parameters like solar aperture and thermal mass. The obtainable savings also

are dependent on building parameters and parameters of the control. The consumption on heating

energy mentioned in table 4.3 and comfort assessments refer therefore to the chosen building model

and the presettings in the control.

With the data is obvious that a considerable potential of the energy savings lies in an improvement

of the weather forecast of the developed algorithm. The determined results also make clear, that

with the developed predictive adaptive heating control comfort improvements particularly for very

sluggish heating systems are possible.

The e�ect of the weather forecast on the control response also depends on the prediction and con-

trol horizon (see �gure 4.22). For a larger prediction horizon and expected solar energy input the

heating power is reduced earlier, what makes itself noticeable in an earlier reduction of the indoor

temperature. The following overheating is also lower since the indoor temperature is already far

reduced when the irradiation has an e�ect. It is remarkable that the di�erence between the indoor

temperatures at a control and prediction horizon of 10 and 20 (corresponds to 2.5 h und 5 h) is

substantially higher than for a control and prediction horizon of 20 and 40 (corresponds to 5 h und

10 h).

In�uence of the change of building parameters

With these examinations it shall be checked, if the developed algorithm is also working for a

di�erent solar aperture of the building (see �gure 4.23) On the �rst day of the simulation the sup-

ply temperature is adjusted with the heating curve. This leads to overheatings since no radiator

thermostatic valve is available in the simulated reference room. The predictive adaptive heating

control is switched on on hour 25. It can be recognized, that on the �fth day after the start of

the simulation overheatings occur. The larger the window area is, the higher are the overheatings.
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Figure 4.22. Simulated indoor temperature for the ideal weather prediction for the ISFH building model with �oor

heating cl = 8, variation of control and prediction horizon, weather data 2.3.-5.3.1995

The early reduction of the supply temperature doesn't su�ce for the avoidance either. A larger

prediction horizon could cause improvements here. On days with low irradiation the indoor tem-

perature is very well controlled on the set point. The consequence of model errors is shown on

some days with middle irradiance. The larger the window area is the more the consequence of the

irradiation was overestimated. The room temperature therefore is reduced more than necessary for

the compensation.

4.2.3.1 Control behaviour with in�uence of unmeasured disturbances

In the real application measured and unmeasured disturbances act on the system. The most im-

portant possible in�uences are examined with help of the simulation in this section. It is assessed,

how the developed algorithm is able to work well under these non-ideal conditions.

In�uence of additional energy inputs and losses

Additional energy inputs are caused by heat emission of persons and electrical equipment for ex-

ample. Additional losses can for example arise from window ventilation. The e�ect of additional

internal energy sources on the indoor temperature course shows �gure 4.24. If a constant addi-

tional energy input of Pint = 2000kJ=h is applied to the reference zone, then the resulting high

heating power leads to overheatings already in some periods. This makes the control of the indoor

temperature more di�cult. However during the periods where there is a heating energy demand,

the control is working well. The start phase with the classic control during the �rst 24 hours can

be seen. After the transient period the day set value is controlled as well as without additional

energy inputs.

For internal gains varying with time it can be recognized that after the morning add-on of the

input (at 9 o'clock) a short-time temperature elevation results which is however intercepted by
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Figure 4.23. Simulated indoor temperature for di�erent window area in the south facade of the ISFH building

model, set value of indoor temperature 20/18 �C, weather data 1.1.-10.1.1995, cl = 8
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Figure 4.24. Simulated indoor temperature for the reference room of the ISFH building model for additional energy

input, set value of the indoor temperature 20/18 �C, weather data: 1.1.-10.1.1995, cl = 8

the reaction of the control algorithm after short time. An indoor temperature reduction which

is corrected by the control of the heating system also after short time analoguely occurs when

switching the load o� at 18 hours. The algorithm therefore is able to react to not measured

disturbances adequately.
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It is pointed out again that the internal gains can be included in the control in addition or instead

of solar gains as measured disturbance variables.

Especially in o�ce buildings the quota of internal gains to the energy balance is often considerable.

Moreover the temporal course there can be predicted usually with a good precision. The decision

depends in the end which gains are relevant in the corresponding building and which additional

costs arise from a further sensor.

In�uence of sensor inaccuracies

In this section the consequence of random and systematic errors at the measurement recording is

examined. A random error was simulated by adding random numbers with a variance of 10% of

the measured value to it. A systematic error was created by addition of 10% of the measured value

to it. In �gures 4.25 and 4.26 the corresponding simulated indoor temperatures in�uences by the

errors.
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Figure 4.25. Simulated indoor temperature for a random error of the corresponding measured value (Ta: outdoor

temp., Ti: indoor temp. Ts: supply temp. Isol: insolation) for the ISFH building model, the real simulated

temperature without error is shown, set value of the indoor temperature 20/18 �C, weather data: 1.1.-10.1.1995,

cl = 8, only for an error in the indoor temperature measurement a noticable deviation occurs

The controlled variable (the indoor temperature) is most sensitive to a random error of the measured

value. Random errors of the measured values of the driving forces also have an in�uence, but much

lower and without any in�uence on the operation in principle. This is due to the delayed and

dampened e�ect of all driving forces on the output quantity.

The system has an e�ect on the input quantities like a lowpass so that high-frequency �uctuations

around the mean average value have hardly in�uence on the output quantity. A large random error

however at the measuring of the controlled indoor temperature leads to considerable problems in the

control. Because of the necessary correction of the predicted output quantity with the respectively

current measurement the future course of the indoor temperature is either about-or underestimated

in frequent change. The supply temperature is correspondingly de- or increased.
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Figure 4.26. Simulated indoor temperature for a systematic error of the corresponding measured value (Ta:

outdoor temp., Ti: indoor temp. Ts: supply temp. Isol: insolation) for the ISFH building model, the real simulated
temperature without error is shown, set value of the indoor temperature 20/18 �C, weather data: 1.1.-10.1.1995,

cl = 8, only for an error in the indoor temperature measurement a noticable deviation occurs

For the addition of an o�set of 10% of the driving forces, no deviation occurs compared to the

case without error. The o�set is simply learned and then compensated by the control algorithm.

However problems for the control arise for the addition of an o�set to the controlled variable. The

�uctuations of the model which arise from the identi�cation cause the �uctuations of the indoor

temperature to be seen. The identi�ed model gets completely useless approximately on hour 150.

Then the identi�cation gives the result that an increase of the supply temperature leads to a

decrease of the indoor temperature. Compared to this errors in the model output quantity (indoor

temperature) a�ect very negatively the control response. The sensors for a practical use must be

chosen according to this facts.
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4.3 Experimental investigations at ISFH

The experimental examinations served primarily the proof that the control algorithm works under

practical conditions. Furthermore the operation of subroutines could be tested to get ideas about

possibilities for an optimisation. A compariso between the predictive adaptive and a conventional

control is possible only qualitatively, since the experimental condition cannot be reproduced exactly.

A quantitative comparison has been presented in section 4.2.3.

In this section, at �rst the test facility for the experimental investigation of the developed algorithm

is described and then the results are presented.

4.3.1 Description of the test facility

The tests were executed in the experimental houses of the ISFH Emmerthal. These are two buildings

with a re�ectedly built up ground plan and 160 m2 living space. The eastern building (experimental

house) and the western building (reference house) are separated by the garage section from each

other 4.27. The heating energy is supplied to the buildings by separated heating circiuts but one

Figure 4.27. The ISFH test buildings

boiler. The low temperature gas boiler (20 kW) provides a primary circuit with hot water. The

primary circuit supplies the three heating circuits. For every circuit a three way valve mixes the

hot water with the water from the return pipe to hold the desired supply temperature. Before the

developed control was put into operation, a heating curve was used to calculate the set value for

the supply temperature (see section 4.2.1.1). If not indicated di�erent, the indoor temperature set

point was �xed to 21 �C from 6-22 hours, during the night to 19 �C.

Both houses are used as o�ce buildings. This indicates that disturbances by internal gains or door

opening occur primarily in the time on Mondays till on Fridays from 8 to 18 hours. The use of the

buildings restricts the possibilities of variation of certain parameters like indoor temperature set

points and comfort parameter during the experimental tests.

For the experimental examinations an independent data acquisition and sensors had to be installed

since the available devices weren't compatible with the used software. Moreover, the ongoing

experiments with the already available device shouldn't be disrupted. For the tests with PC
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control the experimental house was used, for the tests of the independent controller (prototype)

the reference house was used. Both controllers use however the same principle which was explained

in section 4.1.1.

4.3.1.1 Sensors and data acquisition

The sensors and data acquisition are di�erent at the PC control and the control with the micro-

controller. The choice of the sensors was determined by precision, price and market availability.

Background was the target to develop a marketing capable controller. The function ability had

therefore to be made sure also with cheap and more inaccurate sensors.

Control with personal computer

Table 4.4 gives a list of the sensors used for the PC control. The �rst four mentioned sensors are

actually used for the control. The other sensors served the system supervision. Air temperature

Table 4.4. Sensors used for the PC control

measured quantity sensor type precision supplier

Indoor temperature PT100 class A �(0:15+ 0:002[t])�C Heraeus Sensor Hanau

Outdoor tempera-

ture

PT100 class A �(0:15+ 0:002[t])�C Heraeus Sensor Hanau

Supply temperature PT100 class A �(0:15+ 0:002[t])�C Heraeus Sensor Hanau

Irradiance Si-01TC �8:9% v.M. Ingenieurbüro Mencke

& Tegtmeyer

Heating power VMT 1.5 / T1 � 1% v.E. [RKE] Raab Karcher En-

ergieservice

return temperature PT100 class A �(0:15+ 0:002[t])�C Heraeus Sensor Hanau

supply temperature

at the radiator

PT100 class A �(0:15+ 0:002[t])�C Heraeus Sensor Hanau

return temperature

at the radiator

PT100 class A �(0:15+ 0:002[t])�C Heraeus Sensor Hanau

sensors are not ventilated but provided with a radiation protection. Temperature sensores for the

measuement of temperatures in the heating circuit have been �xed outside of the pipe with a good

thermal contact. The radiation sensor is a silicium solar cell with temperature correction. It has

been �xed on the south facade of the test building. The sensor for the measurement of the heating

power consists of a sensor for the mass �ow and 2 temperature sensors for the supply and return

pipe. A Microcomputer calculates the corresponding heating power and creates a proportional

electrical signal, which is registered by the data aquisition.

The measurement and the AD-conversion is carried out by a Hewlett Packard data logger (see

�g. 4.3.1.1). The data aquisition deveice consists of a mainframe and three cards. The command

moduls serves for the control of all processes in the device. With the multiplexer all channels

are switched in succession to the multimeter, which is the actual measuring device. The data are

converted to a digital signal and then transferred to the computer. A library allows to control the

data aquisition from a C or C++ program.

The measuring program in C++ collects the data every 10 s. After 15 min the mean value is

calculated and saved to the hard disk. Then the developed algorithm is called which calculates the

optimal supply temperature (set value) for the next 15 min. In a �rst version the algorithm was

running in MATLAB, in the second version the algorithm had been translated to C language.



4.3 Experimental investigations at ISFH 42

VXI Mainframe E 8400 A

Multiplexer E 8460 A

6 1/2 Multimeter E 1412 A

Command module E1406 A

Personal Computer

HP-IB Interface card 82350 A

ARCOM PCDAC 12-4

-

-

�

Sensors

3-way valve

Figure 4.28. Data acquisition system and analog signal output for the PC control

The calculated optimal supply temperature is the set value for a fast PID-control of the 3-way-valve

which mixed water of the primary circuit and the return pipe. The PID-Control is called by the

measuring program every 10 s. Output value is a voltage (0-10 V), which is given as digital value

to a DA-conversion card in the computer.

Control with microcontroller

All tasks carried out by the PC and the data acquisition is transfered to a Microcontroller in

this variant. An already existing hardware of the company Brauns Control GmbH was used and

modi�ed. The basic device consists of a microcontroller, a communication panel and a board for

the connection of sensors.

The hardware performance (e.g. calculation velocity, available memory) is considerably reduced

compared to the PC. The control algorithm therefore had to be optimized according to the hardware

limits.

Table 4.5. Sensors used for the control with microcontroller

measured quantity sensor type precision supplier

Indoor temperature BCTF-205RF � 1.5 K Brauns Control GmbH

Outdoor tempera-

ture

BCTF-205W � 1.5 K Brauns Control GmbH

Supply temperature BCTF-R2 � 1.5 K Brauns Control GmbH

Irradiance Si-01TC �8:9% v.M. Ingenieurbüro Mencke

& Tegtmeyer

The attachment of the sensors followed the same principles as for the PC control. For an assess-

ment of the control behaviour measurements of the already available data aquisition system of the

experimental houses have been used.
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4.3.2 Results of the experimental investigations

In this section, at �rst the results of the experimental tests of the control algorithm with a personal

computer are presented. After an assessment of the general control behaviour the results of single

program modules are described. They were determined from the results of select variables stored

to every time step. The representation of the measurement results for the microcontroller con�nes

itself to the general control response since the values of the variables couldn't be stored.

4.3.2.1 The control behaviour of the PC control

Figure 4.29 and �gure 4.30 show the measured indoor and supply temperature (controlled and

manipulated variable) and the measured weather data for an example period. At �rst can be

0 12 0 12 0 12 0 12 0 12 0 12 0 12
5

10

15

20

25

30

0

200

400

600

800

1000

1200

1400

Time [h]

In
d
o
o
r
te
m
p
e
ra
tu
re
[�
C
]

Ir
ra
d
ia
n
c
e
[
W m
2

]

Indoor temp. Irradiance Set value of indoor temp.

Figure 4.29. measured indoor temperature and irradiance for the period 23.11-29.11.99 for the PC control, the
measured values are 5-min mean values, furthermore the course of the indoor temperature set value is shown, comfort

parameter cl = 8

recognized that the course of the measured indoor temperature follows the set point very well.

With the chosen comfort parameter cl = 8, the deviation of the indoor temperature from its set

value is weighted relatively high, the control moves relatively low. During the night the control

moves are not weighted at all in the shown period, since the indoor temperature lies above the set

value. The supply temperature is set to the minimum value. That means that the night set value

is not reached only because of the slow building cooling. At the presence of solar irradiation and

danger of overheating the supply temperature is reduced. In the period showed no considerable

overheating was registered. The reaction of the manipulated variable to changes in the insolation

and outdoor temperature can be seen in the graph too.

A comparison between the calculated optimal supply temperature set value and the set value given

by the classical heating curve is shown in �gure 4.31. The set value calculated by the developed

algorithm lies below the classical set value in most cases. From that it can be deduced that at least
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Figure 4.30. Measured supply and return temperature and outdoor temperature for the period 23.11-29.11.99 for

the PC control
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Figure 4.31. Supply temperature set value calculated by the predictive adaptive algorithm and calculated with the

classical heating curve for the period 23.11-29.11.99
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23.11.99 -29.11.99, E:\Alg_Graf\IstSollW.pre, Seite 7
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Figure 4.32. Measured supply temperature and supply temperature set value for the period 23.11-29.11.99

the distribution are lower than in the classical case. Comparative statements about the energy

consumption concerning the room heating can be given with the simulations (see section 4.2.3).

The graph also shows that during the night the classical supply temperature is considerably higher

than the optimal one. If the radiators are equipped with mechanical thermostatic valves this would

cause a considerable not necessary energy input into the building. The indoor temperature can be

kept on the night set value of 19 �C with a much lower supply temperature.

The peaks during the morning heat-up result from the relatively high comfort parameter and the

fact that the control increment wasn't limited for these tests. This served for the determination of

the maximum control moves the algorithm demands in the extreme case.

A limitation of this value can be made by the setting of the at most permissible control increment,

which has to be �xed before the start of the control. So, a to high demand for the boiler can

be avoided. The plot of the supply temperature set value and the measured supply temperature

shows, that the load is to high with the calculated increment (see �g. 4.32). However, this has no

further consequences except the one that the indoor temperature is not reached as fast as required.

The evaluation of the measurements of the whole test period showed that on days with high wind-

speed (>5m
s
) the calculated optimal supply temperature lies above the one calculated with the

classical heating curve. Nevertheless the indoor temperature set value was not exceeded. This

means that the indoor temperature set value would not have been reached woth a classical control.

However, the predictive adaptive control did compensate the higher losses due to the wind speed,

although the quantity was not included in the model. This shows, that a comfort improvement

is possible with the new control not only by preventing the overheating. Furthermore this results

show that the heating curve of the experimental buildings which was used to evaluate the possible

energy savings is already a very �energy saving� standard.
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Results of the online-model identi�cation

The used ARX model was selected by physical considerations and tests with help of measurements.

In this section is checked, how good the model and the chosen identi�cation method work in real

operation. Figure 4.33 shows the course of the indoor temperature measured and the one calculated

from the determined model parameters. The course of the determined parameters of the ARXmodel

for the same time period is represented in �gure 4.34. Only still insigni�cant changes of the model
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Figure 4.33. Measured (- -) and simulated (�) indoor

temperature for the period 16.11-30.11.99

200 400 600 800 1000 1200 1400
−2

−1.5

−1

−0.5

0

0.5

1

Timesteps

P
a
ra
m
et
er
s

Figure 4.34. Temporal course of the identi�ed model

parameters for the period 16.11-30.11.99

parameters occur after approx. 200 time steps (approximately 2 days). The indoor temperature

course is reproduced with the parameters got at the end of the identi�cation time period with a

high precision.

The free system response o�ers also a possibility for the check of the model quality. The second

value of the vector must equal the measured value of the following time step for an exact model and

a recording of all in�uences. The two courses are represented exemplarily for a day with middle

irradiation (26.11.99) in �gure 4.35.

Because of model errors and a number of non-recorded disturbance variables di�erences occur which

however remain below 0.3 K.

The di�erences are particularly high at noon. This indicates that the irradiation is underestimated

in the step responses. Only a respectively small irradiation was actually measured on the preceded

days which have in�uence on the identi�cation with largest weighting on last measurements. Due

to that the signal to noise relation deteriorates. A corresponding model inaccuracy can be justi�ed

with that. Di�erences also occur during the night. The model expected a faster cooling than

actually arised. Additional internal energy inputs can be excluded for the reference room for this

time.

It is suspected that the step response of the outside temperature represents an essential cause, since

in has the largest uncertainty. In addition, the system reaction can be di�erent because of non-

recorded climate sizes like the wind speed and the air humidity at the same outside temperature

steps.

Summarizing one can say that the on-line model identi�cation has proved its suitability in the prac-

tice test. The tests have shown however that the identi�cation at small signal to noise relations

leads to a larger error of the model parameters. For this reason the identi�cation only then should

be executed, if a having the heating energy requirement exists. Furthermore, it would be possible

to make the weighting of the measurements for the identi�cation dependent on the signal to noise
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Figure 4.35. Comparison of the measured indoor temperature (Ti) and the indoor temperature of the next time

step predicted by the free system response (FR) on 26.11.99

relationship. The forgetting factor could for example be increased during the in-between season

(that means the period relevant for the identi�cation is increased) but be reduced in winter. At

present a fogetting factor of 0.999 is used.

Results of the internal weather forecast

For the assessment of the quality of the weather forecast the predicted courses of outside tempera-

ture and irradiation were stored on the hard disk on every time step of the measurement. Since the

building has an integrating e�ect, the irradiated energy instead of the performance is compared.

Abw =

Z t0+�t

t0

(Ipred � Imeas) dt (4.9)

where �t is equal to respectively 1, 2 and 4 hours. For the assessment of the outside temperature

forecast the standard deviation of the di�erence between measured and predicted value is calculated.

Figure 4.36 shows exemplary the calculated values for the period 26.11.99-28.11.99

The outside temperature forecast works in most cases very well. Also for a forecast period of 4 hours

the standard deviation lies below 1 K, normally. Larger di�erences occurred, if the �natural� course

of the outdoor temperature was changed by disturbing in�uences. Though, these temperature

elevations are mostly locally limited and therefore hardly relevant for the energy losses over the

whole building envelope. However, such in�uences should be considered at the sensor placement.

The irradiation forecast with the chosen attempt still shows a high inaccuracy. Particularly at

strongly �uctuating irradiance, di�erences up to several 100% can be observed at single time steps.

When pursuing the courses of the predicted irradiation one notices, that strong �uctuations occur

between single time steps. These are caused by irradiation peaks which strongly a�ect the prediction

with the respectively current measurement due to the weighting with forgetting e�ect.
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Figure 4.36. Standard deviation of the di�erence between predicted and measured outdoor temperature and

di�erence between predicted and measured irradiated energy for a prediction period of 1 hour, shown for the period
26.11-28.11.99

As investigated in the simulation tests already, a considerable energy reduction potential lies in

the improvement in the weather forecast. Further optimizations of the introduced approach or also

other approaches would have exceeded the frame of the project however. In the context of the

approach here an optimization in the weighting function could lead to improvements. In addition,

a coupling between measured irradiation and outdoor temperature as it also corresponds to the

general experience could be included in the forecast. Since the strength of the coupling can vary

in various climatic zones it is suggested to determine it by a self-learning algorithm.

Besides the approach used here, transfer function models could be applied for an internal predic-

tion only on the basis of measurements of the quantities to be predicted. It is however foreseeable,

that in the not too far future a suitable weather service will be available about via internet, which

doesn't exceed the �nancial possibility for the control of the heating either in single family houses.

For large buildings or settlements the arising costs are so low compared other costs already, that a

use would already be possible today. The modular structure of the algorithm then makes possible

straightforwardly a replacing the present forecast procedure by an external forecast.

Temperatures in other rooms for the PC control

By the investigation of the temperatures in other rooms of the building during the test period the

proof of the suitability of the used control concept should be furnished (see section 4.1.1). The

course of the indoor temperatures in all four south oriented rooms of the experimental house is

shown in �gure 4.37.

The di�erence of the indoor temperatures of the rooms reaches more than 1 K only in rare cases dur-

ing the period shown. The reference room is the room with the on an average lowest temperature.
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Figure 4.37. Measured indoor temperatures in the south-facing rooms of the experimental house for a control of

the indoor temperature of the reference room (small room in the upper �oor) by adjusting the supply temperature,

period 23.11-29.11.99, Room 1: big room in the ground �oor, Room 2: small room in the ground �oor, Room 10:
big room in the upper �oor

Temperature peaks result from solar radiation or window opening.

Despite the mostly lower supply temperature compared to the classic control su�cient heating

power is delivered to the whole building. In addition the results show that the reference room was

well chosen. The higher temperatures in the other rooms result from the users presettings of the

radiator thermostatic valves. If the indoor set point would not have been reached there would be

still the possibility to correct this by reducing the mass �ow in the radiator of the reference room.
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4.3.2.2 The behaviour of the microcontroller

The microcontroller has been taken in operation on 21-12-99. The indoor and supply temperature

as well as the irradiance during the starting phase show �gures 4.38 and 4.39. After the start, the
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Figure 4.38. Measured indoor temperature (Ti) and vertical global irradiance on the south facade (Isol) for the

period 21.12-27.12.99 for the microcontroller, the shown measurements are 5-min mean values, furthermore the set
value is drawn comfort parameter cl = 8
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Figure 4.39. Measured supply (Tv) and return temperature (Tr) and the outdoor temperature (Ta) for the period

21.12-27.12.99 for the microcontroller

supply temperature was calculated with the classical heating curve for the next 24 h. The di�erence

between supply and return temperature is nearly constant. Although the thermostatic valve has

been removed the indoor temperature in the reference room only reaches 22 �C. This is due to the

low parameters of the heating curve. 24 h after the start, the model qualitity was proofed. This

test was successful, so the predictive adaptive control with the microcontroller started on 22nd



4.3 Experimental investigations at ISFH 51

December at 10:30 h (Timestep 414).
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Figure 4.40. Measured indoor temperature (Ti) and vertical global irradiance on the south facade of the test

building for the period 4.1.-10.1.2000 for the control with microcontroller, the measured values are 5-min mean

values, furthermore the course of the indoor temperature set value is shown, comfort parameter cl = 8
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Figure 4.41. Measured supply (Tv) and return temperature (Tr) and outdoor temperature (Ta) for the period

4.1-10.1.2000 for the control with microcontroller

During that day at about 14:00 h (timestep 456) the model test turned out negative, so that the

controller used the heating curve for the following 24 h. Then, from 23rd December, 14:00 h the

predictive adaptive heating control worked continously.

From the strong oscillations of th supply temperature one can see that the model parameters are

still very unstable during the �rst days. From the 6th day on after the start of the control (26.12.99)

the oscillation become less strong. Figure 4.40 shows measured indoor temperature and irradiance

in the period 5.1.-7.1.2000. During this time relatively high irradiance occured, which led to a

transgression of the set indoor temperature. The corresponding courses of the supply, return and
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outdoor temperaure shows �gure 4.41.

Already 7 days after the start, a signi�cant reduction of the oscillations arises, since the model

parameters are relativily stable then. However, the remaining oscillations are higher as in the PC

control, despite of the same pre-setting of the comfort parameter. Several reasons are possible for

this behaviour. As shown in the simulation tests, the control is relatively robust at measuring

errors of the model inputs but sensitive at errors of the model output. As shown in tables 4.4

and 4.5, the indoor temperature sensor used for the microcontroller is less precise than the one

for the PC control. Another reason could be that more disturbances through door opening occur

in the reference room used for the micorcontroller. Furthermore the internal calculation in the

microcontroller uses �oating point variables of single precision instead of double precision in the

PC.
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Summary and discussion of ISFH results

The report on hand presents the work carried out in the frame of the project �Development and Test

of Modern Control Techniques Applied to Solar Buildings� funded by the European Commission.

The aim was the development of an algorithm for the predictive and adaptive heating control

in buildings with high solar gains. The developed algorithm has been investigated in a simulation

environment and test buildings. The tests showed that the chosen procedure is suitable in principle.

Despite of the high dead times and time delays, which represent a big problem for conventional

controls, the developed algorithm is acting excellently because of the prediction of the system

behaviour.

An implemented model identi�cation learnes the dynamic building behaviour during the control

process. So, no pre-information about the building structure is necessary. Di�erent investigations

were executed concerning the model and the identi�cation procedure. An ARX-model and an

identi�cation of the parameters with the recusive least squares method with forgetting factor was

found to be most suitable for this application. This has been profen in experiment during a 5 month

test period with very di�erent conditions. The chosen limitation to three model inputs results from

the demand on low costs for the necessary hardware. The tests into simulation and experiment

showed however that the algorithm reacts correctly also at existence of considerable unmeasured

disturbance variables.

With the help of simulation tests the in�uence of di�erent parameters act on the control behaviour.

These parameters must either be prede�ned or can be changed during operation by the user. In

addition to the set value of the indoor temperature a comfort parameter has been introduced. With

this parameter, the user can choose whether he wishes to have more comfort or to save energy.

The calculation of the supply temperature with a heating curve and the control of the indoor

temperature with thermostatic valves on the radiators served as reference system for a quantitative

assessment. This system was installed in the test buildings before. The experiments showed that

this reference is already on the lower limit of the energy consumption. Despite of this high standard,

the developed control leads to energy savings, even at a high comfort requirement. The savings

result primary from the prediction of the indoor temperature from past measurements of the supply

and outdoor temperature and the irradiance. So, an earlier reaction to the danger of overheating

could be achieved. The height of the sysving depends on the chosen reference (type of thermostatic

valve) and the dynamic behaviour of the heating system and the building.

The method of predictive control was extended by the consideration of future disturbances (ir-

radiance and outdoor temperature) in the indoor temperature prediction. The aim was a better

use of passive solar gains and the prevention of overheating due to an earlier reaction. For the

test buildings with their heating system the contribution of this extension is relatively small. The

simulation tests showed advantages concerning energy saving and comfort improvement particulary

for buildings with more sluggish heating systems and larger window areas.

A comparison between di�erent weather prediction possibilities showed that the approach used in

the algorithm should be improved. The prediction of the outdoor temperature works very well.

However its prediction is of less importance for teh energy saving. The prediction of the insolation

still remains a di�cult task. Simulations with an �ideal� prediction showed a considerable potential

to save energy when the insolation prediction is improved. The modular structure of the algorithm

allows to replace the weather prediction by a more e�cient algorithm or external data later.

The experimental investigations have �rstly been carried out with a personal computer in one of

the test houses of the ISFH in Emmerthal/ Germany. They showed an excellent control behaviour

of the algorithm also under the more di�cult practical conditions. A direct comparison between

the developed and a conventional heating control for an experimental quantitative assessment was
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not possible, however. Qualitatively, on can state that the developed control leads to energy saving

because of the reduced distribution losses, which result from the mostly lower supply temperatures.

Furthermore, comfort improvements could be stated qualitatively, too. Peaks in the heating power

can be avoided be limiting the alowable supply temperature step.

The developed and optimized algorithm has been implemented in a microcontroller. The device

was already available on the market with a conventional control. So, general tasks like the data

management and the user communication could be solved with existing software. An experimental

test has been carried out in one test building of the ISFH. The controller showed that it is working

in principle. However, the control behaviour was a little worse than for the PC-control. It is

assumed that the precision of variables in the microcontroller is the reason for that behaviour.

