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Abstract

The Belgian Crop Growth Monitoring System (B-CGMS) uses the 1km²-resolution imagery of NOAA-AVHRR
and SPOT-VEGETATION to improve its yield estimates. The pre-processed images are converted to fAPAR and
combined with meteorological data (irradiance, temperature) to daily growth values by means of the Monteith
approach. The regional means of the cumulative monthly growth numbers are calibrated against official harvest
statistics by means of crop-specific neural networks. The quality of the yield estimates varies with the impor-
tance of the crop: the R²-values for winter wheat, sugar-beets and fodder maize are respectively 60%, 48% and
36%. The final yield forecasts will be better, because the B-CGMS integrates the image-based yield estimates
with the assessments of the agromet-model and of the technological trend function. The technique of linear
unmixing seems promising but in its actual state it is too unpredictable to be included in an operational scheme.

1. Context and Objectives

One of the major achievements of the European MARS-programme (Monitoring Agriculture with
Remote Sensing) was the Crop Growth Monitoring System. Since a few years, this CGMS is used on a
continuous base to predict harvests and productions of the main crops in the EU member states
(Vossen & Rijks, 1995). Actually, the crop yield estimates of the CGMS are the integrated result of
three independent procedures: a spatialized agrometeorological model, a trend function which copes
with the long-term increases due to technological improvements, and the information provided by the
1km²-resolution imagery of the remote sensing system NOAA-AVHRR.
In 1998, a project was started in order to implement a specific version of the CGMS in Belgium. This
so-called B-CGMS will allow the Belgian Ministry of Agriculture to generate its own predictions in a
timely way. To this goal, the original EU-CGMS was improved or adapted in the following ways:

- The spatial scale of the system was enhanced, such that the agrometeorological model now runs
on 10x10km² cells (instead of 50x50km² before).

- More detailed pedological and meteorological information was collected and introduced into the
model. Crop parameters were also chosen typically for the Belgian conditions.

- The crop surfaces, needed to assess the productions, are derived from the Integrated
Administration and Control System (IACS) of the Ministry of Agriculture. This yearly updated,
vectorial GIS comprises the boundaries and crop type for all agricultural parcels (± 600 000).

- Whereas the original CGMS only deals with NUTS-level 1 (territory, Flanders, Wallonia), the
B-CGMS provides specific forecasts for each of the 14 agricultural regions and/or each of the 26
agro-statistical circumscriptions.

Currently, the adapted system is validated on a 15-years series of yield data, obtained from the
National Institute for Statistics (NIS). This paper however deals with the remote sensing part of the
project. In addition to the above-mentioned targets, special efforts were made to obtain a better
integration of the satellite imagery in the yield forecasting system. Besides the classical NOAA-
AVHRR, use was also made of the 1km²-imagery of the recently launched earth observation system
SPOT-VEGETATION (VGT).

                                                  
♦ The B-CGMS project can be consulted at: http://b-cgms.cragx.fgov.be.



2. General Approach

As a basic approach for the inference of yield estimates from remote sensing images, daily increases
∆W in dry matter (DM) biomass were computed by means of the widely applied equation of Monteith
(1972):

∆W = Spar • fAPAR • ε(T)         [kgDM/ha/day]

Spar is the incoming Photosynthetic Active Radiation in J/ha/day (± 50% of the short-wave spectrum of
the sun), fAPAR is the fraction absorbed by the living vegetation, and ε(T) is the conversion efficiency
in kgDM/J which is simply modelled here as a function of the daily mean temperature T (see Sabbe et
al., 1999). The necessary meteorological data (Spar and T) and the fAPAR-values were respectively
extracted from the B-CGMS databases and the satellite images. The obtained daily growth numbers
can be summarized in two ways: in a temporal sense cumulative values W [kgDM/ha] can be
computed for specific periods, while in a spatial sense regional averages can be derived.

A parcel-based application of the Monteith approach is a priori excluded, due to the low resolution of
the imagery and the small mean parcel size. The large majority of the 1km²-pixels are "mixed pixels",
which are covered by different parcels and land use classes, and hence yield a mixed optical signal.
Two alternative methods were evaluated to overcome this problem and to obtain crop-specific yield
estimates. First, the classical procedure for linear unmixing was tried out in order to retrieve pure crop
signals (see §4). But so far this technique could not be brought to an operational stage. The second
method thus simply accepts the mixed nature of the satellite signals and tries to infer crop-specific
yield estimates by calibration of image-derived indicators against official harvest data (see §5).

3. 1km²-Resolution Imagery: Data Sets and Preparation

Table 1 gives an overview of the 6 available, yearly image sets: 4 from AVHRR and 2 from VGT.
Inspection of the data sets pointed out the superior quality properties of VGT. The SPACE-II
AVHRR-data were badly registered (see figure 1.B) and contained a lot of anomalies (missing
values/images, striping effects, etc). All syntheses suffered from a very important cloud noise.