Furthermore the positioning of the indoor temperature sensor plays an important role.

The tested microcontroller is available as prototype. It ful�lls the requirements concerning a low

price and a simple operation. The costs of the complete device are increased by the cost for the

irradiance and the indoor temperature sensor, compared to a conventional controller. As shown

in the simulation tests, no precise sensor is necessary to measure the irradiance. The used control

concept does not require substancial structural changes in the heating system. It can also be

transferred to large buildings. Furthermore, the control can be extenden to include a ventilation

or shading system.



Chapter 5

Work performed by FUL

Authors: Michaël Kummert, Philippe André

5.1 Speci�cations (Task 1)

As explained in the project programme, the research was based upon a development and cross-

comparison of innovative controllers applied to solar buildings. In order to allow an e�ective

exchange of controllers in view of their application on several buildings by the di�erent partners,

it was considered as crucial to de�ne, at the early phase of the project, the necessary speci�cation

that should make possible the prescribed exchange.

Figure 5.1. General view of FUL's passive solar building

The de�nition of the speci�cations was mainly a collective work that took place during the kick-o�

meeting in Brussels and that was de�nitely concluded at the �rst co-ordination meeting in Hameln.

Speci�c input of FUL partner to the discussion and propositions concerned the following items:

� Agreement on programming language and simulation tools. Building, HVAC and control

simulation would be based upon TRNSYS [KB+94] (either as such on through encapsulation

55
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Figure 5.2. General view of FUL's active solar building

within Simulink [Inc97] blocks). Experience of FUL in the use of TRNSYS simulations was

presented and o�ered to the other partners.

� Agreement on optimisation procedure. It was agreed between the partners to develop the

innovative algorithm using the Matlab [Mat96] program. Again, experience of FUL with this

programming language was o�ered to the partners.

� It was also decided among the partners to develop the control algorithm by means of an

e�cient communication between the TRNSYS simulation program and the Matlab optimisa-

tion tool. This speci�c problem was analyzed by FUL and a synthesis of the communication

possibilities as well as an example are given in a report produced during the project.

� Test facilities and building system to be tested. The test facilities o�ered by the di�erent

partners were presented during the kick-o� meeting. FUL presented the two buildings which

were the objects of the project:

� a passive solar building on which the application of predictive control possibly associated

to the use of neural networks had to be tested.

� an active solar building on which the application of expert systems (possibly associated

with fuzzy logic) to the supervisory control of solar system was looked for. Concerning

this second building, and after discussion with the partners, it was felt di�cult to use it

as a testing bed for other algorithms if staying at the supervisory level. Consequently, it

was decided to restrict the application of the expert system paradigm to �local� control

loops. Later it was proposed that the expert control would be applied to the optimisation

of the short -term heat storage device management in mid-season.

� Interface characteristics and communication protocols. In order to allow an e�cient exchange

of algorithm between the partners, the input/output characteristics of the controller routines

were to be speci�ed. This was discussed at the kick-o� meeting and the selection of in-

puts/outputs was de�nitively approved at the second meeting in Hameln. As shown below,

development of FUL's algorithm was carried out according to these speci�cations. At the

hardware level, it was decided between the partners that the communication problem be-
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tween the developed controllers (Matlab routine) and the system to be controlled should be

solved by each partner on his side. FUL solution includes the following features (�g. 5.3):

C++

Program

Matlab

            Heating plant

              Building

Fictitious Tamb sensor

Analogue &
 digital

IO boards

 sensors

Control
(m-file)

Matlab
Engine
library

Figure 5.3. Block diagrams of the hardware / software communication procedure. FUL passive solar building.

� calculation (by the controller) of the optimised water supply temperature

� using the building heating curve in reverse mode, calculation of the �ctitious ambient

temperature which is corresponding to the optimised supply temperature

� replacement of the existing ambient temperature sensor by an voltage controlled resistor

which mimics the �ctitious ambient temperature

� connection of the �ctitious temperature sensor to an electronics board connected to the

data acquisition board located inside the PC.

� Evaluation criteria during the testing phases. The proposal for a cost function to compare

di�erent controllers performance was prepared by FUL and presented to the partners during

the Hameln meeting. The proposed cost function combines the energy consumption of the

conventional heating, ventilation and air conditioning system and the cost of discomfort. The

latter is based upon Fanger's theory (PPD and PMV indices). Those quantities are computed

with a variable clothing, which is equivalent to suppose that the mean building occupant can

adapt his/her clothing in a given range. A Matlab �le was produced to compute the PPD

index with a variable clothing.

5.2 Development of algorithms by FUL (Task 2)

According to the work programme, FUL was responsible for the development of two paradigms:

� predictive control algorithm

� expert control algorithm

5.2.1 Predictive control

One activity of FUL in Task 2 was concerning the development of a speci�c predictive controller

applied to the HVAC control system of solar buildings. The development was carried out according

to the following steps:

1. development of an adequate mathematical model of the system to be controlled,
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2. development of a predictive/optimal controller,

3. implementation in a simulation environment.

5.2.1.1 Development of an adequate mathematical model of the system to be con-

trolled

The development was carried out in two steps:

� model of the building

� model of the heating system

For both approaches, a state-space approach was selected because of the better suitability with

the predictive/optimal control formalism. On the other hand, the development was of course led

by the experimental object which would serve as the test-bed for the controller i.e. FUL's passive

solar building. A (relatively small) part of the building (a series of two o�ces) was selected for the

experimental phase. Later on, the model was adapted to other buildings.

Building model [KAN96]

The building model considers a second order representation of the walls and the parameters of

the model are calculated according to an analytical procedure. The development of the model

proceeded in two steps:

Figure 5.4. Example of a one zone model

1. Development of low-order model for capacitive walls.

Low-order was an objective for the model to remain su�ciently parsimonious in view of

integration within an industrial controller. Di�erent con�gurations (1 node, 2 nodes, and
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3 nodes) were compared. Models with �ctitious (or �algebraic� i.e. without any thermal

capacitance walls) were also introduced. As a conclusion, a two-node model appears to o�er

the best compromise in view of the application.

2. Development of a low-order building zone model.

The approach considered here involved the connection of the di�erent wall models calculated

in the previous step around a �central� node representing the thermal capacitance of the air of

the zone. At the end, the building model is made of a �star� network with one branch for each

individual wall. Each wall is represented by two state variables and two additional nodes,

which represent the wall surfaces. These have no associated thermal capacity and are used

to introduce the radiation heat �uxes, which are distributed according to area-absorptance

weighted ratios. Fig. 5.4 shows the resulting model for a one-zone test-cell model.

HVAC model

The University of Liège was commissioned for the development of speci�c HVAC models. The

development considered the following components: pipe (optional), radiators and thermostatic

valve. The boiler was not considered in the scheme as it is supposed to deliver a constant supply

temperature, as far as its maximum power is not used. On/o� control of the boiler was supposed

not to a�ect the optimisation of the supply temperature.

Development was carried out using the EES software [KA98a]. Afterwards, translation of EES

routines into TRNSYS types was engineered. Simpli�ed versions were produced for integration

within the optimal controller.

The radiator is modelled as a single node and heat emission characteristics are linearised. The

average temperature between radiator (TR) and water supply (Tws) is used to compute the power

emission. Heat �ux is directed to air and to wall surfaces according to a �xed ratio. The radiator

equation is written as:

CR
dTR

d�
= UAR;c

�
Ta �

TR + Tws

2

�
+ UAR;r

�
Tms �

TR + Tws

2

�
+ _Qw(Tws � TR) (5.1)

With

CR . . . radiator thermal capacity J
K

UAR;c, UAR;r . . . radiator radiative and convective heat exchange coe�cients W
K

TR . . . radiator temperature, considered equal to

water return temperature (Twe) [
�C]

Ta, Tms . . . resp. air and mean surface temperature of the zone [�C]
Tws . . . water supply temperature [�C]
_Cw . . . water capacitive �ow rate W

K

5.2.1.2 Development of a predictive/optimal controller

The controller was developed according to a combination of the predictive and optimal control

theory:

Optimal control:

a �cost� function is minimised over a period (typically 12...24h) called the �optimisation horizon�.

The result of the calculation is a sequence of optimal control signals, in this case the water supply

(to the radiators network) set-point.
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Predictive control:

To reduce the in�uence of modelling and forecasting errors, a receding horizon is used, i.e. the

optimisation is repeated with a period smaller than the optimisation horizon (typically one hour).

Consequently, only the �rst value of the optimal control hourly sequence is applied and optimisation

is re-evaluated every hour. Constraints are related to physical limits on the supply temperature

and to the set-points on the building internal temperature.

The controller is made of a number of components (�g. 5.5):

Figure 5.5. Block-diagram of the proposed control scheme

State estimator:

As information about the value of the di�erent state variables of the model (specially wall temper-

atures) is not likely to be available in a realistic implementation of the controller, a Kalman Filter

algorithm (state reconstruction) was prepared in order to provide an estimation of the state space

model variables at the beginning of each optimisation period.

Cost function:

Controllers will be evaluated using a cost function, which express their global performance. This

cost function must be an expression of the trade-o� between comfort and energy consumption. The

chosen indicator of thermal comfort is Fanger's PPD [Fan72], while energy cost is considered to be

proportional to the boiler energy consumption (Qb).

In the discomfort cost, PPD is computed with default parameters for non-simulated aspects (air

velocity, humidity and metabolic activity). Furthermore, it is assumed that occupants can adapt

their clothing to the zone temperature. This method allows modelling a comfort range in which

occupants are satis�ed. With the chosen value for parameters, the comfort zone covers operative

temperatures from 21 �C to 24 �C. PPD is also shifted down by 5%, to give a minimum value of 0.

This modi�ed PPD index will be referred to as PPD'. Discomfort cost is represented Fig 5.6. This

gives, respectively for discomfort cost and energy cost (Jd and Je):

Jd =

Z
(PPD[%]� 5) (5.2)

Je =

Z
_Qb (5.3)
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Figure 5.6. Discomfort cost

The global cost (J) is a weighted combination of both:

J = �Jd + Je (5.4)

The principle of minimising a cost function is the basis of optimal control theory. It seems natural to

use the same cost function in the controller than the one that will be use to evaluate its performance

afterwards. The cost function implemented in the controller is a quadratic-linear function, where

the quadratic term is an approximation of PPD' and the linear term is exactly Je. It is detailed in

an earlier paper [KAN97].

Disturbances forecasting:

optimal/predictive control requires the knowledge of the disturbances pro�le over the optimisation

horizon. Two major sources of disturbances a�ect the behaviour of the controller: meteorological

data and internal gains.

� Internal gains are related to occupancy schedules, which are well known in o�ce buildings.

The situation would be more di�cult in residential dwellings, but the use of past observed

daily and weekly schedules can still be used.

� Meteorological data:

The �rst retained approach attempted to use a neural network-based algorithm [KAGN98]

to obtain meteorological forecasting, using locally measured data. However, the performance

did not justify the computational power involved compared to the simple use of previous day

recorded data.

In simulation, perfect forecasting and the use of the previous day were compared to allow an

evaluation of the lower and upper bounds of the controller performance with respect to the

quality of available forecasting.

During the experimental tests, the previous day was the default applied solution. However,

an innovative solution was also implemented using weather forecasts from Belgian Royal

Meteorological Institute. This information is currently used for agricultural activity. These

forecasts are available twice a day (morning and afternoon) and concern the 36 hours to come.

They provide the following information: ambient temperature, solar radiation, humidity, wind

average and maximum speed, rain fall, atmospheric pressure. The time step is 3 hours and
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forecasting are given for 14 di�erent regions in Belgium. The use of this forecasting during

the last experimental phase has shown that such meso-scale information can greatly improve

the quality of forecasting, even if the perfect forecasting is still far from the reality.

Optimisation algorithm:

The problem of �nding the control sequence minimising a linear-quadratic cost function for the

given linear system can be rewritten as a quadratic-programming problem [KAN97]. This guar-

antees the existence of a solution and allows the use of e�cient projected gradient algorithm.

This algorithm was implemented in Matlab Optimisation Toolbox, which was used for the optimal

control computation [Gra96]. The system includes 11 state variables. For a 24 steps-ahead opti-

misation, the total number of variables in the QP-problem is 325, and 397 linear constraints are

necessary. Typical computational time is about 40 sec on a Pentium II-350 PC, using Matlab (a

C++ equivalent code should run much faster). Memory requirements are not too high since most

matrices are sparse.

In the case of perfect modelling and perfect disturbances forecasting, the optimisation should be

repeated only at the end of the period on which the cost function was minimised. However, to

reduce the in�uence of modelling and forecasting errors, a �receding horizon� is used, i.e. the

optimisation is repeated with a period smaller than the prediction horizon. The prediction horizon

and the time step for new optimisation will respectively be referred to as NH and NC . Both are

expressed in [h].

In this study, optimisation horizons (NH) ranging from 12 to 24 h were considered, and this

optimisation was repeated up to every 6 hours (NC range : 6..12h). In the case of a 24h-ahead

prediction repeated every 6 h, for example, only the �rst six values of optimal control signals are

applied.

PID controller:

When a new optimisation is computed, a feedback from the real system is present, since the

estimated state of the system based on measured outputs is used. During the period between two

optimisations, the computed optimal control pro�le is applied without any feedback from the real

system. In the case of large forecasting errors, this can lead to a system evolution being far from

the predicted one and hence far from �the optimum�. To compensate for these errors, a feedback

controller is cascaded with the optimisation. This controller is a conventional PID with anti-windup

and uses the base time step (0.25h).

5.2.1.3 Implementation in a simulation environment

A controller developed according to the scheme presented here above has �rst to be tested in nu-

merical simulation. Therefore, a common �test shell� was developed with the objective of providing

a common environment allowing to:

� test the controller developed by the di�erent partners

� ensure the controller developed will be exchangeable, even when connected to the speci�c

hardware of each Institute.

The simulation environment was developed in the TRNSYS modular software and made use of the

following components:

� Type 151: special component developed for the purpose of establishing the connection with

the controller, developed using Matlab
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� Type 56: multizone building. This is the classical model of TRNSYS

� Type 182: radiator

� Type 183: thermostatic valve

� Type 201: user behaviour and natural ventilation controller. The purpose of this component

is to make the simulation more realistic as most buildings have windows that can be opened

by occupants. To take this possibility into account, a rough model of the user behaviour and

natural ventilation was developed (TYPE 201). The user is supposed to open windows when

the temperature rises above the maximum comfort temperature (24 �C). She/he is supposed

to close them when the temperature falls below the lower comfort bound (21 �C). The natural

ventilation is modelled by a variable in�ltration rate in TYPE 56. This type is optional in

the simulation and can be removed if no windows can be opened by occupants.

A general view of the simulation scheme is given by �g. 5.7

Figure 5.7. Controller simulation scheme

5.2.2 Expert controller

Another activity of FUL within task 2 concerned the development of a solar controller based upon

the expert system paradigm. This development was closely linked with the testing activity to be

carried out on the FUL active solar building. Because of the very particular nature of this building,

it was decided very early in the project not to focus on this building as a whole but, rather, to test

the applicability of the expert control approach on speci�c subsystems of the building, namely the

management of the short-term storage device in mid-season.

The development of the controller included the following steps :

� Development of a software environment to host the controller. This software made use of the

C++ language and is based upon an object-oriented data structure.
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� Development of a simulation environment in order to test di�erent control strategies and

paradigms.

� Development of the expert control knowledge base. Expert control consists of a set of rules

which are ��red� when speci�c conditions are ful�lled. Continuous evaluation of rules is

performed by an inference engine connected to the central data structure. Extraction of

realistic rules was made possible through interviews of the technical manager of the building.

� Connection of the expert control knowledge base to an inference engine. Therefore, an existing

C++ based inference engine, specially developed for building control applications was used

(RICE [Jag], developed by TNO, The Netherlands).

� Implementation of the expert controller, �rst in the simulation environment, then in the

in-situ testing environment.

5.3 First testing phase of the di�erent controllers at FUL (Task 3)

The �rst testing phase was scheduled to take place, �rst in the simulation environment, then in

the real buildings. The common testing in the simulation environment was made easier by the

use of the �exible test-shell described here above. Later on, the test-shell was improved in order

to provide a calling sequence to the controller (developed in Matlab) compatible with a real time

call. This ensured the exchangeability of controllers, not only in simulation but also for the testing

in-situ.

5.3.1 Predictive control (passive solar building)

5.3.1.1 Simulation tests

During the development of the algorithm, extensive tests were carried out at di�erent stages:

� test of the building model, in order to check the ratio accuracy/parsimony of the model. This

ended up with a 2nd order model for the walls representation

� test of the HVAC models required for integration within the global model. This testing took

place by means of the EES software [KA98a] and was carried out by the University of Liège

� test of the controller against the thermal behaviour of the building calculated by a simulation

program (TRNSYS). This testing was realised in three steps :

� test of the optimal controller applied to the building alone, assuming a �perfect� HVAC

system

The optimal controller was �rst applied to the test-cell presented here above [KAN97]

and then to a part of FUL's passive solar building [KAN98]. Fig. 5.8 shows the result

of the optimisation for 3 typical days (winter, summer, mid-season) : temperature and

optimal heating/cooling pro�les (perfect HVAC system).

� test of the optimal controller applied to the building and heating system. In this case,

the following components were included within the heating system [KAN99]:

� radiator and thermostatic valve

� three way valve and boiler

� PID controller to provide a feedback correction to the supply temperature.
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Fig. 5.9 shows the optimal pro�les (heating) for a warm mid-season day: heating is

needed in the morning, but internal and solar gains induce overheating during the af-

ternoon. The optimal controller allows to anticipate the phenomenon and this leads to

both comfort improvement and energy savings (OCO0.015PF means optimal controller,

perfect forecasting).

� Systematic comparison of the optimal controller with a classical control system.

Several simulations were realised using both controllers (conventional and optimal) with di�erent

parameters. All simulations were realised with real measured meteo data from Uccle (Brussels), in

the years 1985-1986.

Meteorological data

First, a �typical meteo set� for heating period was constructed. This data set contains four typical

weeks concatenated. It served to test di�erent settings of the optimal controller and to study its

behaviour in more details. In a second phase, a whole heating season (30 weeks) was used, to assess

the optimal controller performance and to compare it with the conventional controller. Data sets

characteristics are presented Table 5.1. (Gh is the global horizontal solar radiation)

Table 5.1. Meteo data sets

Description Meteo variables

Temperature Sunshine Tamb;min[
�C] Tamb;max[

�C] Tamb;avg[
�C] Gh;avg[

W
m2 ]

cold cloudy -16.0 -1.7 -8.0 31

cold sunny -9.9 6.8 -1.8 88

warm sunny 7.2 21.7 14.0 177

warm cloudy 4.8 15.2 11.5 61

Typical set 16.0 21.7 3.8 89

Heating season -10.4 26.2 4.2 67

Conventional controller

Traditional heating control strategies include a feed-forward action on water supply temperature

by the so-called �heating curve� and a feedback action on water �ow rate by a thermostatic valve.

Moreover, up-to-date controllers use an optimal start algorithm. Our reference control strategy

combines these three features. The heating curve consists actually of two di�erent curves, giving

the required water supply temperature to maintain desired setpoints (night and day) in the reference

zone. In this case, setpoints were �xed to 15 �C (night) and 21 �C (day). Furthermore, the �day�

heating curve is slightly over-estimated to take into account the dynamic evolution of the building.

Indeed, these curves are calculated in steady-state regime, which is never the case in practice. The

building structure is always colder than in the corresponding steady-state, since a night set-back

is applied. The thermostatic valve has a proportional band of 2 �C, and di�erent settings of the

thermostat are compared.

The optimal start algorithm uses a non-linear function proposed by Hittle and O'Connor ( [SAH89])

to estimate the recovery time from night set-back. This relation uses the current temperature of

the zone, the ambient temperature, and the desired �nal temperature. Parameters for this building

were identi�ed by a regression using TRNSYS simulation results. Two di�erent parameters sets

were kept (the second one gives a more conservative estimate of the return time).

Di�erent conventional solutions are referred to as 'Cc' for the conservative parameter set, and 'Cr'

for the �risky� one.
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Comfort/Energy trade-o�

The cost function implemented in the optimal controller is presented in eq. 5.2, 5.3 and 5.4. � is a

parameter which allows to give more or less importance to comfort versus energy consumption.

As above-mentioned, the discomfort cost (Jd) implemented in the controller is an approximation

of PPD' (PPD shifted to give a minimum of 0 and not 5% and computed with variable clothing).

This value is integrated and can be expressed in [%h]. If we express the energy cost (Je) in kWh, �

units are [kWh
%h

]. � can thus be interpreted as �the energy quantity (expressed in kWh) that

can be consumed to reduce the percentage of dissatis�ed people in the building by 1%

during 1h� . Despite this fact, the ratio between total energy consumption and integrated value of

PPD' on a long period will not be equal to �. This is illustrated in Table 5.2 and Fig. 5.10, which

compare the total energy consumption and integrated PPD for the typical meteo data set, and for

di�erent � values in the range [1;10].

Table 5.2. Je and Jd for di�erent � values

�[kWh
%h

] Je
Jd

Je[kWh] Jd[%(PPD0)h]

10 68.6 550 8

5 62.0 539 8.7

4 54.2 537 9.9

3 39.2 533 13.6

2 22.3 526 23.6

1 7.9 511 65
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Figure 5.10. Je and Jd for di�erent � values

It is clear that � is linked to Je
Jd
, but the value of this ratio on a long period (e.g. one heating

season) is not easily predictable. The relation between these two variables is even not linear: a

�saturation� happens for high � values, when the upper limit of comfort achievable with the heating

plant is reached. Furthermore, the curve is di�erent if other controller settings are changed (e.g.

NH and NC).

Optimisation horizon and �new computation� time step

Every NC hours, a new optimisation is computed, minimising the cost function on NH hours. This

implies that only the �rst NC optimised setpoints are applied. This principle, known as �receding

horizon�, is commonly applied in predictive control.

The selection of NH and NC depends on the building and on the model and forecasting quality.

NH must be long enough to allow an e�ective anticipation of disturbances. This means for example

that NH must be larger than the recovery time from night set-back in the worst case. It should be
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possible as well to under-heat the building during the morning in the case of afternoon overheating.

This requires to reduce heating before 7 AM because of an overheating which can occur after 4 PM

case, which implies a NH value greater than 9 hours.

We tested di�erent values for NH (24;20;18;16;12;8) and NC (24;12;8;6). In the case of perfect

weather forecasting, no di�erence was noted between di�erent NC values smaller than 12 h. Rela-

tively small modelling errors can explain this: linearisation of the radiator power, reduced order of

wall models and constant in�ltration rate. When imperfect forecasting was used, NC values larger

than 8 hours give a poor behaviour of the optimal controller, 6 hours giving even better results.
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Figure 5.11. Performance decrease, when NH is reduced

Fig.5.11 shows the decrease in controller performance caused by a reduction of the optimisation

horizon, for a constant NC value of 6 h (� = 5kWh
%h

). This plot represents Jd versus Je. The closer

a controller is to the lower left corner, the better its performance is. The dotted line shows the

trajectory followed by results when varying � for constant NH and NC . For constant NC and �,

when NH is reduced, the trajectory is di�erent and shows a poorer performance. NH values greater

than 18 h seem to be suitable, but the performance of the controller decreases rapidly when NH

falls below this value. The di�erence may seem insigni�cant (e.g. for a similar discomfort of 20, the

increase in energy consumption is about 1%), but the comparison with a conventional controller

must be taken into consideration. If savings of the optimal controller are 5%, this 1% absolute loss

represents 20% of possible savings.

Forecasting quality

Three meteo forecasting types were investigated for the typical meteo data set: Perfect forecasting,

use of the previous day and use of a �mean day�. The latter is constructed by averaging all days

on a hour-by-hour basis. This forecasting is of poorer quality, as shown in Table 5.3. This table

presents statistics on two relevant variables: the ambient temperature (Tamb) and the total solar

radiation entering the sunspace (GSS). Statistics on forecasting errors show that the error standard

deviation reaches 80% of the variable standard deviation for GSS , and about 100% for Tamb.

Fig. 5.12 shows the e�ect of forecasting errors on the controller performance. Di�erent values of

� are used (1 to 5) for each forecasting case. The performance decrease resulting from the use of

�previous day� forecasting is not too important: for a discomfort about 12, the energy consumption
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Table 5.3. Forecasting error statistics

Variables Error (previous day Error (mean day

Tamb[�C] GSS [W ] Tamb[�C] GSS [W ] Tamb[�C] GSS [W ]

min -16 0 -7.9 -8960 -17.3 -3884

max 21.7 12016 10 10767 16.6 8226

avg 3.8 1062 0.3 4.26 0.3 -28

std dev 9.3 2327 3.44 1760 9.1 1886

stddeverror=stddevseries 0.37 0.76 0.98 0.81
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Figure 5.12. In�uence of meteo forecasting quality

rises from 533 to 538, which represents a 1% increase. The di�erence increases for lower � values

(higher part of the plot). This can be explained by the greater freedom left to the controller for small

� values: achievable gains are more important in this case, but the optimal zone temperature pro�le

is very dependent on meteo conditions. In this case, a forecasting error has a larger in�uence. The

comparison with the conventional controller shows that the optimal controller still gives a better

performance despite imperfect forecasting.

In the case of �mean day� forecasting, the controller performance is quite poor, and low discomfort

cost values cannot be attained. This comparison shows that the quality of meteo forecasting is an

important factor for the controller. The use of the previous day seems to be a satisfying solution,

which is rather surprising. This conclusion has to be con�rmed on a longer data set (this graph

concerns the �typical set�, but next section will con�rm these results for the whole heating season).

The PID plays a determinant role in the case of imperfect forecasting. Table 5.4 gives statistics

on the PID action for the three forecasting types. Three variables are considered: Top, Tws and
_Qb (zone temperature, water supply temperature and boiler power). First, the mean value and

standard deviation are presented for each variable. For Top, the error between the desired value by

the optimal controller and the real value is analysed. For Tws and _Qb, the PID correction (between

the setpoint given by the optimisation itself and the �nal setpoint given to the three-way valve) is

considered. Values given for _Qb are estimated, since the real control signal is Tws (the controller

has no direct in�uence on _Qb).
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Table 5.4. PID action (entire typical data set). Top and Tws are in
�C, in _Qb Wh

Perfect forecasting Previous day Mean day

Top Top _Qb Top Top _Qb Top Top _Qb

avg 19.5 36.1 830 19.5 36.2 831 19.5 36.1 833

Stddev 2.5 25.2 1252 2.5 25.1 1249 2.6 25.3 1273

Stddev of er-

ror

0.06 0.25 0.26

Stddev of PID

correction

2.84 171 6.3 336 9.0 469

The PID correction remains relatively small for the �rst case, but the results for imperfect fore-

casting show clearly that the PID is important.

Fig. 5.13 illustrates the PID behaviour on two days for which the �previous day� forecasting was

rather incorrect. It must be noted that the PID is bounded by some �common sense� rules. Tws
is for instance not corrected if Top is lower than the expectations but still higher than the lower

comfort limit. This happens during the �rst day, when the expected sunshine is higher than real

one. The PID is allowed to correct the temperature to 21.5 �C, but not higher. Actually, a PID

correction is only possible if the zone temperature is lower than the lower bound of the comfort

zone and if the building is occupied or in the �morning pre-heating� phase. In all other cases, the

PID can only decrease Tws.

Comparison on an entire heating season

Fig. 5.14 uses the representation introduced here above. (Jd vs. Je) to compare optimal and con-

ventional controllers. As mentioned in conventional controller description, two di�erent parameter

sets are used for the optimal start algorithm. They give the two curves labelled 'Cc' and 'Cr'.

Di�erent settings for the thermostatic valves explain the variations along these curves. For the

optimal controller, previous day forecasting is used and di�erent � values are compared. Energy

savings for a similar discomfort reach 7 to 9%, which is close to the performance obtained by

Nygard-Fergusson [NF90] for stochastic optimal control of �oor-heated o�ces.

These simulation results show that optimal control could be one solution to achieve EC's objective

mentioned in the introduction, which is to reduce energy consumption by 7% in 2010 through

improved BEMS.
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Figure 5.13. PID correction for two typical days, perfect and previous day forecasting
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5.3.1.2 In-situ testing

In parallel with the simulation test, the building was prepared in order to receive the infrastructure

for in situ testing. The building is described in details in a technical report circulated during the

project as well as the existing HVAC and associated control systems. The existing controller is

a classical feed-forward controller based upon the ambient temperature, which adapts the supply

temperature by means of a three-way valve according to a value calculated by the �heating curve�.

In order to connect the optimiser without introducing too much modi�cation to the existing control

system, only the ambient temperature sensor was removed and replaced by a software sensor which

represents the �ctitious ambient temperature corresponding to the optimised supply temperature.

This �ctitious temperature is calculated from a reverse use of the heating curve (�g. 5.15).
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Figure 5.15. Realisation of the optimisation procedure.

The optimal controller is implemented as a Matlab routine interfaced with a C++ control program,

which manages the data acquisition sequence. This program is implemented in an industrial PC.

Electronic interface to the sensors and actuators is described here above.

The testing phase on the FUL passive solar building started at the end of 1998. The testing

procedure was carried out according to the following steps:

� Test of the building with the existing (classical) controller in operation (december 98-january

99)

� Test with the new hardware system (industrial PC) but with a controller equivalent to the

classical one (february-march 99)

� Test with the new hardware system AND the implementation of the predictive control algo-

rithm (april-may 99)
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The testing was concentrated on two test rooms of the building. The exact determination of the

heating power delivered to those rooms was made possible by the installation of �ow meters on

each radiator present in the rooms.

This �rst testing phase allowed to identify the remaining software and hardware problems. It

showed that the monitoring and control programs were working properly. The di�erent problems

observed during the �rst tetsing phase were solved during summer'99 and this allowed a second

testing phase to take place.

5.3.2 Expert control (active solar building)

First testing of an expert controller to be applied on FUL active solar building was carried out only

in simulation. The objectives of the testing were the following:

� to assess the feasibility of connecting an expert system controller, making use of a third-party

inference engine, to a conventional simulation program like TRNSYS

� to compare the operation of a conventional controller to that of an expert controller with

respect to the following criteria: performance of the system, reliability and robustness, ease

of modi�cation of the control rules.

On the other hand, a lot of time was devoted to the preparation of the building in view of the

testing phase :

� a new industrial computer was installed together with a new interface board which, allows to

communicate with the existing I/O boards

� all sensors and measurements chains were checked. Temperature sensors are Platinum resis-

tance sensors (�Pt 100�) which are connected to converters which transfer the resistance value

into a current (4. . . 20 mA). All converters were checked for accuracy and stability

� a C++ control programwas implemented in the industrial PC. This program encapsulates the

object-oriented data structure and establishes a connection with the interface boards. Testing

of this program has started with a reduced set of rules, which makes this new controller

equivalent to the previous controller.

5.4 Second testing of the control programs at FUL (fall'99), Task 5

After the �rst testing phase, the di�erent control algorithms were improved together with some

modi�cations on the testing environments to make them better suit with the control program.

5.4.1 FUL's predictive controller

5.4.2 Changes operated to the experimental site

The �rst testing phase allowed us to identify the remaining hardware problems. These problems

were the following:

� Flow-meter measurements show that, even when thermostatic valves are maintained in the

fully open position, the �ow rate through the 2 radiators in the representative thermal zone

are not constant. This has no in�uence on the controller performance assessment as real �ow

rates are measured. However, this situation can lead to a decrease in the optimised controller

performance as it assumes the �ow rate is constant.
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� during overheating periods or during night and week-end set back, it appears impossible to

achieve a low supply temperature (roughly below 35 �C). This problem a�ects both conven-

tional and optimised controller and it is a strong limitation to experimental testing, as it

prevents a really e�cient night set back. Furthermore, as no thermostatic valves are present

in the case of optimised control, this relatively high water supply temperature can lead to

building overheating with the aggravating circumstance that users cannot act on the system

when it happens.

Flow rate variations

A systematic study of the �ow rate in radiators was carried out. First, the thermostatic part of

the valves were removed from the two radiators in the representative thermal zone to insure that

these valves remained fully open. Then, valves of all the other radiators (11 total) in the circuit

were opened or closed in sequence. The pressure regulator was set to the highest sensitivity. The

Table 5.5 shows the �ow rate in each radiator of the reference zone in di�erent situations. Flow

rate values are normalised by the nominal �ow rate given in technical speci�cations (45 l/h).

Table 5.5. Flow rate in each radiator of the reference zone in di�erent situations

Situation qvol BA3 qvol BA4

All valves open 1.2 1.4

Ref room, Hall, meeting rooms and amphi's open - other

o�ces closed

1.35 1.6

Ref room, Hall and amphi's open. Other o�ces and meet-

ing rooms closed

1.45 1.65

Ref room open, all other closed 2.44 2.53

It is clear that the assumption of a constant �ow rate is not true in our installation despite the

presence of a pressure regulator. Note that if this regulator is set to the lowest sensitivity, the

normalised �ow rate in reference radiators can reach 3.5. Considering the above results, it was

decided to removemost of thermostatic valves of the concerned circuit during testing of an optimised

controller. Only the valves of two o�ces which are very likely to overheat will be maintained in

place. This will insure �ow rate variations lower than 13%. In the case of a conventional controller,

thermostatic valves will be put back in place on every radiator.

Lower limit on Tws

This problem was exposed during the Athens meeting and the solution of controlling the heating

pump in addition to the water supply temperature was discussed. This solution allows the controller

to reduce e�ciently the heating power to the zone. It has the advantage to suppress electrical

consumption when no heating power is needed, which is the case during quite long periods for

night setback.

An on/o� control of the heating pump was implemented on the experimental building and a simple

strategy was established to control the pump. This strategy uses the only output of the optimised

controller (TwsS , setpoint for water supply temperature). The pump is switched o� if the desired

water supply temperature is too low (<35 �C). When it is o�, it is only switched on if the desired

water supply temperature is high (>35 �C) and if the heating power for next 0.25 h is signi�-

cant. This power is simply estimated with nominal water �ow rate, current room and radiator

temperatures. This simple strategy allows to prevent on/o� oscillations that could speed up the

pump wear. Later during the experimental period, the three-way valve controlling the water supply

temperature was replaced, suppressing this problem.
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5.4.2.1 Improvement of the controller

The optimal predictive controller uses of a building and heating plant model. Parameters of this

model have to be continuously adapted to compensate modelling errors (e.g. linearisation) and

real system variations (e.g. windows opening). Furthermore, the application of the controller to

a building for which no estimates of the parameters are known would require an initial parameter

identi�cation. The task of identifying a state-space model of a relatively high order (11 state

variables) �from nothing� is a di�cult problem and the priority was given to an adaptation of pre-

computed parameters in a �rst step. The retained approach was to choose some key parameters

easily related to system disturbances or inputs and to identify these only parameters, leaving other

ones unchanged. In a �rst step, 3 parameters were considered: windows transmittance, in�ltration

rate and radiator heat exchange coe�cient. First tests show that a signi�cant improvement of

the model's accuracy can be achieved by modifying only these 3 parameters. Furthermore, these

parameters are associated to di�erent in�uences on the same output (zone temperature): in�uence

of solar radiation, external temperature and water supply temperature.

5.4.2.2 Experimental results

All experimental results coming from tasks 3 and 5 are described in section 5.5.

5.4.3 FUL's expert controller

First experimental testing made use of a �classical� control strategy consisting of the following

elements:

� control of the solar collection is operated by ON/OFF control with respect to a global average

solar radiation threshold

� control of storage charge is identical to solar collection control

� control of storage discharge is �manual� and executed by the building operator

5.5 Experimental results and conclusions of FUL (tasks 3 and 5)

Experimental work took place during tasks 3 (1998-1999 winter) and 5 (1999-2000 winter). The

experimental tests made essentially use of FUL's passive solar building, where the predictive optimal

controller was implemented. Experimental results obtained during both tasks allow a performance

comparison of the optimal controller with a conventional and a �reference� controller. During Task 5,

a controller exchange was realised with NOA. FUL's controller was implemented in NOA's Passys

testcell and NOA's ANN controller was tested on FUL's passive solar building. This document

describes the obtained results during both experiments.

5.5.1 Tests on FUL building

5.5.1.1 Data sets description

The data set recorded at FUL during the heating period currently includes about 170 days, mostly

during the year 1999. The 1998-1999 heating season ended on 26th of April 1999 and the 1999-2000

heating season started on the 10th of October 1999. Cold winter periods as well as warm mid-

season periods are represented in the data set. Table 5.6 sums up the main daily characteristics
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of meteorological variables for the retained data set. Tmin, Tavg and Tmax are respectively the

minimum, average and maximum ambient temperatures during the day and
R
Gsouth is the daily

integrated solar radiation on 1m2 of the southern vertical facade.

Table 5.6. Daily Meteo data summary

Tmin[�C] Tavg[�C] Tmax[�C] Tmax � Tmin[�C]
R
GsouthMJ

m2

min -8.3 -6.8 -5.4 1.3 0.1

Max 11.0 12.7 18.7 14.5 18.6

avg 1.4 4.2 7.1 5.7 5.3

std dev 3.6 3.8 4.4 2.6 5.4

It can be seen that the average temperature of the coldest day (1999/12/22) was -6.8 �C. This

day was also the one with the lowest minimum temperature (-8.3 �C) and the lowest maximum

temperature (-5.4 �C). The warmest day in average (12.7 �C on the last day of the heating period,

1999/04/26) also presented the absolute maximum temperature (18.7 �C), while the day with the

warmest minimal temperature was 1999/10/10.

The darkest day was 8th of December 1999, while the brightest day was the 25th of February.

During this period, four controllers were alternatively implemented : The conventional controller

(Conv), a �reference� controller (Ref), NOA's ANN controller (ANN) and FUL's optimal controller

(Opti). Some boiler problems and transitional periods reduce the number of usable days to 50 for

the conventional controller, 18 for the reference controller, 17 for NOA's ANN controller and 41 for

the optimal controller. The 4 controllers characteristics are described in section 5.2.

Table 5.7 shows the summary of meteo data separately for the 3 periods corresponding to di�erent

controllers.

This table shows slightly di�erent characteristics for the temperature, but a signi�cant di�erence in

mean solar radiation between the 4 periods: the sunshine was higher when the ANN controller was

tested and mainly when the conventional controller was tested. This is mainly due to the historical

succession of di�erent controllers: the �rst tested controller was the conventional one (reproducing

the behaviour of the existing controller). Then the optimal controller was implemented, but the

retained data was recorded when the �nal version of the controller was implemented, in November

and December 1999. The reference controller was added in order to provide a �conventional but

improved� solution and was tested in December 1999 only, while the ANN controller was tested in

early 2000 and bene�ted from very bright days after a snowfall.

5.5.1.2 Controllers description

Conventional controller

The implemented algorithm mimics the existing heating control scheme in the building. The water

supply temperature is controlled by a heating curve varying according to a �xed schedule. The

heating curve is designed to maintain 21 �C during day and 15 �C during night (or week-ends).

Thermostatic valves are placed on each radiator and set by building occupants according to their

preferences.

The good practice when choosing the heating curve in such installations is to overestimate the �day�

curve in order to allow a quicker warm-up of the building, leaving to the thermostatic valves the

role to maintain indoor temperature below their setpoint. The night heating curve can be slightly

underestimated since the building will almost never meet steady-state �night� conditions, but this

is not often done.
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Table 5.7. Daily Meteo data summary for the 4 controllers

Conventional controller

Tmin[
�C] Tavg[

�C] Tmax[
�C] Tmax � Tmin[

�C]
R
GsouthMJ

m2

min -4.1 -0.6 0.8 1.3 0.7

Max 11.0 12.7 18.7 14.5 18.6

avg 2.4 5.4 9.0 6.6 7.4

std dev 3.2 3.3 4.0 3.1 6.3

Reference controller

Tmin[
�C] Tavg[

�C] Tmax[
�C] Tmax � Tmin[

�C]
R
GsouthMJ

m2

min -4.1 -2.3 -0.2 2.0 0.1

Max 5.1 6.1 9.3 7.4 9.5

avg 0.1 2.1 4.2 4.1 2.0

std dev 3.2 3.2 3.4 1.6 3.0

Optimal controller

Tmin[
�C] Tavg[

�C] Tmax[
�C] Tmax � Tmin[

�C]
R
GsouthMJ

m2

min -8.3 -6.8 -5.4 2.3 0.1

Max 8.1 12.1 17.2 9.1 14.4

avg 1.1 3.8 6.3 5.2 3.5

std dev 4.4 4.4 4.9 1.8 3.9

ANN controller

Tmin[�C] Tavg[�C] Tmax[�C] Tmax � Tmin[�C]
R
GsouthMJ

m2

min -3.6 -0.1 2.5 2.7 0.5

Max 4.5 7.6 10.5 9.8 14.6

avg 0.2 2.8 5.6 5.4 5.9

std dev 2.6 2.2 1.9 1.8 5.0

Reference controller

This controller is a purely thermostatic control acting on the water supply temperature to maintain

the desired temperature in the reference room. The thermostatic valves are removed in this room.

A �xed schedule is used to allow a pre-heating time before occupancy. The main advantage of

this controller, compared to the conventional one, is that it does not assume a steady-state of the

building. This will result in the maximum usage of boiler power for pre-heating, which allows for

a less conservative �xed schedule, and this will e�ectively switch o� the heating during night, as

long as the night setpoint is exceeded. Combining a more e�cient night setback and a later start

of the heating, this controller can lead to signi�cant energy savings compared to the conventional

one, without requiring much intelligence in the algorithm. In practice, the thermostatic control is

realised by a PID algorithm acting on the water supply temperature.

ANN controller

This controller was developed by NOA using arti�cial neural networks. It is described in other

sections of this report. The current version of ANN controller uses a �xed schedule to allow a pre-

heating period before occupants arrive in the building. It is not optimised to realise quick changes

from one setpoint to another one, which was the reason to choose a very conservative heating

schedules during the experimental testing of this controller. This schedule has a large e�ect on the

energy performance of the controller, as shown by simulation results.

Optimal controller

This controller has been described in details in previous sections. A mid-range comfort level (6-7)

was applied most of the time. Some tests were made with higher values, but no signi�cant di�erence
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was noted. Lower comfort settings values were not implemented to maintain the temperature in

an acceptable range for building occupants, who considered the retained �comfort temperature�

(21 �C) as �rather cold�. Meteorological forecasts provided by IRM (Royal Meteorological Institute

of Belgium) were used during half of the optimal controller testing period instead of local-based

forecasting. The latter actually consisted to use previous day data as forecasts, as the neural

network approach did not give satisfying results. The possible bene�t of these forecasts were not

investigated on experimental results, but a similar comparison has been made in simulation (see here

above), which showed that the quality of forecasting had an e�ect on the controller's performance

but that the use of the �previous day� was still a good solution.

5.5.1.3 Controllers global performance

Table 5.8 shows a global summary of climatic conditions, energy consumption and comfort during

both periods. This crude summary hides many discrepancies in the behaviour of di�erent con-

trollers, but some interesting information can still be gained from this data. Jd is the discomfort

cost and is computed as PPD'[%]-5 on 15 min values (PPD is Fanger's Predicted Percentage of

Dissatis�ed computed with variable clothing. PMV' is Fanger's Predicted Mean Vote computed

in the same way. These indices are represented in Fig. 5.16 versus the zone operative temperature

(Top).

15 20 25 30
0

10

20

30

40

50

Jd

15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

Top [°C]

P
M

V
’

Figure 5.16. Comfort indices

Je is the energy cost, which is simply the energy consumption expressed in kWh. To allow the

comparison of periods of di�erent lengths, the mean value of the energy cost is considered. It is

equivalent to the average heating power, Avg PHeat, which is expressed in kW.

As mentioned here above, the conventional controller bene�ted from a higher solar radiation and

from a slightly higher average ambient temperature. Despite this fact, the global heating energy

consumption for the reference zone (consisting of two o�ces) is higher for this controller. The

global comfort indices indicate no obvious superiority of the conventional controller in this respect.

Note however that the comfort performance cannot be compared directly for these periods since

the building is very sensitive to overheating. The poorer comfort performance of the conventional

controller must be considered with care.



5.5 Experimental results and conclusions of FUL 79

Table 5.8. Climatic conditions, energy consumption and comfort for the 3 controllers

Conventional Reference ANN Optimal

Tamb [�C] Avg 5.4 2.1 2.8 3.8

Gsouth [ W
m2 ] Avg 86 23 68 41

Jd [%PPD'] Max 14.3 6.1 2.5 5.3

Avg 0.3 0.15 0.04 0.13

PMV' [-] Min -0.38 -0.55 -0.35 -0.51

Max 0.86 0.0 0.0 0.0

Avg 0.03 -0.03 -0.01 -0.03

Pheat [kW] Avg 0.338 0.405 0.339 0.315

The reference controller was tested during a cold period only and shows a comfort performance

very close to the optimal controller. The energy consumption is higher, but the average ambient

temperature and solar radiation were lower, which could partly explain this di�erence.

The ANN controller, tested during a cold and sunny period, shows an energy consumption identical

to the one of the conventional controller, but with a far better comfort. However again, the poor

comfort performance of the conventional controller was mainly due to overheating during warm

mid-season days.

Due to the large discrepancies in meteorological parameters describing the 4 testing periods, a

re�ned analysis is necessary to draw some conclusions on the relative performance of tested con-

trollers.
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5.5.1.4 Typical daily pro�les

The next �gures represent typical pro�les of the following variables:

Top . . . Operative temperature in the reference o�ces

Tws . . . Water supply temperature

Twr . . . Water return temperature

Qr . . . Radiator emission power

Tamb . . . Ambient temperature

GSouth . . . Solar radiation on southern facade

Grey rectangles represent the comfort temperature range (21-24 �C) when building is occupied

(from 8 AM to 6 PM) or supposed to be occupied (some tests were realised during week ends, e.g.

25/12). The discomfort cost is zero in this zone. Light grey rectangles next to them indicate the

zone where comfort is still very low (i.e. 0.5 �C below the lower limit and 0.5 �C above the upper

limit).

Tws and Twr are represented for the reference and optimal controller because they show the con-

trolled variable (Tws), while Qr is used for the conventional controller. Thermostatic valves control

the �owrate in radiators, so this power would not be accurately represented by the temperature

pro�le alone.

Conventional and reference controllers

Fig.5.17 shows the behaviour of the reference controller during two cold winter days. The �xed
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Figure 5.17. Cold and cloudy days, Reference controller
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heating schedule is not very conservative and the building temperature is not reached before occu-

pation start. However, the temperature in the building is very close to the setpoint and leads to a

small discomfort cost. The sudden temperature drop which happens just after the occupants enter

the building is actually due to the doors and windows opening (despite the cold outside temper-

ature, occupants very often open the windows when they arrive due to the relatively poor indoor

air quality inside the building).
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Figure 5.18. Sunny days, Conventional controller

Fig. 5.18 illustrates that important overheating can occur in the building when the conventional

controller is implemented. The �xed heating schedule cannot be adapted to all conditions and is

too conservative if the building has been submitted to high solar radiation during some successive

days. It is the case for this period: heating is started at 3 AM, which is a good compromise for this

time of the year (February). However, the building is very warm already. The thermostatic valves

close quite quickly (reacting not only to the zone temperature but also to the radiator temperature

itself), but the zone is nevertheless heated to about 21 �C before occupants arrive. During the day,

internal and solar gains lead to overheating and to discomfort. Note that overheating occurs even

if the windows are open. It can be seen on the graph that the increase of temperature is suddenly

slowed down around 13:00 or 14:00, due to windows opening. It is also very interesting to note that

users open the windows when the temperature is already signi�cantly outside the comfort range,

in other words when it is too late.

Optimal controller

Fig. 5.19 shows temperature pro�les for two typical winter days (Monday and Tuesday). It can

be seen that the optimal controller starts heating at the latest moment to reach an acceptable

temperature when occupants are supposed to enter the building. During occupation, the heating

is reduced earlier than in the case of conventional heating (thermostatic valves or PID) because

internal and solar gains are anticipated.
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Figure 5.19. Typical building behaviour. Cold Monday and Tuesday, optimal controller
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Figure 5.20. Cold and cloudy days. Optimal controller
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Figure 5.21. Sunny mid-season days. Optimal controller

Fig. 5.20 shows Temperature pro�les for two cold and cloudy days. The �rst day shows an in�uence

of the PID correction. If the forecasted zone temperature is not maintained with the foreseen

water supply temperature, a correction is applied to maintain the desired zone temperature. To

prevent unnecessary overheating, this correction is not applied if the temperature lies between

comfort bounds. During this day, the foreseen temperature was higher than the real one, because

of overestimated solar radiation forecasts. The PID does not track this temperature if the real

temperature lies within the comfort range, but well if it lies outside. This can lead to oscillations

in the water supply temperature if the zone temperature is close to the lower comfort bound.

The second day shows a typical �end of day� pro�le: the radiator temperature drops since 12 PM

and the zone temperature falls just below the comfort level at the end of the occupation period.

This allows to save heating energy, but it is sometimes not appreciated by buildings occupants (see

the �users point of view� section).

Finally, the building behaviour during relatively warm and sunny days is presented in Fig. 5.21.

This �gure can be compared to Fig. 5.18. The optimal controller allows to save both energy and

discomfort in the case of high solar gains leading to overheating.
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ANN controller

Fig 5.22 shows temperature pro�les for two days taken in the ANN testing period. The typical Tws
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Figure 5.22. Typical pro�les, ANN controller

pro�les are shown, with a rounded shape due to the smooth increase in water supply temperature

setpoint. Due to this smooth pro�le, the comfort range (darker gray rectangle) is not always

reached when occupants enter the building, despite the use of a rather conservative heating schedule.

However, the temperature remains in the zone where discomfort cost is very low, which is con�rmed

by global controller performance. The second day shows that the controller is able to react to

sunshine to prevent overheating, but this reaction is rather slow. This would probably lead to

overheating in the case of successive warm mid season days, as shown Fig. 5.18 for conventional

controller.

5.5.1.5 Comparison on shorter periods

In order to re�ne the comparison between di�erent controllers, shorter periods were investigated

to �nd similar meteorological conditions in available data sets.

The �rst comparison concerns the conventional controller and the optimal controller, for which two

similar 2-weeks periods are considered (table 5.9).

These results are obtained on relatively short periods, but can still give a good idea of the relative

performance of both controllers.

The conventional controller uses a �xed schedule. During relatively warm periods, this schedule

is too conservative, which leads to waste energy to pre-heat the building too long in advance.

Furthermore, this warm building is more subject to overheating. This last point is still reinforced

by the proportional band of the thermostatic valves, which reduce the power when the temperature
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Table 5.9. Climatic conditions, energy consumption and comfort for conventional and optimal controllers. Similar

periods (mid season)

Conventional Optimal

Tamb [�C] Min 2.0 3.5

Max 18.7 17.2

Avg 10.0 9.3

Gsouth [ W
m2 ] Avg 67 62

Jd [%PPD'] Max 3.8 2.4

Avg 0.25 0.07

PMV' [-] Min -0.13 -0.34

Max 0.43 0.0

Avg 0.04 -0.02

Pheat [kW] Avg 0.175 0.152

reaches the setpoint but do not really stop the heating until the temperature is about 0.5 �C above

this setpoint.

In this kind of situation, the optimal controller is able to reduce the energy consumption while

reducing the discomfort. Energy savings on the considered period reach 13%, for a signi�cantly

reduced discomfort (�optimal� discomfort cost is 28% from �conventional� cost) .

The second comparison concerns the optimal and the reference controller (table 5.10).

Table 5.10. Climatic conditions, energy consumption and comfort for reference and optimal controllers. Similar

periods (cold)

Reference Optimal

Tamb [�C] Min -4.1 -8.3

Max 9.1 8.2

Avg 1.1 1.3

Gsouth [ W
m2 ] Avg 27 26

Jd [%PPD'] Max 6.1 3.1

Avg 0.25 0.14

PMV' [-] Min -0.55 -0.39

Max 0.0 0.0

Avg -0.04 -0.03

Pheat [kW] Avg 0.405 0.356

During this cold period, the �xed schedule leads to energy waste on some days because the pre-

heating time is too long, but to high discomfort on other days because the pre-heating time is too

short. The optimal controller sometimes underestimates the pre-heating time as well, leading to

relatively high discomfort, but it adapts this pre-heating time to the building state. On the whole

period, this allows here again to reduce the discomfort while saving energy (about 12% energy

savings with 44% discomfort cost reduction).

Table 5.11 shows meteo data summary and controller performance for two 2-weeks periods during

the conventional and ANN controllers tests.

On similar cold and sunny periods, the ANN controller achieves 18% energy savings compared to

the conventional controller, while reducing the average discomfort cost by 20%.
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Table 5.11. Climatic conditions, energy consumption and comfort for conventional and ANN controllers. Similar

periods (cold and sunny)

Conventional ANN

Tamb [�C] Min -4.1 -3.6

Max 8.7 10.5

Avg 2.3 2.8

Gsouth [ W
m2 ] Avg 56 68

Jd [%PPD'] Max 1.6 2.5

Avg 0.05 0.04

PMV' [-] Min -0.21 -0.35

Max 0.28 0.0

Avg 0.01 -0.01

Pheat [kW] Avg 0.422 0.345

5.5.1.6 Comparison using simulation

Two controllers performance on the same building can be compared using simulation results. The

principle is as follows:

During a �rst period, the controller one is tested on the building.

During a second period, the controller two is tested on the building.

The simulated performance of controller one on the �rst period and the simulation of controller two

during the second period are used to validate a building model for the considered meteorological

data set.

In a second step, the performance of controller one during the second period and the performance

of controller two during the �rst period are simulated and serve to establish a virtual comparison

on the same periods.

This method can be used to re�ne the comparison between di�erent controllers implemented on

FUL's academic building. However, up to now, the simulation of really implemented controllers did

not reproduce accurately their performance, due to building modelling errors in the reference model

(TRNSYS TYPE 56). Some �hard� hypothesises about boundary conditions of the reference zone

can explain encountered problems: other rooms in the building are supposed to have a temperature

almost identical to the reference zone. The only other simulated zone is the adjacent sunspace.

However, the reference room is thermally linked to other building parts for which this assumption

proved to be incorrect. Moreover, very important heat losses from the boiler room and from pipes

cause high unmeasured heat gains to the reference zone. This has been clearly pointed out by the

di�erence between summer and winter performance and by two boiler failures. Indeed, the building

response is far more accurately simulated when the boiler is not in operation.

To solve this problem, a multi-zone model including a larger part of the building should be developed

and heat gains should be identi�ed using simpli�ed models and then used as a simulation input.

However, this task was not possible in the frame of this project.

The currently available model allows to reproduce energy consumption within 15%. Errors on

discomfort cost can reach 40%, due to the non-linear cost function. can be with the currently

available model. This is actually a fairly good modelling accuracy compared to �good practice�

in building simulation, but it is not su�cient to study performance discrepancies in the range of

10-20%.

Nevertheless, previous work such as IEA Annex 21 / Task 12 [L+94] showed that most building

simulation programs often better reproduce the in�uence of design changes on energy and comfort
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performance than the absolute performance. The results obtained in the �pure� simulation phase

can then be considered as giving a realistic idea of controllers performance when compared to each

other.

The passys testcell can be simulated more easily (isolated building, no occupants) and the method-

ology described here above has been successfully applied to the experimental data recorded by

NOA. The results are described later in this paper.

5.5.1.7 The user's point of view

A real user survey about the comfort in the test building was out of the scope of this project.

However, the two regular occupants of the building were given survey forms were they could write

their complaints when they felt uncomfortable. They were also surveyed on a regular basis to give

their opinion on the thermal and general comfort in the building. Some information can be gained

from these surveys and from the few complaints that occurred.

The �rst conclusion of this small survey is that the comfort feeling is not always directly related

to the temperature that is measured by the controller. Many objective and subjective factors can

have an in�uence : humidity, draughts, occupants mental / physical state, etc. In this respect, a

controller achieving perfect thermal comfort for all occupants is not realistic.

However, some typical user behaviours could be considered in the development of a commercial

controller: If building occupants feel uncomfortable, their �rst reaction is to verify that the radiators

are cold/warm according to what they desire. It is also very often the case that they verify if the

radiators are warm when they arrive in the building on a cold winter morning. In this respect, the

optimal controller was appreciated because the heating is started as late as possible and the water

temperature is very often high when the occupants arrive.

On the other hand, it happened quite often that the occupants were feeling cold on a cloudy

afternoon and did not appreciate the fact that radiators were cool. With a conventional heating

curve control associated with thermostatic valves, they always have the possibility to increase the

radiator temperature and the lack of such a possibility was probably the major disadvantage of

the optimal controller. The comfort temperature setting does not play exactly the same role, as

the real need of the occupants often is to feel the warmth from the radiator rather than to have a

warmer o�ce.

Concerning the overheating problem, the optimal controller showed a very good behaviour. More-

over, simulation results con�rm that this controller could be suitable even during very warm mid-

season periods (when no heating is really needed), while the conventional controller would probably

always heat the building in the morning. The need for user adjustment of the heating curve is com-

pletely suppressed.

5.5.1.8 Some lessons from experimental testing

Encountered boiler problems allowed us to verify some properties of the optimal controller:

� The presence of a model allows to quickly detect a boiler partial failure (in our case, one of

the two burners was not always working). The automatic detection of such events has not

been implemented yet but it could contribute to the success of optimised controllers.