Table 1: Overview of the used image sets
Feature NOAA-AVHRR SPOT-VEGETATION (VGT)
Period 4 years:  Jan. 1995 -  Dec. 1998 2 years: April 1998 – Dec. 1999
Imagery Type S1: 365/6 daily syntheses / year S10: 36 decadal syntheses / year
Pre-Processing SPACE-II  (JRC) CTIV  (CNES, Vito)
Projection & Resolution Albers Equal Area  (1.1 km) Geographic Lon/Lat  (1°/112)

Figure 1: Cartographic conversions
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For this research, only the NDVI-information was used (Normalized Difference Vegetation Index).
The six available, full-year image sets were processed as follows:

- The NDVI image layers were unpacked from their specific formats and compiled into one single
image file per year (365/6 layers for AVHRR, 36 layers for VGT).

- The data were reprojected towards the B-CGMS system (see figure 1.D).
- The NDVI-profiles were cleaned to eliminate the cloud noise (see figure 2).
- The NDVI-data were then converted into fAPAR-images by means of sensor-specific linear

equations (fAPAR = A + B.NDVI) whose parameters were obtained by means of a simple
histogram-analysis (AVHRR: A = −0.27, B = 1.68; VGT: A = −0.25, B = 1.54).

In a technical sense (i.e. omitting the intrinsic quality properties), after these preliminary operations
both data types (AVHRR, VGT) were completely homogenized.

Figure 2: Evolution of the NDVI in 1998 for 2 pixels: original series extracted from the daily
syntheses of NOAA-AVHRR (left) and from the decadal syntheses of SPOT-VGT (right). The
abrupt local minima are mostly due to clouds. The “envelope” curves (thick lines) are the result
of the cleaning procedure.

4. Linear Unmixing

The method of linear unmixing assumes that the optical signal yp, registered for the mixed 1km²-pixel
p, is equal to the weighted average of the pure signals xk of the Nk individual terrain classes/crops,
with the sub-pixel surface fractions fpk  as weights (yp = Σfpk.xk). For a homogeneous area of Np pixels
one obtains a system of Np equations, from which the pure signals xk (regional means) can be retrieved
with a simple matrix inversion. In this case, the required surface fractions fpk could be extracted from
the IACS-data set of the Ministry of Agriculture (see §1). All the non-agricultural destinations, not
mentioned in the IACS, were assigned to a single "garbage" class (mostly built-up areas and forests).

The technique was first tried out with three high-resolution images of SPOT-XS, with a pixel size of
20x20m². The images were of 3 different dates in 1997 and they all covered an area of 800 km² in the
Hesbaye region, ± northwest of the city of Liège. By confronting these high-resolution data with the
IACS-information (vectorial parcel map with crop type for each field), the true xk-values could be
computed in advance. On the other hand, by degradation of the 20x20m²-imagery (taking the mean
signal of each cell of 50x50 high-resolution pixels), equivalent low-resolution scenes were simulated
with Np = 800 1km²-pixels. The procedure for linear unmixing was then applied to the latter degraded
scenes, and the resulting xk-estimates were compared with the correct values. These validation tests
pointed out that the relative errors (100.(true-estimated)/true%) were generally quite limited and
mostly below 10%. This observation agreed fairly well with the findings of Cherchali et al. (2000)
who performed a quite similar analysis.



The technique worked equally well for the three registration dates (1997: May 30, August 6,
September 17) and for the different "optical signals": the individual red and near infrared reflectances
and the NDVI. Several classification legends were tried out (from 15 classes to 0/1-systems like wheat
vs. non-wheat) as well as various pixel selection methods (e.g. only use the 1km²-pixels which are
covered for more than 50% by main crops), but none of these modalities appeared to have a clear and
unambiguous influence on the performance of the unmixing technique.

Figure 3: Pure NDVI-profiles in 1998 for winter wheat and sugar-beets in different agro-
statistical circumscriptions, derived by linear unmixing from the (previously cleaned) image set
of SPOT-VEGETATION.

After this validation, the linear unmixing was applied to the real 1km²-imagery of AVHRR and VGT
(cleaned NDVI-data). The method was repeated for each of the 26 agro-statistical circumscriptions
(Np ≈ 1200) and for each image date, which resulted in temporal NDVI-profiles such as shown in
figure 3. These examples reflect fairly well the common agricultural practices in Belgium. Winter
wheat restarts its growth by the end of March, it culminates around May, ripens in June-July and is
finally harvested in August. The later evolutions are of course irrelevant and vary per parcel. The same
holds for sugar-beets in early spring. This crop starts its typically slow growth around May, with the
leaf area culminating between July and September.

The unmixed, pure class profiles (xk) show significantly higher dynamics than the mixed 1km²-signals
(yp). As far as only terrestrial pixels are concerned, the latter are mostly restricted to the NDVI-range
0.15 ... 0.75, while the unmixed NDVI's rather vary between 0.1 and 0.95. Obviously, the quality of
the results will also depend on the spatial agreement between imagery and land cover data (IACS). It
thus might not surprise that the best results were obtained for the images of SPOT-VGT. The poorer
performance for NOAA-AVHRR is certainly due to the less accurate geometric correction.