� The optimal controller starts the heating at the latest minute in the morning. This can lead

to substantial energy savings, and has a favourable e�ect on the comfort (�warm radiators�,

see here above), but it makes the controller more sensitive to some events. First, in case of

boiler loss of power, the setpoint cannot be reached at due time and even if the model allows
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to detect a malfunctioning, it is too late. Secondly, if the occupants arrive earlier or have a

�non-reasonable� behaviour (e.g. opening the windows when they arrive), this can lead to a

relatively high discomfort.

� The feedback action on the control signal is necessary to compensate for modelling and

forecasting errors. In this respect, it improves the thermal comfort of the occupants. However,

the PID also reacts to occupants actions such as windows openings, which could lead to energy

waste if the occupants are not educated to save energy. This is a drawback of all feedback

control systems.

5.5.2 Experiments on Passys testcell

5.5.2.1 Data sets description

Experiments on Passys testcell in order to test FUL's optimal controller started in November 1999.

The �rst period was devoted to the implementation of a conventional reference controller in order

to test software compatibility and to obtain a �rst data set with the current testcell con�guration.

Two weeks of usable data were recorded for this �rst phase.

A second period was used to test FUL's optimal controller. One month data was recorded by NOA,

but 2 weeks are left after preliminary tuning of the controller and periods with too much missing

data are removed.

Table 5.12 sums up the characteristics of meteorological parameters for both periods. Tamb is the

ambient temperature and Gh is the solar radiation on a horizontal surface. Period 1 was recorded

with conventional controller implemented, period 2 with optimal controller. Table 5.12 clearly

Table 5.12. Meteorological parameters for �rst tests on Passys testcell

Period 1 Period 2

Tamb[
�C] Gh[ W

m2 ] Tamb[
�C] Gh[ W

m2 ]

Minimum 3.6 0.0 0.6 0.0

Maximum 18.4 668 10.7 653

Average 10.3 106 3.9 65

Std. deviation 2.92 169 1.66 177

points out that both periods are not comparable from the meteorological point of view : period 1

was signi�cantly warmer and sunnier. The global performance indices of both controller will then

not be directly comparable.

5.5.2.2 Measured controller performance

Fig 5.23 and 5.24 show two typical weeks respectively taken in the �rst period (conventional con-

troller implemented) and the second period (optimal controller implemented).

Table 5.13 and 5.14 show respectively the measured performance of the reference conventional

controller during period 1 and the measured performance of optimal controller during period 2.

The zone temperature (Tin) statistics concern occupation period only, as for PMV and Jd (which

are naturally equal to 0 when the building is not occupied).

As mentioned here above, a �raw� comparison of these results is not possible due to the very large

meteorological discrepancies between both periods.
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Figure 5.23. Typical week, Period 1 (Conventional controller)

Table 5.13. Measured Conventional Controller performance, Passys testcell - Period 1

Pheat[W ] Tin[�C] (Occ.) PMV [�] Jd[%PPD0]

Minimum 0.0 20.6 -0.097 0.0

Maximum 1100 26.7 0.755 11.19

Average 78.1 23.4 0.097 0.88

Std. deviation 282.7 1.46 0.186 2.25

Table 5.14. Measured Optimal Controller performance, Passys testcell - Period 2

Pheat[W ] Tin[�C] (Occ.) PMV [�] Jd[%PPD0]

Minimum 0.0 19.3 -0.36 0.0

Maximum 1100 23.1 0.0 2.6

Average 244 21.19 -0.045 0.16

Std. deviation 457 0.74 0.077 0.41
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Figure 5.24. Typical week, Period 2 (Optimal controller)
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5.5.2.3 Comparison using simulation

The methodology described in section 5.5.1.6 has been applied to the �rst experimental period.

A �rst attempt using the TRNSYS model of the testcell led to a fairly good agreement between

simulated results and measured values. However, the di�erence of performance (e.g. energy con-

sumption) between two controllers is relatively small compared to the absolute value (order of

magnitude : 10%). For this reason, small errors on absolute energy consumption can lead to a

large error on the comparison results.

A simpli�ed model based on a second order structure suggested by NOA was used in a second

approach. The parameters of this simpli�ed model were identi�ed using the whole data set (peri-

ods 1 and 2). Constant values were identi�ed for all parameters except for air in�ltration and solar

transmittance. The in�ltration rate was allowed to vary in a range from 0.1 to 1 vol/h to take

into account the in�uence of wind speed. The solar transmittance (i.e. the ratio of incident solar

radiation entering the testcell) was allowed to vary in a range from 0.12 to 0.6 to take into account

the variation of glass transmittance with incidence angle and the e�ect of un-modelled shading.

This attenuation factor corresponds to a transmittance ranging from 0.1 to 0.5 for a 1.2 m2 glazed

area.

First, the controllers that were actually implemented were simulated on the corresponding periods

to validate the �building+controller� model. The results presented in table 5.15 and 5.16 show a

good agreement with measured performance (tables 5.13 and 5.14. Important measured values are

also mentioned in these tables to allow a direct comparison.

The energy consumption is reproduced within 2.6% in the worst case. The more important error

for discomfort cost is mostly due to the non-linear shape of Jd: very small errors on maximum or

minimum temperatures during the day have a large e�ect on the discomfort cost. However, the

agreement is still very good.

Table 5.15. Simulated Conventional Controller performance, Passys testcell - Period 1, bold: Measured quantities
on the same period

Pheat[W ] Tin[�C] PMV [�] Jd[%PPD0]

Minimum 0.0 20.6 20.5 -0.11 0.0

Maximum 1100 26.7 26.8 0.77 11.2 11.2

Average 78 76 23.4 23.2 0.097 0.079 0.88 0.73

Std. deviation 279 1.43 0.174 2.08

Table 5.16. Simulated Optimal Controller performance, Passys testcell - Period 2, bold: Measured quantities on

the same period

Pheat[W ] Tin[�C] PMV [�] Jd[%PPD0]

Minimum 0.0 19.3 18.9 -0.11 0.0

Maximum 1100 23.1 23.4 0.0 2.6 3.8

Average 244 245 21.19 21.12 -

0.045

-0.055 0.16 0.23

Std. deviation 458 0.77 0.091 0.55

Fig. 5.25 shows the indoor temperature pro�le for simulated and measured indoor temperature, for

one typical week of each period. The low thermal capacitance of the building and the ON/OFF

nature of the heating system lead to instantaneous discrepancies, but the behaviour of the �building-

controller� couple is very well reproduced by the simulation.

In a second phase, the controllers performance is simulated for the period when the other controller

was implemented. Table 5.17 and 5.18 present respectively the performance of the optimal controller
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Figure 5.25. Simulated and Measured indoor temperature: typical week Period 1, Conventional (upper) � Period 2,

Optimal controller (lower)

during period 1 and the performance of the conventional controller simulated on period 2.

Table 5.17. Simulated optimal Controller performance, Passys testcell - Period 1

Pheat[W ] Tin[�C] PMV [�] Jd[%PPD0]

Minimum 0.0 19.0 -0.42 0.0

Maximum 1100 26.0 0.54 5.8

Average 58.0 22.58 0.020 0.36

Std. deviation 246 1.42 0.132 1.02

Table 5.18. Simulated conventional Controller performance, Passys testcell - Period 2

Pheat[W ] Tin[�C] PMV [�] Jd[%PPD0]

Minimum 0.0 20.0 -0.21 0.0

Maximum 1100 23.4 0.0 0.89

Average 260 21.66 -0.015 0.032

Std. deviation 468 0.728 0.036 0.105

Total energy and discomfort costs are also represented Fig. 5.26

The comparison shows that important energy savings (25%) can be achieved with an improved

comfort during period 1 (warm and sunny). Even if the implemented conventional controller was

not optimised for these conditions (it used a rather conservative �xed schedule), this con�rms that

most of the savings and comfort improvement can be achieved during mid-season.

For the cold period, the optimal controller with implemented settings (mid-range comfort level)
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Figure 5.27. Controllers Comparison for di�erent settings. Period 1

gives 6% energy savings, but at the cost of a higher discomfort. A look to Fig. 5.25 (lower part)

allows to understand why the discomfort cost is so high. On the second day, the temperature goes

down to 19 �C during the occupation period, while the setpoint was already reached before. The

cause is that the ON/OFF control of heating is poorly handled by the optimal controller, and

especially by the feedback compensation.

The comparison using simulation can be useful to compare di�erent controllers on the same building,

but also to test di�erent settings of the same controller. The conventional controller uses for example

a �xed schedule, which was roughly estimated before the start of the tests. Simulations could be

used to assess the validity of these settings and study their in�uence on the results of the comparison

with the optimal controller.
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Di�erent comfort level settings of the optimal controller and di�erent schedules for the conventional

controller were simulated for the period 1 using the identi�ed building model. Fig. 5.27 represents

the total discomfort cost and the total energy consumption for di�erent controllers. In this graph,

the closer a controller is to the lower left corner, the better it is.

By modifying the setpoint and the �xed heating start schedule of the conventional controller, it

is possible to reduce the energy consumption and, for some parameters combinations, furthermore

reduce the discomfort by preventing overheating. However, the �best settings� solution for this

conventional controller is still far from the performance of the optimal controller on this sunny and

relatively warm period.
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5.5.3 Conclusions of experimental tests on Passys testcell and FUL building

Experiments realised on both buildings allow to draw some general conclusions:

The methodology of performance comparison by combining simulation and experiments has been

applied successfully to the Passys testcell. On this special building, without user or adjacent rooms

in�uence, simulation allowed to reproduce the measured behaviour of tested controllers very accu-

rately. This simulation environment can afterwards be used to simulate di�erent controllers with

di�erent settings and study their performance in various meteorological conditions, as illustrated

in section 5.5.2.3. On this building, the optimal controller can achieve up to 25% energy savings

during sunny mid season periods, with an improved thermal comfort (reduced overheating). During

these periods, the optimal controller can start heating later or under-heat the building during the

morning to reduce overheating. In absence of overheating, during very cold periods, the optimal

controller can still achieve about 5% energy savings with a similar discomfort, thanks to the optimal

start of heating.

For the Passive solar building of FUL, which is an occupied building with complex architecture,

the currently available model is not accurate enough to use the simulation-experiments cross-

comparison. Indeed, even small errors usually achieved by �good practice� modelling tools can be

larger than the performance di�erence between two controllers. Note that this is a limitation of

the model that could be developed during this project and not a limitation of the methodology

itself. However, a comparison of di�erent controllers for this building was possible in two ways :

comparison of short similar experimental periods, and �full simulation� comparison. The latter uses

a model giving absolute errors in the range of performance di�erences, but the relative performance

of two controllers can be considered as representative from the reality. The comparisons show that

ANN and optimal controllers can achieve energy savings from 6% to 20% energy savings for similar

or improved comfort, depending on the period. It must be stressed that no single period was found

giving a worst performance for �advanced� controller. Larger energy savings can be obtained during

cold and sunny periods.

Building occupants also gave their impressions during experimental tests. The main disadvantage

of �advanced� controllers in this respect was the lack of �immediate� action possibility, which is

present in the case of conventional control with thermostatic valves. Users sometimes want to

control the temperature of the heat source rather than the operative temperature of the zone. This

is particularly the case at the end of some cloudy days, when advanced controllers stop heating

before the real end of occupancy period. This proves again that the comfort feeling of buildings

occupants will never be represented by an equation, even if it is based on well established scienti�c

standards. On the other hand, no major complaint was noted when advanced controllers were

implemented and no real overheating occurred during the testing of advanced controllers, while it

is a quite common phenomenon when the conventional controller is operated.

It must be stressed that the limitations of advanced controllers that were highlighted by experi-

mental tests are not limitations of the applied methodology but rather limitations of the developed

and implemented controllers. Further developments of control algorithms could take these lessons

into account without compromising their basic advantage on conventional controllers: solar gains

consideration and building behaviour anticipation.



Chapter 6

Work performed by NOA

Authors: Dr. A. Argiriou, Dr. I. Bellas-Velidis

6.1 Introduction to NOA work

This chapter of the report describes the activities of the National Observatory of Athens (NOA).

NOA participated via the Institute for Environmental Research and Sustainable Development (for-

mer Institute of Meteorology) and the Institute of Astronomy and Astrophysics (former Astronom-

ical Institute). NOA was responsible for the theoretical development and experimental testing of

an Arti�cial Neural Network (ANN) controller. The theoretical task of the development of the

ANN-based controller is described in the �rst part of this Report. Presented are the three stages

towards the development of the controller. The initial setting up and the simple energy-demand-

predicting controller are described in the Section 6.2. This �rst task allowed us to analyze the

suitability and performance of particular ANN architectures for such one controller. The devel-

opment of a multi-module controller for heating energy on/o� switching is presented in the next,

Section 6.3. We had to prepare a controller that we could test on-line in our experimental facility

during the winter season. We applied a modular architecture separating the particular functions of

the controller. This allowed us to create a �exible base for the �nal controller and to experiment it

in real conditions. The �nal ANN-based controller for the supply temperature of a hydronic heat-

ing system is presented in Section 6.4. It was developed in two versions, one for the ISFH-partner

system (building/heating), and the other for the FUL-partner. In the second part the experimental

task is presented. Sections 6.5 and 6.6 describe the experimental facility in NOA used to test the

ANN-controller, the PASSYS Test Cell and the testing environment based on VEE. The heating

on/o� controller implementation and the results from real tests during the winter season 98/99 are

given in Section 6.7. An o�-line performance assessment of the same controller is presented in the

next session. The NOA's experimental facility was used for online testing an adapted version of

the optimal controller provided by FUL-partner. The results are shown in Section 6.9. Finally, in

Section 6.10 we present the results, provided to us by the FUL-partner, from online and simulation

tests of the version of ANN-controller for supply temperature, prepared for the FUL system.

6.2 NOA ANN-Controller - initial phase and EAV E demand pre-

dicting

The major steps in setting up the ANN-based controller were initially �xed (Figure 6.1). This

setup was applied in the development of all the three versions of the controller presented in the

96



6.2 NOA ANN-Controller - initial phase and EAVE demand predicting 97

Report. The main activities during the initial phase were to de�ne the basic parameters of an

ANN controller, the inputs and outputs, the controller action, and to test the ability of ANN-based

modules to perform heating control functions.

ANN-CONTROLLER DEVELOPMENT - MAJOR STEPS

  TASK 1 TASK 2
Data preliminary

analysis

CONTROLLER
ANN-algorithm

DATA SETS
creating

Data optional
pre-processing

Sets for training,
validation, tests

Parameters and
variables

CONTROLLER
definition

Specifications
and performance

ANN-controller
creating

CONTROLLER
development

ANN-controller
training

ANN-controller
testing

ANN-controller
trained module

CONTROLLER
implementation

Simulator
linking

ANN-simulator
testing

SIMULATOR
software

input/output
interface

Figure 6.1. The main steps in the development of the ANN-based controller

6.2.1 ANN-Controller initial setup

The heating controller parameters were de�ned (Table 6.1) by all the partners during the �rst

meeting. These parameters de�ned a maximal set of inputs & outputs of a general controller.

A simpli�ed subset (Figure 6.2) was used in the task of ANN-controller development. Two reasons

led to this simpli�cation. The main reason was the decision to develop a simple and cheep controller.

The other reason was the available data set provided by ISFH-partner from his experimental solar

house.

The necessary literature survey was carried out during this phase of the task. The problems of

ANN application to control systems (Clouse et al, 1997 [CGHC97]; Han et al, 1997 [HXW+97];

Hunt et al, 1992 [HSZG92]; Khotanzad et al, 1997 [KARL+97]) and particularly to HVAC systems
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Table 6.1. Initially de�ned parameters set for the controller

Parameter Description

Tout Ambient Temperature

Tind Indoor Temperature

Shor;glob Global Horizontal Solar Irradiance

Humind Indoor Relative Humidity

Twall Indoor Wall Surface Temperature

Shdstate Status of the Shading Devices

Tsupply Supply Temperature

Pmpon;off Status of the Pump

V ntrate Mechanical Ventilation Rate

V ntemp Ventilation Air Temperature

Shdswitch Shading Device Switch

Eave Heating Energy Demand

Tind

Tout

Shor,glob

Humind

Twall

Shdstate

Tsupply

Pmpon,off

Vntrate

Vnttemp

Shdswitch

C
O
N
T
R
O
L
L
E
R

OUTPUTINPUT

Used Controller Inputs and OutputsDefined Controller Inputs and Outputs

Tind

Tout

Shor,glob

Eave

Eave

C
O
N
T
R
O
L
L
E
R

OUTPUTINPUT

Figure 6.2. The input/output as de�ned and as are used in the initial development

(Curtis et al, 1993 [CKB93]; Kreider, 1995 [Kre95]) were analyzed. Special attention was given

to the task of ANN development (Nelson and Illingworth, 1990 [NI91]; Masters, 1993 [Mas93];

Yale, 1997 [Yal97]; Chen, 1997 [Che97]), to adaptive control systems and to the problem of optimal

control (Mills et al, 1996 [MZT96]; Cichocki and Unbehauen, 1993 [CU93]).

6.2.2 ANN-controller development

The well-known SNNS (Stuttgart Neural Network Simulator, Zell et al, 1996 [Z+96]) was used to

develop and test ANN models suitable for this task. It works both on UNIX (RISC- processors)

and on PC systems providing a graphical user environment and a number of helpful tools for ANN

development. A FORTRAN program nn-pat.for (widely used during the controller development)

was created to prepare data sets for training, veri�cation and testing the ANN models under

SNNS. Two di�erent classes of ANN architectures (Figure 6.3), that are well suited for the task

of predicting the heating energy demand, the Time Delay Neural Network (TDNN) and the Feed

Forward Back Propagation (FFBP) were tested.
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Figure 6.3. Illustration of ANN-models. Left: a FFBP with input layer of 21 neurons, hidden layer of 12, and

output layer with two neurons. Right: a TDNN with the same input and hidden layer and with one output neuron
(a time delay of 4 lines is �xed from the input and the total delay length is seven, but only the connections to the

�rst hidden line are shown).

A set of models was tested with these two architectures (Table 6.2). These tests allowed us to

investigate the performance of the TDNN and FFBP, the in�uence of the hidden layer and the

type of input data. The results showed the better performance of FFBP models, lower

error in prediction the heating energy demand and more stable error development in

ANN training.

Table 6.2. The ANN architectures used in the two groups of tests. In the model's name the two letters indicate the
ANN class (FFBP or TDNN) and the indices �i�, �h�, and �o� with the corresponding numbers �x the ANN layers

and neurones topology.

input Tout, Shor , Tind, Tout, Shor , Tind, Tout, Shor , Tind, Tout, Shor , Tind, Tout, Shor , Tind,

(n=23,22,. . . ,1) Eave Eave Eave
1, Eave

2,

Eave
3

Eave Nseq

output (output (input/output (1,..., k (1,..., k

splitting) splitting) steps ahead) steps ahead)
(n=24) Eann Eann

1, Eann
2,

Eann
3

Eann
1, Eann

2,

Eann
3

Eann
n,. . . ,

Eann
n+k�1

Eann
n,. . . ,

Eann
n+k�1

ANN FF i92h24o1 FF i92h24o3 FF i138h24o3 FF i92h24o3 FF i92h24o3

models TD i92h24o1 TD i92h24o3 TD i138h24o3 FF i92h24o6 FF i92h24o6

In the following group of tests only FFBP architecture was used. These tests were necessary to

analyze the performance of an ANN-module when working in opened vs. closed control loop and

the error (root-mean-square, mean-absolute, and mean error) development when predicting more

steps ahead (Table 6.3). A representative result is illustrated below (Figure 6.4).

The results showed clearly that Arti�cial Neural Networks can be successfully used

for predicting the heating energy demand of single solar houses based on only small

number of input variables. The FFBP models are preferable over the TDNN. The

choice between the closed and the opened loop models should be based on the particular task

objectives and the wished forecasting accuracy. Individual, dedicated ANN modules should be

used for the particular steps ahead forecasting (one module for one step prediction ahead, other for

two steps, etc.). Such ANN-based subsystems will be very e�ective when implemented

as a predictive module in a heating control system. The results from the development of
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Table 6.3. The performance of closed loop and opened loop ANN models in forecasting the heating energy demand

of a single solar house for a number of 5-min steps ahead (RMSE � root mean square error, MAE � mean absolute

error, ME � mean error)

Arti�cial Neural Networks Performance

Prediction (steps ahead) 1 step 2

steps

3

steps

4

steps

5

steps

6

steps

closed loop ANN RMSE 221.6 385.9 554.6

model: FF i92h24o3 MAE 124.9 213.5 315.7

input: Tout, Shor, Tind, Eave ME -1.5 57.7 120.6

closed loop ANN RMSE 371.5 454.4 589.1 757.6 915.0 1021.7

model: FF i92h24o6 MAE 284.1 303.2 360.3 437.4 506.3 569.0

input: Tout, Shor, Tind, Eave ME -225.5 -162.4 -107.5 -48.9 109.0 187.5

opened loop ANN RMSE 807.1 848.1 879.0

model: FF i92h24o3 MAE 570.6 599.7 612.2

input: Tout, Shor, Tind, Nseq ME -137.6 -187.5 -173.5

opened loop ANN RMSE 832.9 852.6 876.7 894.1 924.0 941.8

model: FF i92h24o6 MAE 576.6 587.9 601.0 611.0 634.3 647.9

input: Tout, Shor, Tind, Nseq ME 215.5 229.7 247.7 255.9 261.1 276.6
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Figure 6.4. Results for closed loop FFBP model trained using input data Tout, Shor , Tind, Eave. The input data

and the predicted Eann heating energy demand of the single-family solar house are shown. Left: One step prediction

ahead model results for 22/01/97. Right: Three steps prediction ahead model results for 17/03/97.

ANN-predictor for Eave controller were presented to the EUFIT'98 Congress in Aachen, Germany

(Bellas-Velidis et al, 1998 [BVABK98]).
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6.3 NOA ANN-Controller - �rst controller for EON=OFF

The development of ready-for-test ANN-based controller was carried out having in mind the ob-

jectives and the initial set-up of the controller function and the possibility to test it in the NOA

PASSYS Test Cell. A limited input information is passed to the controller. It includes date & time

(Nd, Nh), the user-set internal temperature preference Ts, the outdoor temperature To and global

horizontal solar irradiation Sr, and the state of the controlled system, its indoor temperature Ti. In

regular time intervals, �xed to �t = 15min, the controller should output the heating energy value

Ea necessary to apply during the next interval. The controller should optimally (e.g. based on some

cost function Cf) maintain the Ti within the wished comfort zone. The developed ANN-controller

has a modular structure, where separate modules perform particular internal functions necessary

for the controller (Figure 6.5).

Figure 6.5. PASSYS Test Cell heating system controller set-up

Two modules perform weather forecasting, one predicting the Sr and the other the To, using the

previous values of these parameters and the corresponding time and day parameters (Nd, Nh).

Another module predicts the switching on/o� the heating energy Es using the previous values of

the weather parameters (Sr, To), of the system and the controller (Ti, Ea), and the user set Ts.

This module can be characterized as inverse model of the system. The three predicted parameters

(Sr, To, Es), the corresponding past values and the past Ti are parsed to the next module that

outputs an estimate of the Ti for the following time interval. This module is an internal model

of the system. These four modules are created applying Feed Forward Back Propagation (FFBP)

Arti�cial Neural Networks algorithm. Supervised training with the method of Back Propagation

with Momentum Term and Flat Spot Elimination was used. The SNNS software tool, was used for

the four ANN modules development.

The �nal output from the controller to the heating system, the Ea on/o� switch position, is �xed

by the last module, a simple optimiser. The module uses the last and the predicted values (Ti, Es,

Ea) for the system and the controller to decide about the next action. This module applies simple

logic rules based, additionally, on the user set Ts and the requirements for energy savings. There

is one more module (not shown) that performs the necessary I/O functions and internal bu�ering

of the parameters. The input gives the last time interval parameters, whereas the bu�er keeps the

six previous intervals values, and the output is the next control action (Figure 6.6).



6.3 NOA ANN-Controller - �rst controller for EON=OFF 102

Figure 6.6. De�nitions of the I/O data sequences

6.3.1 Weather forecasting ANN-modules

The module forecasting the outdoor temperature uses a simple ANN. It has ten input neurons, one

hidden layer of 8 and another of 4 neurons, and one output neuron (FF.i10h8h4o1). This ANN

was trained using part of real meteorological data for 1993 for the Athens. The rest of the data

were used for veri�cation during the training. Data for 1994-1996 were used in o�ine tests. The

inputs and the output are listed in table 6.4.

Table 6.4. Inputs and outputs for the ANN forecasting the outdoor temperature

Input Nh
(+1) the (daily normalized) time value for the next interval

Input To
(0;�1;�2;�3) the last and three previous values of the outdoor temper-

ature

Input Nd
(+1) the (yearly normalized) day number for the next interval

Input Sr
(0;�1;�2;�3) the last and three previous values of the solar irradiation

Output �To = To
(+1)
� To

(0) the outdoor temperature di�erence for the next interval

The solar irradiation forecast module uses similar FFBP architecture and training procedure, but

the number of neurons is greater due to more complicated behavior of this parameter. The train-

ing/veri�cation/testing of this ANN were carried out using the same data as in the previous module.

The ANN has 28 input neurons, one hidden layer of 16 and another of 8 neurons, and one output

neuron (FF.i28h16h8o1). The inputs and the output are listed in table 6.5.

Table 6.5. Inputs and outputs for the ANN forecasting the solar irradiation

Input Nh
(0;�1;�2;�3;�4;�5;�6) the daily time value for the next intervall

Input To
(0;�1;�2;�3;�4;�5;�6) the last and six previous values of the outdoor temperature

Input Nd
(0;�1;�2;�3;�4;�5;�6) the yearly day number for the next interval

Input Sr
(0;�1;�2;�3;�4;�5;�6) the last and six previous values of the solar irradiation

Output �Sr = Sr
(+1)
� Sr

(0) the solar irradiation di�erence for the next interval

A small part of the results from testing the two modules is presented below (Figure 6.7). The

di�erence between the real and the forecasted (one step ahead) outdoor temperature is shifted

arti�cially to 250 �C. In rear cases this di�erence arises up to one degree. The situation with the

solar irradiation prediction is much worse. The di�erence (shifted to 3250) shows a small trend and

there are small errors when the real irradiation is zero. The prediction error is about 10-20% when
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there are no clouds on the sky. Having in mind the very simpli�ed data input to these modules, as

de�ned in the controller set-up, the forecasting can be adopted as satisfactorily. The real on-line

tests (see below) showed that the controlled system does respond (Ti) slowly to abrupt weather

changes allowing for such prediction errors. The situation will complicate if we will need to predict

the ambient variables more steps ahead.

The differences deTo and deSr of ANN-forecasting. Weather Data (29Nov-28Dec,1993)
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Figure 6.7. Online test results of the weather forecasting modules (ANN-controller for heating energy switch

prediction). The di�erences between the forecasted and the real temperature (deTo) and solar irradiation (deSr) are

shown arti�cially shifted.

6.3.2 Heating energy switch predicting ANN-module (inverse model)

This module is implemented modifying the well investigated by us heating energy predictor (Bellas-

Velidis et al., 1998). The used ANN has 35 input neurons, one hidden layer of 15 neurons and output

layer of one neuron (FF.i35h15o1). The data set used to train/verify/test this ANN is prepared

with TRNSYS model of the PASSYS Test Cell and weather data described above. This predictor

is a modi�ed version of the inverse model of the system. Here, the heating energy demand Es

parsed as input is de�ned by a simple logical rule taking into account the last Ti, Ts, and Ea. The

inputs/outputs for this ANN module are listed in table 6.6.

Our �rst implementations for controller on-line tests in the PASSYS Cell included only this ANN-

module. Part of the results from these tests is presented below (Figure 6.8). TheNnstatus variable

shows the status of the heating system (10=on) for a given interval as set by the controller using

for prediction the parameters from the last and six previous control intervals. The controller does

not allow the system to fall below Ti = 18�C (as desired), but there is an overheating in up to two

consecutive intervals. The analysis showed that the reason of this behaviour is hidden in the data

set from TRNSYS model used to train the ANN. Nevertheless, this o�ine trained ANN-switch was

found to be useful for �rst prediction of the heating demand in the �nal multi-module controller.
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Table 6.6. Inputs and outputs for the ANN predicting the heating energy switch

Input Nh
(0;�1;�2;�3;�4;�5;�6) the last and six previous values of the (daily normalised)

time

Input Sr
(0;�1;�2;�3;�4;�5;�6) the last and six previous values of the solar irradiation

Input To
(0;�1;�2;�3;�4;�5;�6) the last and six previous values of the outdoor temperature

Input Ti
(0;�1;�2;�3;�4;�5;�6) the last and six previous values of the indoor temperature

Input Es
(0;�1;�2;�3;�4;�5;�6) the last and six previous values of the heating energy switch

Output �Sr = Sr
(+1)
� Sr

(0) the heating energy switch for the next interval

The Ea switch prediction NNPRED tests on PASSYS Cell (5-th period)
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Figure 6.8. Online test results for the ANN-module for heating energy switch prediction

6.3.3 Indoor temperature de�ning ANN-module (internal model)

It is an internal model of the system, i.e. it gives us the internal state of the system (Ti) for a given

time interval. For this, it uses the values of the external parameters (To, Sr, Ea) acting on the

system for this and for previous intervals, as well as the previous internal state. The ANN used in

this module has 12 input neurons, two hidden layers, the �rst of 12 and the second of 6 neurons,

and one output neuron (FF.i12h12h6o1). As above, the data used to train/verify/test this ANN

was taken from real experiments on the PASSYS Test Cell. For the ANN-based internal model the

de�ned inputs & output are: listed in table 6.7. The o�ine tests showed very good performance

of the ANN-based internal model. Using real data, the di�erence between the indoor temperature

given by the ANN-module and the real one (see Figure 6.9, the temperature di�erence is arti�cially

shifted to 35 �C) shows an error of about � 0.2 �C.

In a real situation, using the multi-module controller, some of the input parameters to this ANN

will be forecasted in advance by the other modules (Figure 6.5). The di�erence between the real and

modelled indoor temperature is expected to increase because of the forecasting error propagation.
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Table 6.7. Inputs and outputs for the indoor temperature de�ning ANN-module

Input Sr
(+1) the next (forecast) value of the solar irradiation

Input To
(+1) the next (forecast) value of the outdoor temperature

Input Ea
(+1) the next (predicted) value of the of the heating energy

Input �Sr
(+1) = Sr

(+1)
� Sr

(0) the predicted di�erence in the solar irradiation

Input �To
(+1) = To

(+1)
� To

(0) the predicted di�erence in the outdoor temperature

Input �Ea
(+1) = Ea

(+1)
�Ea

(0) the predicted di�erence in the heating energy

Input Ti
(n=0;�1) the last and the previous values of the indoor temperature

Input �Ti
(0) = Ti

(0)
� Ti

(��1) the last di�erence in the indoor temperature

Input �Sr
(0) = Sr

(0)
� Sr

(�1) the predicted di�erence in the solar irradiation

Input �To
(0) = To

(0)
� To

(�1) the predicted di�erence in the outdoor temperature

Input �Ea
(0) = Ea

(0)
� Ea

(�1) the predicted di�erence in the heating energy

Input Es
(0;�1;�2;�3;�4;�5;�6) the last and six previous values of the heating energy

switch

Output �Ti = Ti
(+1)
� Ti

(0) the indoor temperature di�erence for the next interval

The difference (deTi-deTnn) of ANN-model Prediction. PASSYS Cell Data (7Feb-11Feb,1999)
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Figure 6.9. O�ine testing results of the ANN-module for the indoor temperature prediction



6.3 NOA ANN-Controller - �rst controller for EON=OFF 106

6.3.4 ANN-controller for online and simulation tests - nnpred

The modular ANN-based controller, described above, has been implemented as a standalone ex-

ecutable nnpred.exe created from a C-language program. The four ANN-modules, trained with

SNNS were transformed to C functions, included in the program. This transformation was done

with a particular tool of the SNNS software. The interface with the testing system is based on

three ASCII �les. The necessary input data are parsed by an input �le (current state), created by

the system, and by a bu�er (history) �le that is maintained by the controller itself. The de�ned

control action is parsed back to the system by a proper output �le. Additionally, the controller

maintains a log-�le for all the testing period. The execution of one control action on a Pentium

PC takes less than second.

Simulation tests and initial on-line tests of the nnpred were carried out. This allowed us to improve

(to adapt o�ine the ANN-modules) the controller for the �nal on-line run on the PASSYS Cell of

NOA (see Sections 6.5 and 6.6). The �nal results (Section 6.7) showed that this modular

ANN-controller performs quite well for the set-up task. The indoor temperature was

maintained stable within the desired interval. In all the cases the overheating was due

only to weather conditions.

6.3.5 ANN-modules development with MATLAB

It is necessary to include an adaptation of the ANN-modules in the �nal controller. But this is

not applicable using the SNNS that is a stand-alone software system. Two alternative solutions

were tried and tested. The one was using the Neural Networks Toolbox of the MATLAB software,

and the other to create own C-program for ANN training. Implementing MATLAB functions for

Performance comparison in Eave switch prediction using PASSYS Cell model dat
Compared are SNNS (Eann) and MATLAB (Ema=adapt, Emb=batch) trained modules.

The heating energy on/off sequences are artificially shifted
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Figure 6.10. Performance comparison of the heating energy switch ANN-module trained with MATLAB (Ema and

Emb) and with SNNS (Eann) and the real data (Ea).

ANN learning/testing is quite easy using its scripting language (m-functions), but the �nal product
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should be transformed to a C-function in order to be included in the real controller. All the four

ANN-modules were recreated as M-functions and a set of training/veri�cation/test procedures

were carried out exactly as this was done with SNNS. Additionally, in adaptive training, a patterns

random permutation was provided for better generalisation of the trained ANN, as it is included in

SNNS. Exactly the same method (Back Propagation with Momentum Term) and the same training

parameters values were used in the adaptive and the batch both MATLAB training and in SNNS.

The tests showed that MATLAB training procedures are too slow compared to SNNS (the latter

runs on the same PC). In the weather forecasting, this is mainly due to the reach pool of data

parsed for training and the data handling performed by MATLAB. Nevertheless, the training is

signi�cantly longer. Even more, all the modules showed worse performance (see for example the

heating energy switch module results on Figure 6.10). Trials with increased number of training

cycles and/or modi�ed parameters did not improve the performance.

It seems possible to translate the m-functions to C using the MATLAB Compiler and C/C++Math

Library. But there will be a license problem with including such modules in the controller hardware.

So well, because the MATLAB solutions are created toward solving many di�erent problems, such

modules include software parts unnecessary for our controller (arrays handling, di�erent ANN

models, etc.). This would lead to creating unnecessary large executables and to problems in code

optimisation. The �nal conclusion from these tests and the above remarks was that

such M-functions are not suitable for use neither in a simulation environment nor in

hardware implementation of the ANN-controller.
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6.3.6 ANN-modules development with own C-program ann-learn

We created our own training procedure, tightly coupled with the problem and the particular mod-

ules we are developing for the controller. We wrote a C-program ann-learn.c, with a very simple

I/O interface, that can be run even under DOS. This allows its functions to be used for online

adaptation in the real controller. The Feed Forward Back Propagation with Momentum Term and

Flat Spot Elimination, in adaptive mode, and training patterns random permutation, is the only

used learning algorithm. This is what the initial tests (see above) showed to be most suitable for

our task, and this we have used in SNNS and MATLAB runs. We created, trained and tested all

Performance comparison in Eave switch prediction using PASSYS Cell model dat
Compared are SNNS (Eann) and C-program (Erun) trained modules.

The heating energy on/off sequences are artificially shifted

0

5

10

15

20

25

30

35

40

45

50

0:00
10/Jan/1993

12:00
10/Jan/1993

0:00
11/Jan/1993

12:00
11/Jan/1993

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

To

Ti

Ea

Eann

Erun

Sr

Figure 6.11. Performance comparison of heating energy switch ANN-module trained with the C-program ann-learn
(Erun) and with the SNNS (Eann).

the four ANN-modules using our C-program. The modules were exactly of the same architecture as

these tested with SNNS and MATLAB. An example of the results is illustrated above (Figure 6.11).

The tests showed very good performance of modules created with the ann-learn program. The

learning is about as fast as in the SNNS. The �nal error in the Ea predicting module is smaller,

whereas this for the Ti model ANN-module is about the same as the corresponding modules trained

with SNNS. The situation with the weather forecasting modules is not so good, but their errors are

smaller then in the MATLAB trained modules. The conclusion is that the developed by us

C-program is suitable for use in simulation (as MEX-�le in SIMULINK or TRNSYS)

and it training functions can be used for particular ANN-modules adaptation in the

�nal hardware implementation of the controller. The development of the ANN-based con-

troller for Eon=off and the results from its on-line testing are presented in a paper submitted for

publication (Argiriou, 1999 [ABVB99])
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6.4 NOA ANN-Controller - �nal controller for TSUP

The development of the �nal, ANN-based controller for the supply temperature of a hydronic

heating system was carried out having in mind the �nal objectives. The inputs here are about the

Figure 6.12. Solar house heating system controller set-up

same as for the heating switch controller: date and time (Nd, Nh), the outdoor temperature To and

solar irradiation on south wall Sr, and the state of the controlled system, its indoor temperature

Ti. Additionally, the previous supply temperature Ts and return temperature Tr of the heating

system are used as input. The controller should optimally (e.g. based on some cost function Cf)

maintain the Ti within the wished comfort zone (Tu) set by the user. But, the output parameter

here is the supply temperature Ts of the heating system. So well, the return temperature Tr of the

system should also be taken into account (Figure 6.12).

6.4.1 ANN-modules development with SNNS

This type of output makes the ANN-based controller's task much harder. Instead of heating energy

on/o� prediction Ea, the controlled output spans a wide range of Ts values in this controller.

Nevertheless, the modular structure of the controller is generally the same as in the former case

(see Section 6.3) and mainly the inverse and the internal models of the system are in�uenced. The

data used to develop the Neural Networks were prepared using the ISFH-partner TRNSYS model.

The set for Tu = 20�C was only used. The initial tests showed that it is necessary to provide more

steps ahead prediction in all the models. Testing di�erent ANN- modules performance and having

in mind the ability to make an optimization, but still maintaining relatively simple Neural Networks

it was �xed the ANN-modules to provide prediction up to four steps ahead. As the tests helped

us to �x the optimal input/output con�guration, they showed the necessity to include one more

hidden layer in all the modules architecture and to increase the number of training cycles. The

�nally adopted modules, their inputs and outputs are described below (Table 6.8). The performance

of the adopted ANN-modules was extensively tested o�-line using one-year data. The results are

shown in Table 6.9 below (in the Reference Models the last value of particular output parameter

is used, instead of predicting it). Undoubtedly, the ANN-modules perform better than

reference ones in all the steps of prediction ahead and can be used in the developed

controller. The �gures 6.13- 6.16 show the performance for particular set of cold days. Only in

the case for solar irradiation the performance is still not good. Of course there is a physical reason.

We are using only two weather variables for this forecast. These ANN-modules were included in

the new nnpred4 controller that is ready for simulation tests.
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Table 6.8. The �nally adopted ANN-modules input and output parameters for TSUP controller

Sr FF. i18h32h32o4 Solar Irradiation Forecasting ANN-Module

Input Nh

(0) the (daily normalized) time value for the last interval

Input Nd

(0) the (yearly normalized) day number for the last interval

Input To
(0;�1;�2;:::;�7) the last and eight previous values of the outdoor temperature

Input Sr
(0;�1;�2;:::;�7) the last and three previous values of the solar irradiation

Output Sr
(+1;+2;+3;+4) the solar irradiation for the next four intervals

To FF. i18h32h32o4 Outdoor Temperature Forecasting ANN-Module

Input Nh

(0) the (daily normalized) time value for the last interval

Input Nd

(0) the (yearly normalized) day number for the last interval

Input To
(0;�1;�2;:::;�7) the last and eight previous values of the outdoor temperature

Input Sr
(0;�1;�2;:::;�7) the last and three previous values of the solar irradiation

Output To
(+1;+2;+3;+4) the outdoor temperature for the next four intervals

Ts FF. i52h32h32o12 Supply Temperature Predicting ANN-Module (inverse

model)

Input To
(0;�1;�2;:::;�7) the last and eight previous values of the outdoor temperature

Input Sr
(0;�1;�2;:::;�7) the last and three previous values of the solar irradiation

Input Ti
(0;�1;�2;:::;�7) the last and eight previous values of the indoor temperature

Input Ts
(0;�1;�2;:::;�7) the last and eight previous values of the supply temperature

Input Tr
(0;�1;�2;:::;�7) the last and eight previous values of the return temperature

Input To
(+1;+2;+3;+4) the outdoor temperature for the next four intervals

Input Sr
(+1;+2;+3;+4) the solar irradiation for the next four intervals

Input Tu
(+1;+2;+3;+4) the user set temperature for the next four intervals

Output Ts
(+1;+2;+3;+4) the supply temperature for the next four intervals

Output Tr
(+1;+2;+3;+4) the return temperature for the next four intervals

Output Dt

(+1;+2;+3;+4) the di�erence between the supply and the return temperature
Ti FF. i52h32h32o4 Indoor Temperature Predicting ANN-Module (internal

model)

Input To
(0;�1;�2;:::;�7) the last and eight previous values of the outdoor temperature

Input Sr
(0;�1;�2;:::;�7) the last and three previous values of the solar irradiation

Input Ti
(0;�1;�2;:::;�7) the last and eight previous values of the indoor temperature

Input Ts
(0;�1;�2;:::;�7) the last and eight previous values of the supply temperature

Input Tr
(0;�1;�2;:::;�7) the last and eight previous values of the return temperature

Input To
(+1;+2;+3;+4) the outdoor temperature for the next four intervals

Input Sr
(+1;+2;+3;+4) the solar irradiation for the next four intervals

Input Ts
(+1;+2;+3;+4) the supply temperature for the next four intervals

Input Tr
(+1;+2;+3;+4) the return temperature for the next four intervals

Output Ti
(+1;+2;+3;+4) the indoor temperature for the next four intervals

Table 6.9. The performance (standard deviation of the di�erence between predicted and real values) of the ANN-

modules compared to reference models

Module Sr To Ts Ti
Ahead Ref.Mod. ANN Ref.Mod. ANN Ref.Mod. ANN Ref.Mod. ANN

+1 226 181 0.359 0.322 0.799 0.376 0.037 0.026

+2 333 251 0.579 0.475 1.067 0.416 0.059 0.027

+3 397 303 0.770 0.589 1.076 0.436 0.072 0.030

+4 434 328 0.956 0.692 1.251 0.491 0.086 0.031
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Sr - Solar Irradiance ANN-model Performance (differences between predicted 
ANN-3d model: Input To&Sr (0,…,-7) and Hd&Dy(+1), Output Sf (+1,…,+4)
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Figure 6.13. Solar irradiation ANN-module performance

To - Outdoor Temperature ANN-model Performance (differences between predicted an
ANN-3d model: Input To&Sr (0,…,-7) and Hd&Dy(+1), Output Tf (+1,…,+4)
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Figure 6.14. Outdoor temperature ANN-module performance
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Ts - Supply Temperature ANN-model Performance (differences between predicted a
ANN-9c model: Input Ts,Ti,Tr,To,Sr (0,…,-7) and To,Sr (+1,…,+4), Output Tf,Tfr,Df (+1,…,+4)
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Figure 6.15. Supply temperature ANN-module performance

Ti - Indoor Temperature ANN-model Performance (differences between predicted a
Ann5d-model: Input Ti,Ts,Tr,To,Sr (0,…,-7) & Ts,Tr,To,Sr (+1,…,+4), Output Ti (+1,…,+4)
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Figure 6.16. Indoor temperature ANN-module performance
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As in the case of the energy switching (Section 6.3.6) a C-program ann-learn4 was created to

train the ANN-modules. Its has been extensively tested. Modules trained with it showed about

the same performance as these developed with SNNS. This program is intended to be included in

the real controller to adapt online its ANN-modules.

6.4.2 ANN-controllers for FUL and for ISFH buildings

Such ANN-modules, as described above, were used for the �nal controller. There were released

two such controllers, one for the model (building and heating system) of FUL-partner and one for

the model of ISFH-partner. Each controller's ANN-modules were trained, veri�ed and tested using

simulation data provided by the particular partner. The main di�erence from the above described

training of the modules, was that the data sets now include simulation for two set points, Tu=15 �C

and Tu=21 �C as it was decided during the last meeting of the project. This a�ected the �Inverse

Model� and the �Internal Model� ANN-modules (Figure 6.12). Two-year data were used in the

case of ISFH, whereas for the FUL controller the available data set included two heating seasons.

The performance of the particular ANN-modules is close to this presented above (Figures 6.13 �

6.16). A small degradation in the weather forecasting modules was observed in the case of FUL.

This is caused by the origin of the meteo-data set. The real data used for creating the simulation

data had a 2-hour step. The set necessary for simulation was created by interpolation to 1-hour

step and than repeating four times the hourly data to provide the �nal set (15-min step). The

weather forecasting modules, trained with this data set provide a rather conservative prediction.

The forecasted outdoor temperature and the solar irradiance are more close to their previous values.

This of course in�uences the other modules as they use the predicted values as input. Nevertheless,

the overall performance of the controller is quite good as shown by o�ine and online tests (see

Section 6.10).
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6.5 Experimental facility � PASSYS test cell of NOA

The prototype neural controller has been extensively tested in the PASSYS test cell, located at the

premises of the National Observatory Athens in Pendeli. The facility is shown below (Figure 6.17).

The photo on the left-hand side shows the cell from the outside, while on the right hand side the

indoor of the test room of the cell is shown. The test room is heated via four electric resistances

and a fan. In the actual mode the EON=OFF controller activates or deactivates these resistances.

Figure 6.17. The PASSYS Test Cell

The data acquisition system used is the Hewlett-Packard 38512A, controlled by a PC clone Pentium

133 Hz. The following sensors are connected to it:

� Seven Pt 100 platinum resistance thermometers measuring the indoor temperature at various

points inside the test room.

� One Pt 100 thermometer measuring the ambient temperature. All these thermometers are

shielded against radiation.

� A CM3 Kipp & Zonen pyranometer, measuring the global horizontal solar radiation on top

of the test cell.

For the needs of the experimental testing the data acquisition system controls also the heating

system. This function was implemented in such a way in order to allow testing of other controller

algorithms also and not only of that developed by NOA. All sensors are interrogated every minute

and 15-minute averages are stored and provided to the neural controller. The controller then decides

whether or not the heating system should be activated or not. The data acquisition system records

also the controller decision, the status of the switch that activates the heating system and also the

energy consumed by the heating system. The acquisition of all these parameters allows the early

detection of possible failure of the hardware to follow the instructions of the controller.

It should be noted that although the PASSYS cell is particularly well insulated, it has a very

low thermal mass. In order to increase the thermal mass and better approximate the thermal

behavior of the slow responding solar houses, two water tanks of 500 lt each were introduced into

the test room. The e�ective thermal mass added this way was determined via the CTLSM ver. 2.6

identi�cation method (Madsen & Holst, 1995 [MH95]).



6.6 Controller implementation in PASSYS test cell of NOA 115

6.6 Controller implementation in PASSYS test cell of NOA

The data acquisition system is programmed for the above-described tasks, using the VEE object

oriented programming software. This software allows the user to implement other applications

Figure 6.18. VEE-based testing environment of the controller in PASSYS Test Cell

Figure 6.19. Example with opened the VEE Data Acquisition block

in a very easy way. When testing the neural controller, the algorithm was translated into a C

code, which was then compiled. The executable of this code was called by VEE every 15 minutes;

the acquired data are provided as input and the result of the controller activated a particular

switch, de�ning thus the status of the heating system. The front end of the software is shown in
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Figure 6.20. Example with the contents of the VEE block HP_3852A

Figure 6.18. Each one of the blocks of this front end, hide other information. An example is shown

in Figure 6.19. Here the open form of the block labeled �Data Acquisition� is presented.

This block is responsible for the interrogation of the sensors. The delay of 60 seconds, is the

interrogation period. In the following Figure 6.20, the contents of the block HP_3852A are shown.

These are the instructions sent to the device for the interrogation of the sensors and the collection

of the results.

The neural network controller program, named nnpred, is called in the block �Execute Program

PC�. Data are transmitted to and from the program via bu�er �les. The acquired data and the

results of the neural network controller are stored in separate �les. The nnpred program is an

executable created from a C-language source code. All the described modules are written as C-

programs that are called by a main program. Especially helpful for the case, is the ability of the

SNNS to transfer the trained neural networks in the form of C-functions. The program, in addition

to the use of bu�er �les for I/O, maintains a history stack of particular parameters six control

intervals backward. So well, a log-�le is continuously updated, saving all the I/O and some internal

variables, necessary to monitor o�ine the particular module performance. Without applying any

optimization of the code, the size of the executable is 233K. It executes almost instantly giving

the necessary output. For the testing of the controller developed by Fondation Universitaire Lux-

embourgeoise (FUL), the same principle was adopted. There are di�erences however since this

controller was developed under Matlab. In order to avoid loss of time from converting the Matlab

software into C, the �Execute Program� box of the data acquisition system is in this case launching

Matlab; a special script launched together with Matlab, activates the controller software. No other

signi�cant changes were required, since all controllers tested in this project accept the same inputs.
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6.7 NOA Online testing results - ANN-Controller for EON=OFF

The test of the neural control algorithms on the PASSYS test cell started relatively late, beginning

of December 1998, since the weather was unseasonably warm until this time. The tests lasted

until the end of March 1999; after this date the weather was such that did not allow any tests

with the heating system. The collected data were analyzed almost everyday, in order to assess

the behavior of the controller. The result of this analysis was a continuous improvement of the

control algorithms. Each improvement was immediately implemented in the testing environment,

without having to interrupt the operation of the experimental plant. Part of the obtained results
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Figure 6.21. Results of the in-situ testing of the ANN controller (Heating System: 1=o�, 9 =on).

is shown in Figure 6.21. This �gure shows the variation of the indoor and ambient temperature,

solar irradiance and the status of the heating system (�9� indicates that the heating system is ON

and �1� that the system is OFF). The desirable indoor temperature range was set at 18 to 20 �C.

Accordingly, one can conclude that the developed controller maintains well the indoor temperature

within the desired interval. Although the forecasts of the ambient temperature and solar radiation

are not so accurate, as discussed in section refsec:NOAsec3, the impact on the overall performance

of the controller is not signi�cant. These results are presented in paper submitted for publication

(Argiriou et al, 1999 [ALK+99]).

6.8 O�-line performances assessment � ANN-Controller for EON=OFF

The performance of the neural controller over a complete heating season and its comparison with

a conventional controller was performed via numerical simulation. The thermal performance of the

PASSYS test cell was simulated using the well known transient simulation code for solar systems

and buildings, TRNSYS (Klein, 1994 [KB+94]). The advantage of TRNSYS is its modularity. It is

therefore possible to create a new routine with the ANN controller algorithms and apply it to the

heating system of the cell. The simulation time step is identical to the actuation interval of the

controller (i.e. 15 minutes). The meteorological data used is the Typical Meteorological Year for
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Athens, Greece (Argiriou et al., 1999 [ALK+99]). Two annual simulations were made: one assuming

that the temperature inside the test cell has to be maintained within the range 18 to 20 �C by a

conventional controller and a second during which the temperature is kept within the same range

using the ANN controller. The goal of these simulations is to test whether the implementation

of the ANN controller reduces the energy consumption, while maintaining the indoor temperature

within the desirable range. Figure 6.22 shows the indoor temperature variation for the �rst four

simulation days (solid black line) with the ANN controller. The dashed line shows the variation of

the global solar irradiance on a horizontal plane and the gray line shows the status of the heating

system of the cell (�0� indicates that the heating system is OFF and �25� that the system is ON).

Figure 6.23 shows the corresponding data using the conventional controller for the simulation.
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Figure 6.22. Results of the in-situ testing of the ANN controller (Test cell performance simulation with the ANN

controller.

The comparison of the two �gures leads to the following observations:

� In both cases the lower set point of 18 �C is well maintained.

� Although the conventional controller stops the heating system at 20 �C, the indoor temper-

ature always exceeds this value. This is due to the fact that the conventional controller can

not predict and therefore it does not take into account the thermal inertia of the test cell.

In some cases, the indoor temperature exceeds 21 �C, even at times when solar irradiance

is zero or very low. The neural controller switches-o� the heating system at about 19 �C,

when the solar irradiance is zero or very low, �knowing� that the temperature will increase

to the upper set-point of 20 �C, due to the thermal inertia of the system. When the ANN

controller forecasts also the increase of solar radiation, it might stop the heating system even

at 18.6 �C.

� The conventional controller maintains the heating system on for about three time steps (i.e.

45 minutes in average), while the ANN controller does the same for about two time steps in

average.
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Figure 6.23. Results of the in-situ testing of the ANN controller (Test cell performance simulation with the
conventional controller.

The above observations explain why the ANN controller can lead to a reduced heating energy

consumption. Simulations showed that the total annual energy consumption of the test cell is

771 MJ with the conventional controller and 713 MJ with the ANN controller. Accordingly, the

use of the neural controller can lead to a 7.5% decrease of the annual heating energy consumption

of the PASSYS test cell.

6.9 Tests of the FUL partner EON=OFF controller by NOA

. On December 1999, in the frame of the exchange of the various controller types, FUL adapted the

format of inputs and outputs of its control algorithms to that of the data acquisition and control

software used by NOA. The great di�erence between the original FUL controller and the adapted

for this test is in the fact that there is a hydronic heating system in FUL building, whereas the

PASSYS Cell uses an on/o� air heating system.

The experimental testing lasted until the end of January 2000. The experimental results were

delivered to FUL for the �nal assessment. They are presented in section 5.5.2, starting on page 88.
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6.10 Tests of the NOA ANN-Controller for TSUP at FUL

. The version of the ANN-controller nnpred4 for Tsup created for the FUL-partner system (see

Section 6.4.2) was tested experimentally and in simulation by the partner. The �Shell for controllers

exchange v 5.0�, created by the FUL-partner was used for the simulation tests. The results from

the simulations performed by FUL-partner are shown below (Table 6.10). Compared are: �Con-

ventional� controller, the �Optimal� controller (FUL), the ANN-based controller (NOA) and the

�Predictive� controller (ISFH). (Figure 6.24 and 6.25).

Table 6.10. The performance of di�erent controllers tested in simulation by FUL-partner.
Comparing results for controllers (CompareSSBC V 1.00)

1 2 3 4 5 6 7 8 9 10 11 12 13

Control Conv Conv Conv Opti Opti Opti Opti ANN ANN Pred Pred Pred Pred

CLD 0 0 0 4 5 6 7 0 0 8 8 9 9

NHSc 5 6 7 0 0 0 0 4 7 0 6 6 7

Temperature during occupation

Min 19.76 20.12 20.57 19.59 20.16 20.17 20.23 17.62 19.45 15.72 19.17 19.92 20.65

Max 27.72 27.72 27.72 27.60 27.62 27.62 27.62 27.64 27.64 27.57 27.58 27.60 27.61

Avg 21.87 21.90 21.94 21.28 21.35 21.38 21.40 21.26 21.64 20.49 21.44 21.54 21.56

Avgabs 21.87 21.90 21.94 21.28 21.35 21.38 21.40 21.26 21.64 20.49 21.44 21.54 21.56

Stddev 1.19 1.17 1.16 1.13 1.11 1.10 1.10 1.40 1.21 1.74 1.20 1.15 1.15

Sacent 0.83 0.82 0.82 0.67 0.66 0.66 0.66 0.94 0.84 1.22 0.79 0.76 0.77

Jd during occupation (PPD-5)

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Max 19.903 19.931 19.961 18.810 18.993 18.976 18.931 19.198 19.167 21.990 18.559 18.803 18.841

Avg 0.307 0.301 0.299 0.301 0.274 0.268 0.266 0.642 0.302 2.060 0.317 0.256 0.255

Avgabs 0.307 0.301 0.299 0.301 0.274 0.268 0.266 0.642 0.302 2.060 0.317 0.256 0.255

Stddev 1.796 1.799 1.805 1.593 1.613 1.613 1.610 1.895 1.651 3.640 1.586 1.608 1.614

Sacent 0.571 0.567 0.567 0.493 0.483 0.482 0.482 0.942 0.527 2.575 0.541 0.485 0.485

PMV during occupation

Min -0.2630 -0.1884 -0.0946 -0.2977 -0.1804 -0.1789 -0.1652 -0.7023 -0.3276 -1.0893 -0.3847 -0.2294 -0.0785

Max 1.0303 1.0311 1.0319 0.9986 1.0040 1.0035 1.0021 1.0099 1.0090 0.9890 0.9913 0.9984 0.9995

Avg 0.0177 0.0203 0.0226 -0.0123 -0.0013 0.0029 0.0056 -0.0490 0.0054 -0.1646 -0.0029 0.0155 0.0163

Avgabs 0.0295 0.0269 0.0248 0.0525 0.0421 0.0378 0.0351 0.0909 0.0379 0.2042 0.0432 0.0258 0.0250

Stddev 0.1237 0.1222 0.1213 0.1224 0.1178 0.1164 0.1159 0.1719 0.1233 0.2766 0.1262 0.1130 0.1126

Sacent 0.0451 0.0449 0.0448 0.0495 0.0417 0.0405 0.0402 0.0992 0.0427 0.2099 0.0430 0.0398 0.0398

Heating Consumption [kWh]

2768 2782 2807 2297 2320 2333 2346 2306 2492 2050 2435 2473 2522

Total Discomfort Cost [(%PPD-5)*h]

429.6 421.6 418.1 420.8 384.1 374.7 371.7 899.1 422.3 2883.4 443.9 358.7 357.0

The simulation tests showed that the ANN-controller gives smaller heating consumption, as com-

pared to the conventional one, and is close to the predictive controller, but is worse than the

optimal one. There is evident dependence of this performance on the heating schedule (NHSc) for

the neural controller. Particular schedule leading to about 10% lower consumption gives rise to

twice larger discomfort cost. A dummy-controller test was performed by the FUL-partner initially

for the sake of I/O compatibility. The experimental, on-line testing started at FUL-building in

February 3, 2000. A representative result for the ANN-controller performance is shown below
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ANN-controller - Real on-line tests in FUL
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Figure 6.24. Results from online test of the ANN-controller for the FUL-building.