The unmixed NDVI-profiles can in principle be used in the Monteith approach (after conversion to
fAPAR-values) to obtain crop-specific growth values on a regional base. However, the results were
not always as good as in the examples of figure 3. In practice, the method appeared quite
unpredictable and in many cases it yielded nonsensical NDVI-curves. Further research is certainly
recommended, but for the time being the linear unmixing is not operational and as a consequence it
had to be rejected in favour of the procedure described hereafter.

5. Image-Based Yield Indicators calibrated with Neural Networks

The different versions of this approach always start with the Monteith-computation of the daily growth
values ∆W [kgDM/ha/day] on a per-pixel base (i.e. without differentiation between crops). The results
are then accumulated over specific periods to DM-biomasses W [kgDM/ha]. Next, regional averages
are derived for each of the 26 agro-statistical circumscriptions. This aggregation step only takes into
account the pixels which are covered for more than 50% by cropland (criterion checked with the IACS



data set). Finally, crop-specific yield estimates (yest) are defined by calibration of this set of yield
indicators (1 or more xi) against the official harvest statistics (ytrue). The numbers of available data
points per crop are mentioned in table 2 (at most: 6 yearly image sets x 26 circumscriptions = 156).

Our first trial was based on the dry matter biomass W accumulated over the entire growing season of
each crop (see table 2 for the specific seasons). In spite of its logic and simplicity (1 single
x-indicator), this attempt completely failed. The obtained R²-values balanced around zero, probably
because the approach gives equal weights to every moment in the season, while in practice each crop
has its specific critical moments (e.g. flowering for the cereals).

With this lesson in mind, a more refined and multivariate procedure was elaborated which was calibra-
ted separately for each crop with a three-layer "neural network with backpropagation training", as
described by Paola & Schowengerdt (1995). The input layer of this network comprises 4-6 nodes,
which are fed with the biomasses W accumulated for each month in the crop's growing season (4-6
xi-values, see "Inputs" in table 2). The hidden layer counts three nodes and the output layer only one:
the final crop yield. These networks were calibrated with the official statistics of the NIS (ytrue).
The number of parameters (neural weights) to be estimated in the calibration amounts to about 21.
With ±150 data points per crop, this is perfectly feasible. However, in order to achieve an independent
and reliable validation, the "Jackknife" method was applied. The sequence 'calibration-validation' was
repeated in different steps, and in every iteration 10 data points were selected at random. The network
was then trained with the remaining ±140 observations and validated with the 10 test points. This
scheme was repeated until each point was used once for validation.

Table 2: Results of the image-based procedure for yield assessment (neural network +
independent "Jackknife" validation): N=number of data per crop, RMSE=Root Mean Square Error
(ton/ha), Ymin/Ymax=extreme values (ton/ha) in the NIS-data set (1995-1999, 26 circumscriptions).
CROP N INPUTS R % R² % RMSE Ymin Ymax

Winter wheat 155 6  (March-August) 77.3 59.8 0.8 2.9 10.8

Sugar-beets 138 6  (May-October) 69.5 48.4 5.3 34.8 80.0

Fodder maize 155 6  (April-September) 59.8 35.8 3.7 28.4 58.6

Winter barley 144 5  (March-July) 46.4 21.5 0.9 3.0 9.3

Potatoes 149 5  (April-August) 36.3 13.2 8.2 7.6 57.4

Winter rapeseed 81 4  (March-June) 26.1 6.8 0.5 2.0 4.5

Figure 4: Official yields of the National Institute for Statistics (NIS) vs. the image-based
estimations (neural networks) for winter wheat and fodder maize (see table 2).
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The validation results, presented in table 2, prove that the images of AVHRR and VGT do contain
relevant information on the yield of the main crops, in spite of their low resolution. The R²-values,
which represent the fraction of the total variance explained by the image-based estimates, vary in
function of the relative importance of the crops. The procedure works very well for winter wheat
(R²=59.8%) and somewhat less for sugar-beets (R²=48.4%) and fodder maize (R²=35.8%). The
performance clearly decreases for the minor crops, especially for rapeseed (R²=6.8%).

6. Conclusions

The validation results of table 2 only relate to the accuracy of the image-based procedure. The final
yield assessments of the B-CGMS will probably be more reliable, because they are not only based on
the remote sensing imagery but also on the outputs of the agromet-model and the technological trend
function.

The described procedure only dealt with the problem of "yield estimation" where one disposes of all
the information (images, meteo) until the end of the on-going year. Nevertheless, the neural network
methodology is flexible and it can be used as well for the more difficult task of "yield forecasting". For
each situation, a specific calibration must be executed in advance. In this way, the method could for
instance be applied at the end of May to predict the final yields of wheat and barley.

This work also demonstrated that the combined use of SPOT-VEGETATION and NOAA-AVHRR
does not raise any problem. Linear unmixing of the compound signal of the 1km²-pixels can best be
applied on the VEGETATION-images because of their high geometric precision. This important topic
however requires further investigation, before it can be integrated in an operational yield forecasting
scheme.
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