ANN-controller - Real on-line tests in FUL
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Figure 6.25. Results from online test of the ANN-controller for the FUL-building.
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6.11 Conclusion

In the frame of the current project, the ability of the arti�cial neural networks to control the heating

systems of individual solar houses was assessed. The controller was applied on two types of heating

systems: an electrical one, where the ANN controller was acting as an on/o� switch and a hydronic

system, where the ANN controls the supply temperature to the radiators. Both cases were tested

experimentally, but also under the TRNSYS simulation environment.

The initial development was related to the electrical heating system. It was found that the ANN

controller can lead to a 7% of annual energy savings under the Hellenic weather conditions, when

applied to the PASSYS test cell experimental facility. The controller of the hydronic system was

based on this �rst development. This second type of controller was experimentally tested on the

FUL building for a period of two weeks. During the tests, the controller operated generally as

expected, based on the simulation results. Comparison with the other controllers tested on the

same facility showed that this performs better than conventional controllers.

There are some issues however, which were not tested during this research project, mainly due to

the lack of time available. These are:

1. The on-line adaptation possibility o�ered by ANN's. This was done only o�-line for the

electrical heating system of the PASSYS test cell. This feature can be added in future

releases of the controller software. This requires only the addition of further instructions

in the software code; the scienti�c basis of the related algorithms has been investigated. A

drawback towards this direction is the performance of the microcontrollers used at this time,

since the size of the software they can incorporate is limited. An adaptive controller requires

much more memory space than the non-adaptive one.

2. The proposed ANN controller has been designed to perform optimally at speci�ed thermo-

static control values. In real applications however the set-points are frequently modi�ed,

even within the day. When the set-point is modi�ed, this creates discontinuities for a certain

period. These discontinuities are badly handled, it was not possible to obtain such data sets,

either from experiments or simulation in order to train the ANN. It is believed however that

an adaptive ANN controller can easily overcome this problem.

Finally it should be stated that the ANN software could not be implemented at this stage in the

microcontroller proposed by the industrial partner of the project for the reason that the ANN

algorithms require double precision operations, while the proposed microcontroller operates only

in single precision. The o� line tests we performed, training the ANN controller using double

precision variables and then operating under a single precision environment reduces its capabilities

substantially.

Summarizing, the work performed by the National Observatory of Athens showed that ANN's can

be successfully used to control the heating plants of individual solar houses, leading to energy

savings. There is however a small number of technical issues that need to be addressed prior to

passing to the commercialization of the product.



Chapter 7

Work performed by INSA

Author: Pierre-Yves Glorennec

7.1 Introduction to INSA work

The project goal was to design and test smart controllers being able to save energy and assure

comfort in solar buildings. Such a controller must:

� anticipate the building reactions faced with meteorological disturbances by increasing or

decreasing heating in advance;

� provide the right energy: a controller has not to react to window opening, for example;

� allow the user to select a comfort level;

� manage the occupancy/unoccupancy periods.

Conventional controllers, based on outdoor or indoor temperature, can not achieve these goals. A

control policy based on outdoor temperature allows to provide approximately the right energy, with

two drawbacks:

� building inertia and dynamics are ignored and the thermal loads are computed according to

instantaneous values of outdoor temperature;

� solar gains are not or badly taken into account.

This policy cannot avoid overheating and is clearly non-optimal. On the other hand, a control

policy based on indoor temperature can cause energy waste when the thermostat reacts to win-

dow openings. Moreover these two policies are �xed and one-step ahead: they don't allow the

determination of an optimal heating policy which is basically multi-step ahead.

7.2 INSA controller

7.2.1 General constraints

INSA wanted its controller to respect the constraints listed below. These constraints have a strong

in�uence on our choice for the model and the di�erent parts of the controller.

123
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Genericity

Easy transposition from a building to another, with as less changes as possible.

Simplicity

As less understandable parameters as possible.

Robustness

Functioning possible even with badly tuned parameters.

Evolutivity

On-line self-learning capability, according to a protocol.

Small size

Optimized code for micro-controller applications.

Novelty

New concepts for building energy management.

7.2.2 Global architecture of INSA controller

The approach of INSA consists in computing a policy (i.e. a sequence of control actions over a

sliding temporal window), with respect of comfort and energy requirements. For this purpose, three

main components are necessary:

� a meteorological forecasting module,

� a model of the controlled building, in order to test di�erent heating policies and to choose

the best,

� a policy generator.

The model is necessarily either an open-loop model or an n-step ahead predictor, with order n large

enough to validate the policy.

The architecture is described in Figure 7.2.2. The heating policy is evaluated using the model

n-step ahead, with exclusively the successive evaluations of the simulated indoor temperature.

The controller inputs are:

� H(t): hour of the day,

� SG(t): solar gains at time step t,

� To(t): outdoor temperature,

� Oc(t): occupancy index,

� Tsp(t): set point temperature.

� Ti(t): measured indoor temperature.

The output, Tws(t), is the water supply temperature to radiators or heating �oor. Ti(t) is not an
ordinary input. It is used:

� for model updates according to a protocol described in section 7.2.3,
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optimiser

SG(u; u � t)

To(u; u � t)

T̂ i(u; u � t)

building

T i(t+4t)

model

Oc(t)

To(t)

SG(t)

forecast

meteorological

Tws(t)

Météo-France

Tsp(t)

T̂ i(t+4t)

D

T̂ws(u; u � t)

Figure 7.1. General architecture

� for research of the optimal start-up hour for the boiler, see section 7.3.2.

The controller computes internal intermediate values of ŜG, T̂o, T̂ws and T̂ i, for time steps

t+4t; : : : ; t+n4t (typically over three hours). Here, T̂ i denotes the simulated indoor temperature
given by the model, and T̂ws is a candidate for control action.

For meteorological forecasts, INSA can use either Météo-France data server or an internal module

using only local measures.

7.2.3 INSA Model of the building

The model of the controlled building plays a primordial role:

� it has to be su�ciently accurate to provide a reliable estimate of indoor temperature according

to a given heating policy;

� it has to be su�ciently generic for easy transposition from a building to another, changing

only some parameters.

Moreover, two constraints are added:

� on-line learning capability,

� small size for micro-controller applications.

INSA has chosen an identi�ed model built using the structure of fuzzy Wiener models [Glo98,

Glo99b]. Such a model is divided into a linear dynamic part followed by a static non-linear part.
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� The linear dynamic part is a simple �lter of the form:

Fx(t) = �x(t) + (1� �)� Fx(t� 1) (7.1)

where x() and Fx() are the input and the output.

� The static non-linear part is a fuzzy inference system (FIS), more precisely a zero-order

Takagi-Sugeno Fuzzy System. The architecture is described in Figure 7.2.3.

Oc(t)

Tws(t)

SG(t)

To(t)

T̂ i(t+4t)FIS

Figure 7.2. Fuzzy Wiener Model

The inputs of the model are the following:

� Oc(t): occupancy index, de�ned by:

Oc(t) =

�
1 if occupancy period

0 elsewhere
(7.2)

� Tws(t), SG(t) and To(t), as previously de�ned.

Let

x(t) = (Oc(t); Tws(t); SG(t); To(t))t (7.3)

s(t) = (FOc(t); FTws(t); FSG(t); FTo(t))t (7.4)

We have the following state equations

�
s(t) = Ax(t) + Bs(t� 1)

T̂ i(t+4t) = FIS(s(t))
(7.5)

where A and B are diagonal matrices and FIS() is the input/output mapping performed by the

FIS.

The output is an estimate of the indoor temperature under the current policy. We emphasize that

the observed indoor temperature is not an input. Therefore, we have a pure open-loop model, built

from real input/output data, using two identi�cation algorithms.
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� Filter coe�cients are evaluated using a stochastic search (Solis and Wetts algorithm). The

coe�cients can be at hand initialized with simple rule of thumb, taking into account the time

constant of the considered input. For example, let FTws(t) be the �lter output given by:

FTws(t) = �Tws(t) + (1� �)FTws(t� 1) (7.6)

An initial value for � can be:

� �

�
0:1 for radiators

0:02 for a heating �oor

Clearly, this parameter is a function of inertia and time step.

� For the FIS, we impose the following structure:

� triangular strong fuzzy partitions on each input domain;

� two membership functions for input Oc, three for the other inputs.

This choice is not a real restriction but allows clarity in the rule base and easy tuning of FIS

parameters. These parameters are tuned with a Fast Prototyping Algorithm, described in [Glo99a],

according to the available input/output pairs.

Both �lter and FIS parameters are settled o�-line and the model can be immediately embedded

into the controller.

A secondary on-line tuning process is allowed during the control period, each input/output pair

being used only once. The conclusion of each rule is updated according to the di�erence between

actual and simulated indoor temperature. Let Ck and TVk respectively be the conclusion part and

the truth value of rule k. The updating equation is:

4Ck = ��(T̂ i� Ti)TVk (7.7)

where � is a small learning rate (typical value: from 0.05 to 0.2).

This secondary tuning respects the following protocol:

� tuning is possible during the unoccupancy periods, presumably more representative of the

real behavior of the building that the occupancy periods;

� tuning is allowed with a given probability, P , during the occupancy periods. By this way

we attempt to limit introduction of noise in our model, because occupant's behavior is the

origin of strong disturbances (door and window opening, usage of electrical devices,...). This

secondary process is also used to compensate the simplicity of the model or the poorness of

the training data. In our experiments, P = 0:3.

To summarize, the model is used under two modes:

� pure open-loop mode, in order to test a policy,

� pseudo-stochastic closed-loop, in order to track the actual indoor temperature.
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7.2.4 Meteorological forecasts

INSa has experimented two approaches. The �rst used the meteorological data server of Météo-

France. Values of temperature, humidity, cloudiness, wind velocity and direction, etc, are available

36 hours ahead, with updates all three hours. This approach gives good results and is obviously

a way with future [GG98]. Unfortunately, such a data server is not available in all European

countries. Therefore INSA has developed a second approach based on local informations, with

continuous updates. We present only this second approach.

7.2.4.1 Temperature forecasts

For temperature forecasts we use a linear �lter on the form:

To(t+ 6) = a1To(t) + a2To(t � 6) + a3To(t� 12) + a4To(t� 18) + a5To(t� 24) (7.8)

where the unit is one hour. This �lter captures the periodic variations of outdoor temperatures.

We have improved this method by adding two available informations:

� the di�erence between the actual temperature and the estimated value given by the �lter six

hour before;

� the good correlation between the errors at time t and t + 2 hours.

The temperature predictor has been tested with data from Rennes and Arlon (FUL building).

In Figure 7.3, the curves represent the mean of cumulative errors, using the temperature of the

previous day (solid line) and the forecasted temperature (dashed line), with FUL data in November.

The mean of cumulative errors is de�ned by:

err(t) =
1

24

24X
j=1

(FTo(t + j)� To(t+ j)) (7.9)

where FTo stands for forecasted outdoor temperature. We have corresponding equation for tem-

peratures of the previous day. More precisely, we call Today Like Yesterday (TLY) the method

using the data of the previous day. This gives the following results:

policy mean standard dev.

TLY 0.004 2.48

FTo 0.23 1.10

7.2.4.2 Solar gains forecasts

Forecasting solar gains with a time step of 15 minutes is a very di�cult task. The results of the

INSA approach are not very good but nevertheless can be used in simulations. The main idea is

to compare the actual and previous days at each time step, with sliding windows:

� if the correspondence is good enough, we can re-use the irradiations of the previous day,

� otherwise, we modify it according to the sign of the di�erence between the two sliding win-

dows.
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Figure 7.3. Temperatures of the previous day vs forecasted temperatures (solid line: TLY; broken line: FTo).

Of course, the method is very empirical and rough, but it gives some improvements in comparison

with TLY. Forecasts on the basis of two hours ahead are made. The Figure 7.4 shows the di�erence

between the mean cumulative errors for two hours ahead forecasts, using either TLY (solid line) or

our method. The summary is given in Figure 7.4 and the following table:

policy mean standard dev.

TLY 39.01 175.98

FSG 21.79 74.81
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Figure 7.4. Solar gains of the previous day vs forecasted ones (solid line: TLY; broken line: FSG).
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7.3 Optimization module

INSA treats the case of intermittent heating, where the boiler is cut o� in unoccupancy periods.

Four cases have to be distinguished:

� stopping periods (a part of nights and week-ends),

� search for optimal start-up hour for the boiler, before occupancy periods,

� starting-up periods,

� occupancy periods.

Therefore the controller has four modes: idle, research for start-up hour, starting-up and regulation.

7.3.1 Idle mode

In this mode, the boiler is stopped and indoor temperature evolves freely unless if falls under

some �xed limit (e.g. 14�C): in this case the regulation mode is activated with a low set-point

temperature.

7.3.2 Research for starting-up hour

To try to prevent untimely start-up, this research has two steps: �nding a licit temporal window

and computing the exact duration of pre-heating.

Licit temporal window A FIS gives the approximative duration of pre-heating, according to the

observed internal temperature, Ti, and the forecasted mean value of outdoor temperature

before the occupancy period, �To. The rule base is the following:

�To
T i cold warm

cold A B

warm C D

with A = number of hours approximatively needed to reach the set-point temperature when

Ti is cold (about 16�C) and �To is cold (about -2�C), B = number of hours approximatively

needed to reach the set-point temperature when Ti is warm (about 19�C) and �To is cold, and
so on. The values A, B, C and D are automatically computed given a model of the building.

Let tocc be the beginning of occupancy period and h the output of the fuzzy system given Ti

and �To. The licit temporal window is [tocc � h; tocc].

Exact duration The exact duration of the pre-heating period is then computed using the model

and meteorological forecasts. The controller can decide if either or not the boiler has to be

activated, using the decision rule:

if set-point temperature is reached before 8 AM when starting-up is now

then wait else start-up
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7.3.3 Pre-heating period

The heating policy to shorten the pre-heating period with minimum energy consumption is to take

the maximum value of Tws. This policy is proven to be the optimal one for energy saving. It is

followed up to one hour before the occupancy hour, tocc, in order to avoid overshoots.

7.3.4 Regulation mode

In this mode, the goal is to test a policy before applying it. There are four steps :

Test of a heating policy

At each time step, t, the controller tests a heating policy, T̂ws(t); : : : ; T̂ws(t + n4 t), using
only the model and meteorological forecasts. The initial policy is generated using the heating

curve, at the beginning of the occupancy period.

Internal PI control

Each value of T̂ws(u); u � t) is modi�ed by an internal PI-like fuzzy controller, according to

the di�erence between the simulated indoor temperature and the set point temperature, e,

and its variation, ce:

e = Tmodel � Tset-point (7.10)

ce = Tmodel(t)� Tmodel(t� 1) (7.11)

The output is the change in T̂ws, 4T̂ws. The membership functions for e and ce are de-

scribed in Figure 7.3.4 and the rule base in Table 7.1.

-a 0 a -b 0 b

cee

Figure 7.5. Membership functions for e and ce

ce
e N P

N P Z

P Z �P

Table 7.1. Rule base for the PI-like fuzzy controller

Only three interpretable parameters, a, b and P , are needed to de�ne this internal controller.

P is the maximum value of 4T̂ws and is easily found, a and b de�ne the operative range of

the internal controller.

Optimized output

The sequence T̂ i(t); : : : ; T̂ i(t +K 4 t) is analyzed: when an overheating is detected k step-

ahead, 0 < k � n � K, where n depends on the degree of con�dence in forecasted data (n
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corresponds to one hour and half in these tests), Tsp is reduced (see section 7.4) and the

proposed values T̂ws(t); : : : ; T̂ws(t+ k4 t) are decreased.

The mean of the two �rst values of the sequence is applied to the real system:

Tws(t) 1
2
fT̂ws(t) + T̂ws(t+4t)g

By this way we introduce a complementary anticipative e�ect.

Preparing the next step

The sequence (T̂ws(u))u>t is shifted towards the left and a new value for T̂ws(t+ n4 t) is
added. The actual values of Tws, To, SG and Ti are provided to the internal model in order

to allow

� an update of the state (�lter outputs),

� a probabilistic update of the fuzzy rules.

This process is illustrated in Table 7.2. As one can see, the largest part of the sequence, T̂ws(t+
4t); : : : ; T̂ws(t+K4 t) is re-used from a step to another. Therefore, there are successive improve-

ments of the heating policy and the design of the internal PI-like fuzzy controller is not crucial:

only the successive adjustments of T̂ws must be �in the right sense�.

t = 13h00

T̂ws(13:00) T̂ws(13:15) T̂ws(13:30) : : : T̂ws(15:45)

t = 13h15

T̂ws(13:25) T̂ws(13:30) : : : T̂ws(15:45) T̂ws(16:00)

t = 13h30

T̂ws(13:30) : : : T̂ws(15:45) T̂ws(16:00) T̂ws(16:15)

Table 7.2. Policy evaluation from 13h to 13h30

7.4 Comfort level

Saving energy can have negative in�uence on the comfort level and reciprocally. The user has to

solve this dilemma by choosing a comfort level index between �maximum comfort� and �maximum

energy saving�. The simplest and more understandable way, in our opinion, is to allow the user to

�x:

� the set point temperature, Tsp,

� a tolerance, tol, around Tsp: the smaller the tolerance is, the higher the comfort is.

This tolerance is used in three circumstances to modulate the e�ective set point, denoted by

Tsp eff :
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1. At the beginning of the occupancy period, it is sometimes di�cult to reach Tsp, when To is

low and if the boiler su�ers from a lack of overpower. Let tocc be the hour for the beginning,

we have:

Tsp eff(tocc) = Tsp� tol

2. One hour before the end of the occupancy period, Tsp can be slowly decreased. Let tend be

the hour of the end of the occupancy period, we have:

Tsp eff(tend) = Tsp� tol

3. Before forecasted overheating, Tsp is also reduced.

7.5 Tests performed by INSA

The controller has been tested

� in simulation, using data from Rennes, Hameln (ISFH building) and Arlon (FUL building),

� in our experimental site.

7.5.1 Tests in simulation with FUL data

7.5.1.1 Model of FUL building

The data �le from FUL building gives the following informations : day-of-the-year, hour, SG, To,

Tws, Tr, Ti and Q, where Tr is the return temperature from the radiators and Q is the water �ow

rate.

The information about the �ow rate and selected parts of the data �le with Q � 100 was not used.
Tws as the only estimate of the energy provided to the building should be used.

The data from day number 306 at 14h30 to day number 337 at 12h15 were selected. From these

3000 data, 1500 were used for learning the model and 1500 for tests. One set of fuzzy rules covering

all the period and giving the open-loop model T̂ i = F (Oc; Tws; To; SG) is obtained.

The di�erence between actual and simulated temperatures are shown in Figures 7.6 and 7.7. In

Figure 7.6, the model is used in pure open-loop mode, without any update: the simulated temper-

ature is deduced using only the inputs Oc, Tws, SG and To.

In Figure 7.7, a zoom is shown over the last week (from Sunday to Thursday) with the pseudo-

stochastic updates of equation 7.7. These data were not used for learning. The model shows its

tracking capabilities, and the improvements for both standard deviation (sd) and mean squared

error (MSE) are about 20%. The results are summarized in Table 7.3 for the whole data set (31

days).

7.5.1.2 Control of FUL building

The model is used without any changes by the controller (in real situations, the model can be

updated with a given probability, as previously said). In �gures 7.8 and 7.10, we have selected

two days (Monday and Tuesday of the last week) where real and simulated data were in good

concordance. Therefore we can compare the real policy used at FUL and our policy. Figure 7.8
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Figure 7.6. Actual vs simulated temperatures for FUL building, in open-loop mode (solid line: actual Ti; broken

line: simulated).
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Figure 7.7. Actual vs simulated temperatures for FUL building, in tracking mode (solid line: actual Ti; broken

line: simulated).

shows our control results which are realistic whereas Figure 7.10 shows the corresponding control

period with FUL controller. As we can see in Figure 7.8, our controller gives an initial energy

load, then stops because the solar and internal gains are taken into account. The second day, the

controller has a small boost at the end of the occupancy period to compensate the solar gains that

are decreasing. For this test, we have the following parameters:

� Tsp = 21�C,

� tol = 0:3�C

In both �gures, the solid line represents Ti, the broken one represents Tws and the dotted one the

occupancy index.

Finally, in Figure 7.9, we show the results of our controller the last week. As we can see, the chosen

value of tol allows to reach the set point in time.
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open-loop pseudo-stochastic learning

� = 0:1 � = 0:2

m -0.05 -0.02 -0.003

sd 0.67 0.53 0.47

MSE 0.45 0.28 0.22

Table 7.3. Performances of the model for FUL building
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Figure 7.8. Insa controller for FUL building
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Figure 7.9. Last week with INSA controller for FUL building

7.5.2 INSA tests in simulation with ISFH data

ISFH data were available from �rst of January to 29 of February 2000, with a time step of 15

minutes. The value of Tws is computed by a conventional controller. 5760 samples of the variables

hour of the day, To, SG, Tws, Ti and Oc are available. The �rst part was used for learning.

7.5.2.1 Model of ISFH building

The data �le from ISFH presents some particularities:
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Figure 7.10. FUL controller for FUL building

� the occupancy period is from 9h to 17h, but the set point is Tsp = 21�C from 6h to 22h and

Tsp = 19�C otherwise,

� the boiler is never stopped the week-ends.

Therefore, the data set is very poor because the indoor temperature do not decrease during the

unoccupancy periods and its range is only from 18.7 to 21�C, with some peaks due to important

solar gains.

In other words, we have a dynamical system with insu�cient excitation for identi�cation: if we can

identify a model from the data, this model will su�er from lack of generalization property 1.

Another way is to choose a model from a library and adapt it thanks to the pseudo-stochastic

learning mode. This was proceeded as follows:

� the �lter coe�cients, FOc; FTws; FTo and FSG are extracted from ISFH data,

� the initial rule base is FUL rule base,

� FUL rule base is modi�ed according to ISFH data with only one presentation of the data set,

with a small learning rate (� = 0:05).

learning with open-loop with pseudo-stochastic

FUL rule base ISFH data learning

� = 0:05 � = 0:0 � = 0:05

m -0.01 0.07 0.02

sd 0.41 0.36 0.27

MSE 0.17 0.13 0.07

Table 7.4. Performances of ISFH model using FUL rule base

In Table 7.4, we have three results:

� in the �rst column, we have the performance of the initial rule base, extracted using FUL

rule base with ISFH data;

� the second column shows the result of the model in open-loop;

1This problem of poor data set can be solved using Simula, as explained in section 7.8.
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� �nally, we see that the tracking mode improves the performances.

We use the model extracted in the �rst step in open-loop. Figure 7.11 compares actual and

simulated temperatures using ten days not used for learning.
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Figure 7.11. Actual vs simulated temperatures for ISFH building

7.5.2.2 Control of ISFH building

The INSA controller is used with the following parameters:

� Tsp = 21�C, from 9h to 17h in occupancy period, the set point being free otherwise,

� tol = 0:1�C

In Figure 7.12, the conventional controller was used from time step 3200 to 3500 (3rd to 6th of

February) and our controller from time step 3500 to 4200 (seven days). The solid line represents

Ti, the broken one represents Tws and the dotted one represents the occupancy index Oc. In

Figure 7.13, we represent only Ti and Oc in order to show in detail the behavior of the controller.

Monday 7th and Friday 11th were sunny days in Hameln, therefore we see a small decrease in indoor

temperature before the overheatings, because the set point was automatically decreased. The other

days we respect the set point according to the given tolerance.
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Figure 7.12. Conventional and smart control for ISFH building
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Figure 7.13. One week with INSA controller for ISFH building

7.5.3 Experiments in Rennes

The two previous tests were performed in simulation using real data from Arlon and Hameln. In

this section, the experiments in the test building of INSA, a crèche in Rennes are reported. This

building has a heating �oor (with hot water) and electric radiators. We decide to control only

Tws for the heating �oor. The radiators give extra heating considered as disturbances as well as

occupant's behavior.

7.5.3.1 Model of Rennes building

The model for Rennes has the same structure that for Arlon or Hameln, with, of course, di�erent

parameters. The di�erences between real and simulated indoor temperature in open-loop mode are

given in �gure 7.14.
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Figure 7.14. Actual vs simulated temperatures for INSA building

open-loop pseudo-stochastic learning

� = 0:1 � = 0:2

m 0.07 0.01 -0.02

sd 0.58 0.45 0.40

MSE 0.35 0.20 0.17

Table 7.5. Performances of the model for INSA building

7.5.3.2 Control of Rennes building

The previously described control policy was applied to the boiler. In �gure 7.16, we see :

� real indoor temperature (solid line),

� our control policy, Tws.

Knowing the heating curve of the conventional controller and the model of the building, we can

simulate the behavior of the conventional controller with the same weather data. The simulated

curves are in Figure 7.15, with:

� the simulated indoor temperature if the conventional controller had been used,

� Tws proposed (but not applied) by the conventional controller, based on its heating curve.

The improvements of the predictive control policy can be seen. The boiler is stopped at the

beginning of the occupancy period, with sometimes a small boost at the end. Overheatings are

avoided or reduced.

7.5.3.3 Evaluation of energy saving

It is possible to make a rough evaluation of energy savings. The conventional takes only into

account instantaneous values of outdoor temperature and computes Tws from a heating curve:

Tws = a� To+ b, where a = �1:13 and b = 38�C are two building-dependent parameters.

In Rennes building, due to the strong inertia of the heating �oor, the energy estimated at time t

will be delivered with a delay of several time steps. Therefore, this energy can be added to solar

energy and provoke overheatings, as we see in Figure 7.17.
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Figure 7.15. Conventional controller for INSA building
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Figure 7.16. Smart controller for INSA building

As it is di�cult to �nd two days with the same meteorological characteristics, we have chosen the

following protocol:

� the conventional and the smart controller are compared with the same meteorological data,

using the model; It is possible because the two policies are known;

� we take two consecutive days, Thursday 25 and Friday 26 of November 1999,

� the �rst day has important solar gains and a mean outdoor temperature around 12-14�C,

� the second is more cloudy and has a mean outdoor temperature around 9�C.

The results are summarized in Table 7.6 where Ti is the mean value of Ti during the occupancy

period, sd its standard deviation; the relative energy consumption is estimated by the mean value

of Tws� Ti. The di�erent curves are represented in Figures 7.17 and 7.18, with, from the bottom

to the top of each �gure: SG=100, To, Oc, Ti and Tws.

In Figure 7.17, the boiler is always running in occupancy period. This causes discomfort and

energy waste. In Figure 7.18, as solar gains are forecasted, Tsp is reduced with respect to the given

tolerance and the boiler anticipates on internal and solar supplies.

Of course, the results in Table 7.6 have to be relativized: we don't proclaim that our controller

reduces energy consumption of 53 percent with regard to a conventional one. Our goal is to

highlight the advantage in considering both the dynamical aspects of a building and the forecasted

disturbances. The situation of Thursday is characteristic of a day where a conventional controller
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Figure 7.17. Conventional control based on outdoor temperature: solar gains creates overheatings.

0

5

10

15

20

25

30

35

40

600 650 700 750 800

Figure 7.18. Predictive control: solar gains are integrated by the heating policy.

cannot optimize its policy, because it can't take into account the future solar gains. Moreover,

a smart controller has another advantage because it can avoid overheatings thanks to its own

estimation of indoor temperature.

7.6 Experimental hardware

The code for the controller, including the model and the meteorological module, has a size of about

30 kB. Therefore, we can incorporate it into a 8 bits micro-controller. Unfortunately, it was not

possible to use INGA hardware. Therefore INSA has used our own 8051-based hardware. The

system is described in Figure 7.19.

A data acquisition system was installed that is capable to acquire analog and digital data. Temper-

ature sensors are available for the hot water supply and return, for the indoor temperatures in two

playing rooms and for the outdoor temperature. For measuring the solar gain a pyranometer was

placed on the roof of the building. Besides, three electric counters measure the energy consumption

of the groups of electric radiators and deliver impulsions for the acquisition system. The acquisition

is controlled by a PC. Data are digitalized and saved in memory as well as in data �le by time

steps of 15 minutes.

These data as well as the meteorological forecasts are sent to the 8051 controller card via a serial

line. The controller performs the calculations to determine the desired value of hot water supply

temperature for the heating �oor. This value is sent back to the PC as an analog signal. The PC
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Thursday 25 Friday 26

conventional smart conventional smart

Ti 21.80�C 20.94�C 21.38�C 21.10�C

sd 0.78�C 0.15�C 0.51�C 0.29�C

energy (%) 100 48 100 47

Ti � 22�C 6h45 0h 1h 0h

Table 7.6. Elements of comparison (Thursday 25 and Friday 26 of November).

digital
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(Tdws)

Control of the 3-ways valveTout
Tin2

Sgain
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.

..

Acquisition and meteorological data

Electric

Tws
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Meteorological forecasts

(8051)

RS-232

(with data acquisition cards)

Controller

Desired water supply temperature

Twret

PC

Figure 7.19. Experimental hardware.

controls the 3-way valve of the heating �oor in order to assure that temperature.

The structure of the program in the 8051 controller is as follows:

1. reading the input variables delivered by the PC via the serial line,

2. calculation of desired hot water supply temperature: Tws,

3. returning this temperature to the PC,

4. waiting until the next time step (minimal value: 15 minutes).

In the PC a program is running for saving and transmitting data. It enables:

� writing data in �le with time steps of 5 minutes,

� sending data on the serial line to the controller,

� controlling the 3-way valve according to the hot water supply temperature.

Although the algorithm was not implemented in the �nal hardware, the feasibility was shown. The

actual board is shown in Figure 7.20. A complete board had to add a data acquisition system (with

a Analogic to Digital Converter) and an analogue output to control the three-way valve.
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Figure 7.20. Hardware description

7.7 Limits of the INSA approach

7.7.1 Meteorological forecasts

The INSA controller needs approximative estimates of solar gains, each 15 min. It is obviously a

very di�cult task, because cloud movements are not foreseeable. Fortunately, a building acts like
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a �lter and softens small errors. Local informations about past measures are not su�cient and all

informations about the next hours are necessary for optimization of the heating policy. A way with

a future is the use of data server. In our opinion, accurate forecasts will be available in a few years

in all European countries.

7.7.2 Training data

The INSa controller needs an accurate model of the building to evaluate a control policy. Thus, the

availability of training data is another bottleneck if the controller should be used for any building.

The training period can be reduced by one-line learning, as explained in section 7.2.3, but the goal

is the design of a dedicated controller for a given building directly from the blueprints.

Such a controller must be able to react correctly faced with:

� all types of meteorological data: temperature and solar irradiation, but humidity and wind

velocity can also be considered in the future;

� all types of situations or policies.

The corresponding training base would be huge and would need a long time to be built. The

proposed method consists in:

� �rstly, determining an initial controller using simulated data for all possible cases,

� secondly, updating the controller, on-line, with the pseudo-stochastic mode.

INSA is working with a team of CERMA (Nantes University) for this task and is adapting their

software SIMULA.

7.8 Simula: a thermal simulation tool

In order to develop an intelligent predictive thermal controller applied to a solar building, it is

necessary to have a su�cient and precise knowledge of its thermal behavior. Elsewhere, the micro-

controller must contain very few information and must be able to self-adjustments to real buildings,

each one having its own thermal characteristics. Therefore, the use of a simulation tool is twofold :

� �rstly, to simulate and design the building, optimizing its thermal performance in terms of

economy savings and comfort level; the tool is used in a design process.

� secondly, to help for designing the controller, using an identi�ed model.

In this case, its role is to enable to de�ne parameters of the controller, in a learning process, based

on a series of daily sequences (in relation with type climatic conditions and user's scenario). The

numerous simulations carried out constitute the input for the design process of the controller. At

its turn, the thermal behavior of the controller (as a process command) can be veri�ed on realistic

climatic conditions. The proposed system is then iterative.

These objectives require a high performance tool that could easily model the physical properties

and thermal links of buildings, taking into account unsteady conditions. The very few available

operational simulation tools have complicated the problem. The very tractable tools have generally
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poor thermal performance, working only in steady state, whereas sophisticated tools are di�cult

to use. Two software seemed interesting to consider, in a �rst look, TRNSYS and SIMULA.

The �rst one, TRNSYS was developed as a complete and general structure to resolve physical

and thermal problems. Not dedicated especially to solar buildings, it o�ers an open framework

to develop its own code. However, its use, generally convenient for research organisms, does not

suit well to the operational work of thermal engineers. Moreover, the way the solar issue is taken

into account in the simulation implied further numerical development and needed a theoretical

investment, mainly to integrate the geometrical aspects of the buildings.

The Simula software, developed from 1990 by the Cerma Laboratory, is really dedicated to opera-

tional applications. Its design was elaborated with the French engineer association (CICF) in order

to make available to practicians dynamic procedures in the thermal analysis of buildings. The solar

aspect, important parameter when it is necessary to consider the building in unsteady conditions,

was integrated in the simulation due to the geometrical data provided for the building.

So, Simula software was chosen because it seemed better suit the requirements of the project. It is

an operational tool for engineers and architects and can be di�used easily; it works in a multi-zone

basis and uses a resolution method that gives rapidly results over time for air temperature and heat

power to install. Inertia and solar gains, essential when considering solar buildings and thermal

regulation, are considered with convenient procedures.

Simula was written in C language, enabling to modify it for adjusting to this speci�c type of use.

The main tasks carried out to integrate Simula in the thermal design process of solar buildings

with their own regulation controller can be listed as follows :

� elaboration of a new user interface for helping to model the buildings in thermal zones; the

environment is a multi-windows system written in Visual C++ for PC

� transformation of the data in an object language structure

� constitution of libraries of components

� interface of calculation modules with the new structure of data

� integration of a batch procedure for carrying out the simulations in an iterative and repetitive

way (after the interactive phase of thermal modeling)

� output in Ascii �les with speci�c format in order to be processed by the learning tool for the

design of the controller

� de�nition of several types of meteorological sequences.

The re-designed tool Simula is organized in two modules. The �rst one deals with the thermal

modeling of the building and it is very interactive taking into account the 3D morphology of the

building. The second enables the thermal simulation and results analysis, either in an interactive

way, either in batch procedures; enabling the use of Simula, in a conventional way for professional

engineers who have to design the thermal performance of their buildings, but also for the speci�c

regulation application, in the framework of that European project, integrating Simula in a general

process to de�ne and design thermal controller.

A �rst beta version of the new Simula could be available soon and will be send to the project's

partners.

These tasks imposed in fact almost a total re-writing of Simula and have required speci�c equipment

and an engineer specialist in computer.
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7.9 Available softwares from INSA

Three softwares are available, allowing to build a model from training data, using the model with

on-line capability and controlling a building.

7.9.1 Design of the model

The training set must contain the following informations : hour, occupancy index, To, SG, Tws

and Ti. The user has to de�ne:

� the extremum values for To, Tws and SG,

� initial values for �lter coe�cients,

� some learning parameters (default values are proposed).

The software creates a �le which will be used by the controller.

7.9.2 The model

The model can be used either separately or as an internal model for the controller. The inputs are

Oc, Tws, To and SG. The output is an estimation of Ti. The user has to de�ne

� the name of the �le giving the FIS structure,

� a learning rate for on-line updates.

7.9.3 The controller

The software loads two �les for con�gurations:

� one �le for FIS parameters,

� another for general parameters: maximum value of Tws, coe�cients of the PI-like fuzzy

controller,...

For example, the parameter �le used for Rennes controller is given below.

# coefficients of the PI-like fuzzy controller

-0.5 0.5 -0.5 0.5

# set point temperature

21.0

# maximum value of Tws

38.0

# hour of end of occupancy period

18.0

# tolerance

0.2

A user manual will be available soon.
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7.10 Conclusion

7.10.1 What is new ?

The smart controller developed by INSA has some new characteristics summarized as follows:

A novel building model

The fuzzy Wiener model is understandable and generic. The knowledge about the behavior of

the building is embedded into fuzzy rules. For example, the three following rules corresponds

to a starting-up of the boiler in unoccupancy period in Rennes building, when the mean value

of outdoor temperature is 5�C:

1. (0, 20, 5, 0) ! 17�C

2. (0, 30, 5, 0) ! 19�C

3. (0, 40, 5, 0) ! 21�C

For clarity, a rule is written �(a,b,c,d)! conclusion�, where a, b, c and d are the modal values

of fuzzy sets. In this example, thanks to the time constant introduced by the coe�cient of

Tws in the �lter, these rules are successively applied over a temporal period.

The model parameters are identi�ed o�-line and/or on-line, and a large training set is not

necessary.

Use of meteorological forecasts

A heating curve-based conventional controller only takes into account the instantaneous values

of outdoor temperature. Therefore, it reacts with some delay. On the contrary, our controller

�looks ahead� and modi�es its policy in consequence.

With a meteorological data server, it is possible to �nd the optimal policy given some cost

function. Nevertheless, with only local observations, looking one hour ahead gives some useful

adjustments.

Optimal starting-up

Most of controllers for intermittent heating use a clock for starting-up. Our controller com-

putes exactly the right hour, taking into account the building history and its thermal/physical

characteristics.

Variable set-point temperature

A variable set-point temperature is automatically adjusted as a function of the user-de�ned

set point, the desired comfort level and the foreseeable behavior of the building. For example,

if important solar gains are forecasted, our controller decreases the set-point in advance.

7.10.2 Future work

The proposed controller is a prototype. Some improvements are necessary. Three tasks can be

de�ned:

� �rstly, a detailed inspection of the C code, in order to track down possible hidden bugs and

improve the readability;

� secondly, design of a monitoring system to store historical data and analyze the behavior of

the controller;

� thirdly, integrate SIMULA into the design chain.



Chapter 8

Work performed by UNN

Authors: Michaël Kummert, Ian Williamson and Dr. Sean Danaher

8.1 Introduction

This document reports on the simulation tests performed with the FUL passive solar (�Academic�)

building model and the last version of the simulation shell. Important parts of this reports have

been created with the support of partner FUL.

Five controllers are compared :

� Conventional controller

� Fictitious thermostatic controller

� FUL optimal controller

� NOA ANN controller

� ISFH predictive controller

The simulated period includes one entire heating season. It uses real meteorological data measured

in Uccle (Brussels) from Saturday 28th of September 1985 to Sunday 25th of April 1986. Real data

was preferred to a typical reference year (TRY) in this case to allow a full testing of forecasting

features of some controllers.

8.2 Simulation environment

The simulation environment, described Fig. 1, includes the following components :

Building model: TRNSYS TYPE 56. This model has been validated versus other simulation

programs and versus experimental data in IEA research projects [L+94]. The parameters

of FUL academic building have been computed from material data and some of them have

been adapted taking measurements into account. It gives a reasonable accuracy, in the

range of 15% for energy consumption. However, we can expect that the di�erence between

two controllers performance using this model would be reproduced more accurately than

the absolute performance. This point has been con�rmed in previous studies for design

changes [L+94]. The �measured� temperature is the operative temperature of the reference

thermal zone (Top).

148
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Controlle

Conventional
Ideal thermostatic

Optimal
ANN
Predictive

TYPE 152
call

Matlab Engine
TYPE 56
Building

TYPE 201
User + natural
ventilation

Boiler
+ 3 way valve
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Thermostatic

valve

TYPE 182
Radiator
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Figure 8.1. Simulation scheme

Radiator and thermostatic valve: (TRNSYS TYPES 182 & 183) The model used is based on

IEA annex 10 models [IEA88]. They have been adapted by FUL to allow a 0.25h simulation

time step, which had been retained in this project. Both components are modelled using

�rst order representations. A non-linear expression is used to compute the heat �ux from the

radiator.

Boiler and 3-way valve: the boiler is supposed to have a constant setpoint (70�C). This tem-

perature is the maximum value for water supply temperature (Tws). The 3-way valve can

adjust the water supply temperature between two bounds. The lower bounds �xed by the

return water temperature (Twr), since no cooling mean is present. The upper bound is �xed

by the maximum boiler power : if all available power is used, the boiler cannot reach its

setpoint and the maximum supply temperature is reduced. These constraints are taken into

account by simple equations. The circulating pump is assumed to run continuously, as it is

common in o�ce-type buildings.

User behaviour and natural ventilation: (TRNSYS TYPE 201) The building presents win-

dows that can be opened by occupants. A variable air in�ltration rate is introduced in TYPE

56 to account for wind and windows position in�uence. The user behaviour concerning win-

dows opening is modelled as follows :

� If the temperature exceeds the upper comfort limit, occupants open the window.

� If the temperature is colder than the lower comfort limit, they close the window.

� If the temperature is in the comfort range, they leave the window in current position.

� Occupants always close the windows when they leave the building for the night.

Controller call: (TRNSYS TYPE 152) All controllers are implemented in Matlab. For the con-

trollers for which an executable program is available, the �le data transfer and the call to

executable routine are also realised in Matlab. The TYPE 152 was developed by FUL in
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order to allow an e�cient communication between TRNSYS and Matlab through the use of

�Matlab Engine Library� [KA98c].

8.3 Performance assessment

The performance of di�erent controllers is measured in terms of comfort and energy. Chosen indices

are described in details in [KA98b]. Variable names are brie�y summarised in the next paragraph.

Jd is the discomfort cost and is computed as PPD0[%]-5 on 15 min values (PPD is Fanger's

Predicted Percentage of Dissatis�ed computed with variable clothing). PMV 0 is Fanger's Predicted

Mean Vote computed in the same way. These indices are computed using the zone operative

temperature (Top) and default values for other parameters.

Je is the energy cost, which is simply the energy consumption expressed in kWh.

8.4 Controllers parameters

The retained thermal comfort de�nition implies the day setpoint of operative temperature, which

is the zone where the discomfort cost is zero (i.e. from 21�C to 24�C). It should be stressed here

that the controllers do not really have to maintain a setpoint but rather have to maintain the

temperature in the desired zone. Outside this zone, the penalty is computed by the cost function

Jd which has a non-linear shape. Small deviations from this zone will cause very small discomfort

cost, while the discomfort will become very important if the temperature goes far from the comfort

range.

The only retained parameter for advanced controllers, once the comfort zone is de�ned, is the

desired comfort level (CL). This comfort level is an integer number in the range [0;9] describing

the importance that occupants give to comfort in comparison with energy. The value �none� will

be used to describe any comfort level in the case the controller does not consider this parameter.

Conventional and ideal controller are in this situation. Note that the current implementation of

ANN controller does not take this parameter into account.

Other simulation parameters are :

� Thermostatic valve setting (TsetV ) for the conventional controller. For all other controllers,

the valve is supposed to be fully opened (referred to as TsetV=open) .

� The heating schedule. This parameter is described in the next section.

8.5 Schedules

8.5.1 Occupancy schedule

The occupancy pro�le was chosen to allow the study of heating start problems. The building is

supposed to be occupied from 8 AM to 6 PM (Monday to Friday). No occupants are present during

the week-end. A low value was chosen for the night setpoint temperature (15�C), while the �day�

setpoint was determined by the comfort computation described here under. The comfort range,

where the discomfort cost is zero, is [21-24�C].
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8.5.2 Heating �xed schedule

Building heating is very often controlled using a �xed schedule, to start the heating early enough

to obtain the desired temperature when occupants enter the building. The conventional and Ideal

controllers use a �xed schedule, since it is the most common solution on existing buildings. The

optimal controller anticipates the building behaviour with a long time horizon (more than 16 hours)

and does not require the use of a �xed heating schedule. Indeed, it is able to heat up the building up

to 16 hours in advance, which is su�cient for this building The current version of ANN controller

in not optimised to cope with setpoint changes and requires the use of a �xed heating schedule

to obtain the comfort conditions when occupants arrive. The situation of predictive controller is

more complex. This controller anticipates the building behaviour, but the weight of future values

decreases when the desired comfort level increases. This results in a stronger anticipation for lower

comfort level and almost no anticipation for very high comfort levels. Therefore, the use of a

heating schedule starting the heating before real occupancy is needed for high comfort levels.

For all controllers, the used heating schedule has a strong in�uence on the comfort and energy

performance. If the heating is started too late, the discomfort is high during the beginning of

occupancy period, due to under-heating. On the other hand, if the heating is started too early,

energy is wasted and the overheating risk is more important in the afternoon, since the building

structure will be warmer. Seven di�erent heating schedules were compared during the simulation

tests. They will be referred to as NHSc = 1..7 in the following. NHSc=none will be used to denote

the absence of any heating schedule (the real occupancy pro�le is used). The time at which heating

is stopped is always 6 PM. The start time of heating for di�erent schedules is described in table 8.1.

Table 8.1. Heating start time for di�erent schedules

Heating schedule Start time (Sunday) Start time (Monday) Start time (Tu - Fri)

NHSc = none / 8 8

NHSc = 0 / 6 7

NHSc = 1 / 5 6

NHSc = 2 / 4 6

NHSc = 3 / 2 5

NHSc = 4 / 2 4

NHSc = 5 / 0 3

NHSc = 6 21 0 2

NHSc = 7 16 0 1

8.6 Compared controllers

8.6.1 Conventional controller

This controller is based on a heating curve and thermostatic valves.

Two heating curves are used for �day� (occupied building) and �night�. The heating curve gives the

value of Tws as a function of the ambient temperature, Tamb. The value of Tws for a certain Tamb

is computed using the static properties of the building. The desired temperature in the reference

zone (15�C for night, 21�C for day) should be maintained if the building was submitted to the given

ambient temperature for a long period, without any solar radiation. In common practice, the �day�

heating curve is slightly overestimated in order to allow a quicker warm-up of the building, while

the �night� heating curve can be slightly underestimated to take dynamic behaviour into account

(the initial building temperature is always higher than the desired value)
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Thermostatic valves are traditionally combined with heating curves. These valves can reduce the

�owrate in the radiators to prevent overheating. They have a very important role since no internal

gains nor solar radiation are taken into account by the heating curve. Modelled thermostatic valves

have a proportional band of 2�C and a hysteresis of 0.5�C, which is representative of commercially

available models. They are supposed to be maintained at the desired setpoint (21�C) all the time.

Fig. 8.2 presents the behaviour of the thermostatic valve for a setpoint temperature of 21�C. Note

that the valve temperature depends on the zone temperature but also on the water supply and

radiator temperatures. This problem is taken into account by the model used in these simulations.
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Figure 8.2. Thermostatic valve behaviour

8.6.2 Ideal thermostatic controller

A PID controller acting on the water supply temperature to maintain the zone temperature at the

desired setpoint . The essential di�erences between this ideal controller and the conventional one

are:

� No proportional band. The heating power is reduced as soon as the temperature approaches

the setpoint and not when the temperature is already above this setpoint, as it is the case

for thermostatic valves (see Fig. 8.2).

� E�cient night setback. For systems where the circulating pump is working continuously, a

�full� night set back cannot be obtained by the here-above mentioned conventional controller.

Indeed, the water supply temperature is computed to maintain the night setpoint in static

conditions and the thermostatic valves do not close as they keep the �day� setpoint. The

resulting heating power is almost always too high as the building is actually coming from a

warmer state. In this respect, the �ideal� controller presents a behaviour close to �electronic

thermostatic valves�. These valves can have a programmable setpoint, e.g. 21�C during day

and 15�C during night. This allows an e�cient night setback as well.
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8.6.3 Optimal controller

This controller was developed by FUL following the principles of optimal and predictive control

theory. It can be noted that this controller was �rst developed for the building used in these

simulations. Its internal parameters (prediction horizon, model order,. . . ) are very well adapted

to this building. However, its experimental application to Passys testcell showed that the used

algorithm was also suitable for very di�erent buildings. The parameters of the internal model are

identi�ed online, but realistic initial values are needed, which implies a good knowledge of the

building.

8.6.4 ANN controller

NOA developed this controller using Arti�cial Neural Networks technique. The controller used in

these simulation is the second version produced by NOA. It controls the water supply temperature,

as all other controllers in this study. This controller was also tested on the FUL real building, as

described chapter 5. This controller was adapted to cope with two setpoints (day and night) but

is not optimised to change quickly between these two setpoints. This controller was trained using

simulation data obtained on the same TRNSYS model with a di�erent meteo data set.

8.6.5 Predictive controller

This controller was developed by ISFH using predictive and adaptive control theory. It is the only

controller that uses no a priori knowledge of the building. The structure of the internal model

has been adapted to ISFH and FUL buildings, but no initial values are needed for parameter

identi�cation.

8.7 Tested cases

Di�erent controllers were tested with di�erent simulation parameters.

For the conventional controller, di�erent thermostatic valve settings were tested in combination

with di�erent heating schedules. This controller does not take the comfort level into account:

CL = None

NHSc = 5 & 7 (lower NHSc give poor performance)

TsetV = from 20�C to 22�C with 0.25�C steps

Extra cases:

CL=none, NHSc=7 and TsetV=19.75

CL=none, NHSc=6 and TsetV=21.00

For the ideal thermostatic controller, the thermostatic valve is fully open. All heating schedules

were tested. This controller does not take the comfort level into account:

CL = none

NHSc = 0..7

TsetV = open

For the optimal controller, no heating schedule is needed. The thermostatic valve is fully open.

The whole range of comfort level was tested:

CL = 0..9
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NHSc = none

TsetV = open

For the ANN controller, the thermostatic valve is fully open. All heating schedules were tested.

This controller does not take the comfort level into account:

CL = none

NHSc = 3..7 (lower NHSc give poor performance)

TsetV = open

For the predictive controller, the thermostatic valve is fully open. All heating schedules were tested.

The whole range of comfort level was tested:

CL = 0..9

NHSc = 5..7 (lower NHSc give poor performance)

TsetV = open

Extra cases:

CL=5..9, NHSc=4 and TsetV=open

CL=8..9, NHSc=3 and TsetV=open

CL=9, NHSc=2 and TsetV=open

CL=9, NHSc=1 and TsetV=open

CL=8..9, NHSc=0 and TsetV=open

The total number of cases is 84: 20 cases for conventional controller, 8 for ideal controller, 10 for

optimal controller, 5 for ANN controller and 41 for predictive controller.

8.8 Results

8.8.1 Global performance

Tables given in annex present global results for all tested cases.

The total energy consumption and some comfort parameters are given.

Top: Operative temperature of the reference zone. Min, max and average values are given for the

occupation period only.

PMV 0: Predicted Mean Vote computed as described here above. Min, max and average values are

given (occupation period only).

Jd: Discomfort cost. It is PPD0-5%, the predicted percentage of dissatis�ed computed as described

here above [%]. Min, max and average values are given (occupation period only).

R
Je: Energy consumption on the entire heating season [kWh].

R
Jd: Sum of discomfort cost on the entire heating season [%PPD0 h]. Cost is zero when building

is unoccupied.

Fig. 8.3 gives an overview of global performance of all tested cases. The Energy consumption

over the entire heating season is plotted versus the total discomfort cost. In this graph, �good

controllers� would be in the lower left corner (low energy consumption, low discomfort). It can �rst
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be noted that for the same discomfort cost, very di�erent energy consumption can be attained by

di�erent controllers on the same period for the same building. Maximum savings are in the order

of 20%.
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Figure 8.3. Controllers global performance
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Figure 8.4. Controllers �trajectory� in (Jd, Je) plane

Furthermore, di�erent settings of the same controller can lead to very di�erent behaviour. This is

obvious for the conventional controller, where the thermostatic valve setting plays an important

role, but it is also the case for other controllers, where di�erent heating schedules and di�erent

comfort level settings will cause di�erent behaviours.
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The general shape of all best-achievable solutions is a hyperbolic-like curve, which can be translated

in words by : �if the discomfort cost is decreased, the energy consumption will increase�. However,

a more re�ned analysis will show that in some cases an energy consumption increase can lead to

discomfort cost increase as well.

At the �rst glance, the �worst� performance is given by the conventional controller, while the �best�

performance is given by the optimal controller, for the given building and the given simulation

hypotheses.

Fig. 8.4 shows the same results where only the best cases of each controller are kept, and joined by

a line to make the interpretation easier. The points on one line of the plot represent the trajectory

of the controller global performance when some settings are changed.

It can be seen that the general �hyperbolic-like� curve is obtained by all controllers. The only

�setting� of ANN controller was the heating schedule, for which only a limited number of cases

were studied. This explains the small number of points and the absence of the �vertical� part of

the curve.

8.8.2 Parameters in�uence

Fig. 8.5 shows the in�uence of the heating schedule and the thermostatic valve setting on the

conventional controller's performance.

It can be seen that di�erent thermostatic valve settings allow to obtain di�erent performance. The

in�uence of di�erent heating schedule is small as far as they stay in the �acceptable� range. Heating

schedules o�ering too short pre-heating periods were not retained, since the comfort performance

is severely reduced.
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Figure 8.5. In�uence of heating schedule (NHSc) and Thermostatic valve setting on conventional controller per-

formance. Points labels indicate the thermostatic valve position

Fig. 8.6 shows the in�uence of the comfort level (CL) on the optimal controller's performance. This

parameter is the only user setting of this controller. Some internal settings have to be adapted to
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Figure 8.6. In�uence of Comfort Level on optimal controller behaviour. Labels show the CL value

the building, but require an expert intervention. The �gure presents obtained results for a well

designed controller.

The CL parameter allows users to choose between high comfort and high energy savings. A com-

mercial version should have a di�erent scale to limit the CL value in the acceptable range (0 and

1 have been suppressed from this graph) and to o�er a better repartition in (Je,Jd) plane.

Fig. 8.7 shows the in�uence of the heating schedule and CL parameter on the performance of the

predictive controller. The shape of the curve for high CL values is close to the one obtained for

other controllers, but the behaviour of the controller is di�erent for lower CL values. The reason is

that the anticipation of the predictive controller is stronger for these low CL values. The internal

cost function gives more weight to future values, which allows a more e�cient control of heating.

This explains that the global performance obtained with NHSc=7 and CL=0 is better than the

one obtained with the same heating schedule for CL=7.

Finally, Fig. 8.8 shows the in�uence of the heating schedule on the performance of ANN and

Ideal controllers. NHSc is the only adjustable parameter for these controllers. A more conservative

heating schedule normally leads to higher energy consumption but better comfort, since �cold morn-

ings� are suppressed. However, the overheating risk is also increased since the building structure

is warmer. This explains the vertical part of the curve for the Ideal controller
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Figure 8.7. In�uence of heating schedule (NHSc) and Comfort Level on Predictive controller performance. Labels
show the CL value
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8.8.3 Typical pro�les

8.8.3.1 Cold period

Fig. 8.10 to 8.14 present the behaviour of di�erent controllers for a cold week (from Sunday January

5, 12:00 to Saturday January 11, 00:00). All graphs represent the same week and can be directly

compared.

Grey zones in the graphs for Top (operative temperature in the reference zone) represent the

comfort zone, during building occupancy. Light grey rectangles next to them represent the zone

where the discomfort cost is not zero but is still very low (approximately 0.5�C below the lower

comfort limit and 0.5�C above the upper comfort limit.

Fig. 8.9 presents the ambient temperature (Tamb) and the global solar radiation on a horizontal

surface (Gh) for the considered week.
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Figure 8.9. Meteorological variables, cold week

Fig. 8.10 presents the behaviour of the conventional controller for the cold week, for di�erent heating

schedules (NHSc) and di�erent thermostatic valves settings (TsetV ). Two major disadvantages can

be seen :

1. The temperature during night is not so low as for other controllers (compare with Figs. 8.11 -

8.14). This is caused by the use of a heating curve, which is always designed to maintain the

night setpoint (15�C) in static conditions

2. The proportional band of thermostatic valves makes that the heating power is decreased when

the zone temperature reaches the setpoint, but the heating power is not zeroed.

Fig. 8.11 shows the same week for the Ideal thermostatic controller. It can be seen that the two

major disadvantages of the conventional controller have been suppressed. This controller is still

using a �xed heating schedule. Di�erent NHSc are compared.
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Figure 8.10. Conventional controller, cold week

It can be noted that the maximum available power (3000W) is used, while it was not the case for

the conventional controller. This was due to 2 di�erent factors:

1. The zone is never really cold for the conventional controller, which limits the power that

can be emitted by the radiator (This power is roughly function of the temperature di�erence

between the water supply temperature and the zone temperature)

2. Thermostatic valves are sensitive to the zone temperature but also to the water tempera-

ture. When this temperature is very high (e.g. at heating start), they would slightly close,

preventing the maximum power to be reached.

Fig. 8.12 concerns the optimal controller. Di�erent comfort level (CL) values are compared. It can

be seen that the heating is started just in time in almost every case. For a high CL value, the zone

temperature is very close to the lower limit of the comfort zone. For lower CL values, the controller

gives a lower temperature during the day, but also reaches this temperature later and stops heating

earlier.

Fig. 8.13 shows the temperature and power pro�le for the ANN controller. As mentioned here above,

this controller is not optimised to change from one setpoint to the other and gives a very smooth

temperature pro�le compared to other controllers. This slow response can lead to high discomfort

on some mornings, as on the �rst day on the plot. This implies the use of rather conservative �xed

schedules. On the other hand, it can be seen that the setpoint is very well maintained while the

�switch� has been realised.

Finally, Fig. 8.14 shows the same week for the predictive controller.

For high CL values, the predictive controller maintains the setpoint (lower bound of the comfort

zone in this case) almost perfectly, but requires the use of a �xed heating schedule. When CL

is decreased, this controller shows a larger anticipation, which can be seen at the end of the day

(heating is stopped one or two hours before the end of occupancy period).
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Figure 8.11. Ideal Thermostatic controller, cold week
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Figure 8.12. Optimal controller, cold week
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Figure 8.13. ANN controller, cold week
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Figure 8.14. Predictive controller, cold week
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8.8.3.2 Sunny mid-season period

Fig. 8.16 to 8.20 present the behaviour of di�erent controllers for a sunny mid season week (from

Sunday March 9, 12:00 to Saturday March 15, 00:00). All graphs represent the same week and can

be directly compared.

Grey zones in the graphs for Top (operative temperature in the reference zone) represent the

comfort zone, during building occupancy. Light grey rectangles next to them represent the zone

where the discomfort cost is not zero but is still very low (approximately 0.5�C below the lower

comfort limit and 0.5�C above the upper comfort limit.

Fig. 8.15 presents the ambient temperature (Tamb) and the global solar radiation on a horizontal

surface (Gh) for the considered week.
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Figure 8.15. Meteorological variable, sunny mid-season week

Fig. 8.16 shows the temperature and heating power pro�le for the conventional controller during

this week.

It can be noted that the building is signi�cantly warmer with this controller than with other ones

(see Fig 8.17 - 8.20). This is due again to the fact that thermostatic valves are supposed to keep

their setpoint (TsetV ) during the occupied but also the unoccupied periods. This situation always

leads to unnecessary heating when the heating circulating pump is working continuously, which is

very often the case in practice.

The use of a �xed heating schedule leads to a pre-heating of the building which is also unnecessary

during this rather warm week. Energy is wasted and the overheating risk during the afternoon is

more important.

Fig. 8.17 shows the same week for the Ideal thermostatic controller. The building is colder than for

the conventional controller during the unoccupied periods, but the problems associated with the

use of a �xed heating schedule are not suppressed.
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Figure 8.16. Conventional controller, sunny mid-season week
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Figure 8.17. Ideal thermostatic controller, sunny mid-season week

Fig. 8.12 shows the optimal controller behaviour during the same sunny mid-season week. The

controller is able to start the heating just in time but also to under-heat the building during the

morning to prevent overheating in the afternoon.
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Figure 8.18. Optimal controller, sunny mid-season week

Fig. 8.19 presents the performance of ANN controller. It is clearly shown that the heating schedule 7

is too conservative for this period. The heating schedule 5 gives good performance. However, the

same heating schedule cannot give good results during the whole heating season (compare with

Fig. 8.13).

Finally, Fig. 8.20 shows the predictive controller temperature pro�le for the retained mid- season

week. Here again, heating schedule 7 is not adapted to this period, while such large pre-heating

times were required during the cold period (see Fig. 8.14).



8.8 Results 166

03/10 03/11 03/12 03/13 03/14 03/15
18

19

20

21

22

23

24

25

T
op

 [°
C

]

03/10 03/11 03/12 03/13 03/14 03/15
0

500

1000

1500

2000

2500

3000

Q
bo

 [W
]

ANN, NHSc=7
ANN, NHSc=6
ANN, NHSc=5

Figure 8.19. ANN controller, sunny mid-season week
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Figure 8.20. Predictive controller, sunny mid-season week
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8.9 Conclusions

8.9.1 Energy - comfort performance

All controllers show an improvement of the performance compared to the conventional controller

and they all o�er the possibility to give more or less importance to comfort versus energy savings. 1

It must be reminded that this conclusion is based on the comfort de�nition using Fanger's PPD

index, which takes overheating into account. If the occupants were supposed to accept overheating

but not underheating, the best achievable performance would be very close to a perfect thermostatic

control.

The highest energy savings for an equivalent discomfort cost are achieved by the optimal controller

and reach 15%. This controller is also better than an Ideal thermostatic controller (the energy

savings are reduced to 5% in this case). It can be noted that the experiments showed higher

savings when the controllers were compared on short similar periods. Two reasons can explain this:

1. The conventional and Ideal controllers are perfectly tuned for the building and the weather

conditions, since all possible parameters choices could be tried. This is also the case for the

�advanced� controllers, but these controllers are sometimes easier to tune than a conventional

controller (especially for their developers!). The user's behaviour model was also rather

�energy and comfort conscious�, which is not always the case in practice. Thermostatic valves

are often open when the building is overheating and sometimes closed during a whole night,

preventing any heating of the building before the occupants arrive.

2. secondly, higher energy savings can be achieved during cold and sunny periods, or during mid-

season, since the overheating problem is more important. The global performance considered

in this simulation study was computed for a whole heating season using real meteorological

data and not a Typical Reference Year. Achieved energy savings can be far more important

if shorter periods are considered, and are also likely to vary to some extent on a year-to-year

basis. However, the used meteorological data is representative from the concerned location.

Comparison between advanced controllers

The optimal controller gives the best results for this building and the retained simulation hypoth-

esises. It should be noted that this controller was developed on the simulated building and is

perfectly adapted to this building. However, the application to the Passys testcell in Athens has

proven that it can be adapted to very di�erent buildings and meteorological conditions.

The ANN controller is currently not optimised to change from one setpoint to another, and this

problem was reinforced by the very large inertia of the simulated building. However, this controller

showed its ability to cope with the high overheating risk present in this building.

The predictive controller seems to o�er a performance very close to the ideal thermostatic controller

in the simulations. This can be explained by the need to use a rather conservative heating schedule.

This controller seems more adapted to lower inertia buildings, or to �smoother� setpoint pro�les.

This is notably the case in residential buildings, where the night setback is usually less important

and where the �Monday morning start� is not present.

8.9.2 Implementation aspects

The approaches of the three tested controllers are di�erent. They can be summarised as follows:

1The �comfort level� feature is not yet implemented in the ANN controller, but di�erent behaviours can be
obtained by using di�erent heating schedules.
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Optimal: � Requires a good a priori knowledge of the building to obtain a physical model. A

good quality model is required because of the long prediction horizon.

� Online identi�cation of some parameters in a narrow range allowing to take into account

real variations (e.g. air in�ltration rate variable with windows opening). An adaptation

to important changes in the building structure (windows size,. . . ) would require an

intervention.

� Complex optimisation algorithm o�ering a very high reliability (an optimum is always

found) but implying a very important computational power compared to other algo-

rithms.

� Anticipation of the building on a long horizon (16..24h), allowing optimal control strate-

gies to start the heating �just in time� and afternoon overheating prevention. This

requires reliable meteo and occupancy forecasting, but the use of previous day proved

to be su�cient.

� The implementation in a low-cost micro-controller based on intel51 chip proved to be

impossible within the time scale of this project. It would require a drastic simpli�cation

of the algorithm. This version of the controller is more suitable for implementation in a

PC- like micro-controller or for PC-based solutions.

ANN controller: � Completely black-box model of the building and heating plant. Requires

a long period to train the model but no intervention is needed.

� Reasonable computational power is needed once the model is trained.

� The use of ANN's ensures the ability of the controller to adapt itself to building changes,

but important changes would need a long period to be learned.

� Anticipation of building behaviour is limited to short-term in the current implementation

� An optimiser acting on higher level (i.e. managing the switch from one setpoint to

another) can be realised using the same technique but would probably increase the

required computational power.

� The implementation in a micro-controller of intel51 series was not fully realised but

should be possible without important changes. A suitable trade-o� between adaptability

and memory requirements should be found.

Predictive controller: � black-box model of the building with quick online adaptation of the

parameters. The model currently implemented is probably limited to short or mid-term

prediction horizon (1..6 hours)

� Small computational power compared with other advanced controllers.

� The use of a heating schedule is still required for high inertia buildings with intermittent

occupancy and important night setback.

� This controller was successfully implemented in a low cost micro-controller of intel51

series, o�ering nearly the same controller performance as the PC version.

8.9.3 Summary of controllers characteristics

Table 8.2 shows a summary of the advantages/ disadvantages of di�erent advanced controllers with

respect to some selected criteria.

�+�,�0� and �-� indicate respectively a good, �neutral� , or bad performance for the given criterion.

�X� indicates that the given criterion could not be evaluated for the considered controller.
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Table 8.2. Summary of the advantages/ disadvantages of di�erent advanced controllers. The energy/ comfort
performance is based on the simulation test on FUL building only.

Optimal ANN Predictive

Energy/

comfort per-

formance

+

+

+

Best performance

of the simulation

test on FUL

building

+ Improved perfor-

mance compared

to conventional

+

+

Good perfor-

mance although

stronger antic-

ipation could

improve it

Response

to desired

comfort level

+

+

CL re�ects the

relative impor-

tance of comfort

and energy

X Not implemented - Di�erent be-

haviour for low

and high CL

values

Computational

load

- High computing

power (�ops)

and rather im-

portant memory

requirements

0 Low require-

ments for current

version. Full

version including

online training

and optimisation

would have higher

requirements

+ Low requirements

for developed C

code

Adaptation to

di�erent build-

ings

+ Adaptation is

possible but

requires expert

knowledge

+ ANN must be

trained for the

building and

meteo conditions

+

+

A model identi�-

cation start �from

nothing� is possi-

ble

Adaptation

to building

changes

0 on line identi�-

cation in a re-

stricted range

+

+

Inherent advan-

tage of ANN

+

+

online identi�ca-

tion with decreas-

ing weighting of

older measure-

ments

Implemented

into a In-

tel51 micro-

controller

- current im-

plementation

proved to be too

complex. Best

adapted to PC-

like controllers

0 Re-coding work

was not totally

achieved but the

current version is

suitable for this

implementation

+ successfully im-

plemented



Chapter 9

Work performed by INGA

Authors: Horst Zacharias, Ingo Brauns, Ute Thron

The work of the industrial partner INGA (associated contractor of the ISFH) consisted of 4 parts:

� support for the scienti�c partners for the speci�cation of necessary properties of the control

algorithms to be developed,

� hardware and software development,

� market analysis,

� other activities.

9.1 General speci�cations

During Task 1, INGA was responsible for support of the scienti�c partners for the speci�cation of

necessary properties of the control algorithms to be developed. During all further tasks, INGA was

responsible for the check of formulations concerning

� user friendliness of necessary operation

� keeping of the possible cost frame for the di�erent applications

� contradictions to the laws in force

� applicability to typical HVAC-systems.

The points were discussed during the meetings and directly with the coordinator. Results are the

general speci�cations, which are described in section 5. Furthermore, the speci�cations are re�ected

in the choice of the hardware described in the next section.

9.2 Hardware and software development by INGA

The hardware and software development was the main part of the industrial partner's work. Solu-

tions are available for di�erent applications:

� big buildings and housing schemes,
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� small buildings (especially single family houses).

The solution for big buildings and housing schemes consists of the integration of the developed

algorithms into a Software for building management developed by INGA (see �gure 9.1. This

Figure 9.1. Application of the IBS Software developed by INGA

software is running on a PC. Since all algorithms have been tested on a PC, the implementation

into the INGA software is straightforward. The INGA software is independent from the measuring

and control system and the hardware. It is able to communicate with the protocols of many

producers of measurement and control systems in building management. One requirement of the

soft- and hardware to be developed was, that it should be applicable in a variety of buildings and

heating systems. The INGA software is very suitable concerning this requirement. It is however

concerning the costs too expensive for small family houses. Since the �rst development in this

project was focussed to small family houses, another hardware and software was choosen for the

standalone device.

The necessary properties of the hardware have been discussed intensively among all partners.

Requirements concerned the:

� possibility of operation of the device by a layperson,

� computational power and memory,

� accuracy of sensors,

� installation and placement of the device,

� price and design.

The standalone device consists of a microcontroller delivered by the Brauns Control GmbH. The

microcontroller takes over all tasks of input and output data handling, computing and user com-

munication. Figure 9.2 shows a scheme of the microcontroller.
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con�guration switches
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-

-

-

-

-
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valve control voltage

Figure 9.2. Scheme of the standalone device, AD: Analogue-digital conversion, DA: Digital-analogue conversion

Figure 9.3 shows a fotograph of the device placed in the experimental houses of the ISFH.

Figure 9.3. View of the standalone device from outside

The choosen hardware consists of a small box which can be placed for example on the wall of the

reference room (practically the room, where people stay most of the time). However any other

room is possible too. The equipment inside the box consists of 2 parts: one circuit board for

the connection of the cabling to sensors and actuators (�gure 9.4) and the actual computer with

processor, memory etc. (�gure 9.5). A small display and 4 buttons are placed on the front side

for the communication with the user. The partners agreed to limit the necessary user settings to 2

values: a time dependent indoor temperature set value (as usual) and a comfort parameter, which

allows the user to switch between more comfort and more energy saving. The background is that

more energy savings are expected when allowing a higher deviation from the set point.

The sensors that have been choosen are based on a temperature dependent current source for

the temperature measurements. A temperature corrected solar cell was used as radiation sensor,

because it had the best relation of price and precision from the sensors available on the market.

The price of this sensor is considerably lower than the price of a pyranometer, but still relatively
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Figure 9.4. Sensor connection board of the standalone device

high in comparison to the total cost of the device. Since the controller device can accept many

types of sensors, the e�ort was not put on searching the best sensor in the frame of the project. In

case a better sensor will be available on the market, it can easily be integrated.

The hardware device can be coupled with a PC for a monitoring during the tests. Furthermore

it is possible to change additional parameters during the tests. In case of a voltage cut-o� a part

of the controller's memory will be automatically rebuilt at restart. So, long adaptation phases

can be avoided after any interrupt of the operation. For an adequate organisation of the available

memory for the control program a survey has been done among the developing institutes. The

survey concerned for example the length of the code and the number of variables or the nessecary

precision for measured values. The optimisation of the memory organisation concerns the size of the

memory for code, variables, etc. to achieve the best computing power while keeping the restrictions

of precision.

The device was already on the market for a conventional control. Therefore a software developed by

the Brauns Control GmbH could be used to manage input and output data handling, computing and

user communication. The calculation supply temperature via a heating curve has been replaced by

the calculation of the optimal supply temperature with the algorithm developed by ISFH. However

a number of adaptations were necessary to implement the relatively large code of the smart control:

� The memory model �large�, which was used in the conventional controller of the Brauns Con-

trol GmbH was not su�cient to include the program modules using intensively mathematic

�oating point routines. Therefore it was necessary to select another suitable memory model.

The complete code was transferred to the memory model �banked�.

� The run time environment of the memory model �banked� contains a crucial software error in

the �oating ploint routines. This was found during the debugging of the code. The error leads

to an under�ow of very small negative numbers in the exponent in following multiplications.

This has the consequence that the computer calculates with very large numbers instead of very

small numbers (near zero). This error was discovered during the transfer of the developed

code into the microcontroller. It aggravated the transfer considerably. The problem was

caused by the producer of the microchip and the development environment and was di�cult



9.3 Market analysis performed by INGA 174

Figure 9.5. Computer board of the standalone device

to solve since they usually do not provide source code.

The Brauns Control GmbH supported ISFH during installation of the hardware and con�guration

of the software. Problems with imprecise measurements could be solved via an improved ground

connection. The program of Brauns Control GmbH for the general process management has been

optimized concerning calculation time. So, the calculation time of the smart algorithm in the �rst

version for the microcontroller is about 50 s, and su�cient short already to run the control. The

Brauns Control GmbH established proposals for a further optimisation especially of the matrix

operation. It is expected, that with these optimisation in the framework of a series production the

calculation time can be reduced again to 25%.

The planned procedure of implementing the smart controller code (sending the code by e-mail

through the developing instiutes, implementation at Brauns Control GmbH and sending the burned

Flash memory per mail to the testing institutes) could not be realised. Due to the hidden errors

in the run-time environment, it was necessary to debug the code in common sessions with the

developer at the company Brauns Control GmbH. Therefore, only the ISFH algorithm could be

implemented.

9.3 Market analysis performed by INGA

INGA carried out a market analysis to

� evaluate hardware components for the future prototype,

� check for other controllers using a weather forecast

� check for requirements to the hardware of future partners for a marketing

The evaluation of the market for suitable hardware components was carried out in the early stage

of the project. Hardware components have been searched for as single components or as com-

plete solutions. Some microchips which are mass products for cars or domestic appliances have
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been checked. The investigation of available hardware was also important to de�ne the limits of

ressources for the programmers of the algorithm.

The market analysis for other controllers using a weather forecast gave the result that no other

comparable controllers especially for the single family house application are available on the market

yet.

Possible future partners for a common marketing have been looked for already. Contacts have been

established to companies of the control branche as well as of industry for heating supply devices.

The goal was, to know as early as possible the conditions for the marketing from the partner and

the conditions of application in combination with another product. The results of this analysis was

re�ected in the speci�cations and their improvements.

A main experience was that the additional costs compared to the saved costs are the most important

factor for marketing partners. In the hardware used, the radiation sensor causes the most additional

costs for a single family house application. Further activities to reduce the hardware cost must

therefore focus on the radiation sensor costs �rst. For big buildings and housing schemes, the

additional cost for the radiation sensor and an external weather forecasing service are not important

compared to the energy costs that can be saved and the total hardware costs.

The discussions with the possible marketing partners showed further, that a comfort improvement

is di�cult to �sell�, and needs a special marketing strategy. Advantage for comfort are most aware

to marketing partners in case of a �oor heating system.

The market analysis was concentrated on the german market, because �rst marketing of the con-

troller will take place there.

9.4 Other activities of INGA

Other activities of INGA in the framework of the project were:

� database and literature enquiries about possibilities of obtaining actual local weather data

and the state of the art of control techniques for passive solar houses,

� investigation on the necessary interface of the controller to the other components of a home-

automation system,

� investigations on patentability and similar products.

The enquiries about access to actual local weather data showed that there are in Germany 2 sup-

pliers which are able to deliver the data in machine readable code. However, the time resolution

is not very high. The German meteorological service (Deutscher Wetterdienst) o�ers 3 h interval

forecasts with a local resolution of 10x10 km2. The solar radiation is forecasted only with a verbal

description of the clouds degree in 4 levels (overcast, cloudy, lightly cloudy, sunny). A quanti�ca-

tion of the expected insolation with this informations must remain very imprecise. The costs for

the internet connection arising at present moreover are still relatively high in comparison with the

savings to heating cost (114 Euro/month). It can however be expected, that better and cheaper

services will be available in the near future.

The test of patentability showed that there are no relevant patents in Germany yet, however a

mathematical procedure is not patentable. Any copyrights could be strived for for the software

and the standalone hardware. A patent for a similar hard- and software exists in Switzerland. The

device is available on the market for about 1500 Euro. Such price is regarded as too high for a

single family house application.
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INGA will continue establishing contacts with companies producing control devices and producers of

heating systems to use their marketing structure for selling the soft- and hardware. A demonstration

object is planned within the framework of the EXPO 2000, (Solar village near Hameln).
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Chapter 10

Comparison of initially planned

objectives and work actually

accomplished

The de�ned objectives to be achieved by the consortium during the project are listed in table 10.1:

Table 10.1. Achieved and stated objectives. Explanation for Status: A: achieved objective, P: partly achieved

objective, N: not achieved objective

Task Type Description Partner Status

No.

1 Preparation Details �xed for e�ective cooperation all A

2 Software Predictive adaptive control algorithm ISFH A

2 Software Predictive optimal control algorithm FUL A

2 Software Art. Neural Networks control algorithm NOA A

2 Software Fuzzy logic Control algorithm INSA A

2 Software Numerical environment for test UNN,

FUL

A

2 Hardware Review of algorithms, �rst hardware choice INGA A

4 Hardware Realisation of �rst stand-alone prototype INGA A

3, 5 Test results Results of tests of algorithms in numerical simulation UNN,

FUL

P

3, 5 Test results Experimental test results for algorithms in test cell NOA P

3, 5 Test results Experimental test results for optimized algorithms

in test building

ISFH P

3, 5 Test results Experimental test results for optimized algorithms

in test building

FUL P

3, 5 Test results Experimental test results for optimized algorithms

in test building

INSA P

5 Test results Experimental test results with microcontroller in test

building

ISFH A

6 Hardware Realisation of �nal prototype INGA A

The speci�cations of Task 1 were made to create the basis for and exchange of controllers among the

testing institutes and for an implementation into the �nal hardware. These speci�cations concerned

the programming language, the requirements on additional hard- and software, the inputs and

outputs of the controller.
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Each of the developing institutes (ISFH, FUL, INSA, NOA) developed successfully a smart con-

troller with the approaches mentioned in table 10.1. The algorithms showed considerable advantages

compared to a conventional control in simulation and experiment. During the tests, all algorithms

have been optimized by each partner.

A numerical environment for simulation tests has been successfully established by UNN and FUL.

This tool has been extensively used by FUL and ISFH to optimize their controller before the

implementation into a real occupied building. An optimizd version of the tool served for the

comparison of di�erent controllers in simulation.

The results of tests of algorithms in numerical simulation are only partly available due to several

reasons:

� Delay in the development of the simulation environment

� Final controllers to be tested have been delivered with a delay

� INSA controller was not compatible with the simulation environment

� Due to severe adaptation problems, simulations could only be carried out with one set of

weather data and one building model

The controllers have been successfully tested in the experimental facilities of the developing in-

stitutes. The exchange of controllers for an experimental testing was succesful in the case of the

FUL controller, which was tested in the NOA PASSYS test cell. An experimental test for other

controllers and other buildings could not be carried out due to the following reasons:

� severe adaptation problems with available hard- and software a the test sites

� special hardware in the NOA test site (no hydronic heating system) which required adaptation

of algorithms

� for ISFH building it was found to be necessary to test both the same algorithm running on a

PC and on the microcontroller to evaluate any quality di�erences coming from the hardware,

therefore this building could not be used to test controllers from other partners

� necessary time consuming pre-training of some algorithms to match the building behaviour

In general, the time and e�ort necessary to adapt di�erent controllers to the di�erent hard- and

software was underestimated at the beginning of the project. Although clear speci�cations concern-

ing the exchange have been established and updated this could not prevent a number of adaptation

problems arising from:

� di�erences in C-compilers leading to problems in memory allocation

� MATLAB use not practical for all algorithms

� pre-training necessary for some algorithms before they can be applied to a building.

The implementation of the ISFH algorithm into a microcontroller was successfully carried out but

it was also more time consuming as expected. The reason was an error in the microcontroller

development tool which occured only for the chosen memory model. The debugging required a

close cooperation between the developer of the code and the industrial partner. The Microcontroller

showed its ability to take over the control task in almost the same quality as the PC. Results and

experiences with tests have been reported to the industrial partner to create the optimized �nal

hardware.



Chapter 11

Conclusions

The report on hand presents the work carried out in the frame of the project �Development and Test

of Modern Control Techniques Applied to Solar Buildings� funded by the European Commission.

The aim was the development of algorithms for intelligent heating control in buildings with high

solar gains. Four algorithms using di�erent approaches have been developed by the partners FUL,

INSA, NOA and ISFH. They have been investigated in a simulation environment and test buildings.

Partner UNN was responsible for the comparative evaluation of the algorithms with the help of

simulation tests. A special simulation environment has been developed by partner FUL and UNN

in the frame of this project. Experimental tests have been carried out by the developing institutes

each providing a test building. The buildings di�er with regard to their use, climatic conditions

and thermal properties.

The tests showed that all approaches are suitable in principle for an intelligent heating control lead-

ing to energy savings of up to 15% in the in-between season and comfort improvements compared

to conventional controls. The investigations showed further, that an evaluation only on the basis

of energy consumption and a comfort indicator is not su�cient to re�ect the di�erent properties

necessary also for practical application. Table 11.1 gives an overview over the most important

properties of the developed algorithms.

The energy and comfort evaluation can be directly compared for the controllers of FUL, NOA and

ISFH. For the simulation test on the FUL building model, the FUL controller showed the best

performance concerning these criteria. For the response to the desired comfort level, again, FUL

controller shows the best performance. Due to the considerable e�ort necessary for training, the

comfort level feature has not been implemented in the ANN controller, however the use of heating

schedules allows to achieve a similar behaviour.

ISFH and INSA controller require the lowest computational load. The NOA controller also has a

low demand for the current version, but it increases when the online- training and optimisation is

included.

The adaptation to di�erent buildings is best possible with the ISFH algorithm. The other algo-

rithms require a pre-training before the application to a building, either on the basis of measured

data or of information about the building structure. Adaptation to building changes is possible for

the NOA and the ISFH controller.
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Table 11.1. Summary of the advantages/ disadvantages of di�erent advanced controllers. The energy/ comfort

performance is based on the simulation test on FUL building only.

Optimal (FUL) ANN (NOA) Predictive (ISFH) Fuzzy (INSA)

Energy/

comfort per-

formance

Best performance

of the simulation

test on FUL

building

Improved perfor-

mance compared

to conventional

Good perfor-

mance although

stronger antic-

ipation could

improve it

Good perfor-

mance tested on

INSA building

Response

to desired

comfort level

CL

CL re�ects the

relative impor-

tance of comfort

and energy

Not implemented Di�erent be-

haviour for low

and high CL

values

Implemented

Computational

load

High computing

power and con-

siderable memory

requirements

Low require-

ments for current

version. Full

version including

online training

and optimisation

would have higher

requirements

Low requirements

for developed C

code

Low requirement

Adaptation to

di�erent build-

ings

Adaptation is

possible but

requires expert

knowledge

ANN must be

trained for the

building and

meteo conditions

A model identi�-

cation start �from

nothing� is possi-

ble

Requires pre-

training with

measured build-

ing data or in-

formation about

building structure

Adaptation

to building

changes

Online iden-

ti�cation in a

restricted range

Inherent advan-

tage of ANN

Online identi�ca-

tion with decreas-

ing weighting of

older measure-

ments

Pre-identi�cation

necessary

Implemented

into a In-

tel51 micro-

controller

Current im-

plementation

proved to be too

complex. Best

adapted to PC-

like controllers

Re-coding work

was not totally

achieved but the

current version is

suitable for this

implementation

Successfully

implemented

Successfully

implemented

The ISFH and the INSA algorithm both have been successfully implemented into a Intel 51 series

microcontroller. The NOA algorithm needs to be re-coded to match memory and calculation power

of a microcontroller but is suitable in principle. The current FUL controller implementation is best

adapted to PC-like controllers. The ISFH algorithm was chosen for an implementation into the

�nal hardware because it combines high control quality with the lowest computing requirements.

The �nal hardware which was provided by the industrial partner INGA is a microcontroller which

works as a stand-alone device.

Experimental tests on a real building showed that the newly developed PC controllers as well as

the smart microcontroller met the high expectations formulated in the project programme. The

hardware is now available for demonstration objects.
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work. In Proceedings of the 6th European Congress on Intelligent Technologies & Soft Computing

EUFIT'98, Aachen, Germany, volume 2, pages 868�872, September 7-10 1998.

M. Kummert, Ph. André, and J. Nicolas.

Heating optimal control applied to a passive solar commercial building. In Proceedings EuroSun,

Portoroz, Slovenia, 1998.

M. Kummert, Ph. André, and J. Nicolas.

Building and hvac optimal control simulation. application to an o�ce building. In Proceedings
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ISHVAC'99, Shenzen, China, 1999.

U. Schramm and D. Christo�ers.

New approaches in smart solar building control- a joint ec project. In Proceedings of the 6th

European Congress on Intelligent Technologies & Soft Computing EUFIT'98, Aachen, Germany,

volume 2, pages 860�862, September 7-10 1998.

U. Thron and D. Christo�ers. Intelligente Heizungsregelung für Solarhäuser, Entwicklung, Test

und Implementierung in einen Microcontroller. In Internationales Sonnenforum 2000, Freiburg,

Germany, to be published, July 6-7 2000.

U. Thron and D. Christo�ers.

Vorausschauende und Selbstadaptierende Heizungsregelung für Solarhäuser. In 10. Symposium

Thermische Solarenergie, Kloster Banz, to be published, Mai 10-12 2000.

I.R. Williamson, S. Danaher, and C. Craggs.

Optimisation of solar building control using predictive methodologies. In Proceedings of the 6th

European Congress on Intelligent Technologies & Soft Computing EUFIT'98, Aachen, Germany,

volume 2, pages 878�879, September 7-10 1998.

A.2 Internal Working Documents

M. Kummert and Ph. André.

Proposal for a cost function to compare di�erent controllers performance. Working document no.

ful/980422/01, Fondation Universitaire Luxembourgeoise (FUL), 185, Avenue de Longwy, B-6700

Arlon, Belgium, April 1998.

M. Kummert and Ph. André.

Software communication problems. example of trnsys and matlab. Working document no.

ful/980430/01, Fondation Universitaire Luxembourgeoise (FUL), 185, Avenue de Longwy, B-6700

Arlon, Belgium, April 1998.

M. Kummert.

Description of the shell proposed for controllers exchange. Working document of ful, Fondation

Universitaire Luxembourgeoise (FUL), 185, Avenue de Longwy, B-6700 Arlon, Belgium, 1999.

A.3 Doctoral thesis

The use of results of the project in a doctoral thesis is foreseen at partner FUL, UNN and ISFH.

A.4 Prototypes

A prototype of the �nal hardware has been created and is now ready for demonstration (see

chapter 9).


