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Abstract

Data acquired from field campaign and hyperspectral airborne sensors were processed to
determine the surface soil organic matter of an agricultural area located in Southern Belgium.
The method adopted was based on a forward stepwise multiple regression analysis linking
soil organic matter and hyperspectral data from two airbome sensors working in the visible
and infrared domain. The results were validated successfully from an independent set of
sampling points. It is concluded that the hyperspectral remote sensing approach is promising
for soil organic matter prediction. Furthermore, this approach could even be improved if
disturbance factors are removed.
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1= Introduction

Hyperspectral remote sensing (HRS) has gone through rapid development over the past two
decades in agriculture and environmental related applications [1], [2], [3]. Among these
applications, the estimation of soil organic matter (SOM) appears as a very promising one as
it may provide new information on the spatial variability of this important agricultural factor
of production. But soil is a complex system and its properties cannot be easily assessed even
under controlled laboratory conditions [3]. Tt is even more complicated under remote sensing
condition. In fact, extracting reflectance values from a HRS pixel is an uneasy task due to
illumination and terrain changes, atmospheric attenuation and low signal-to-noise ratio. On
the other hand, soil is a more heterogeneous material than vegetation, which results in greater
difficulties in applying quantitative analyses to HRS soil data. However, several studies for
analysing SOM properties from HRS have been performed [4],[5], [6], [7]. Ben-Dor and
Banin [3] have shown that the HRS approach is useful for assessing SOM properties if careful
spectral manipulation techniques are used. Moreover, they showed that for several soil
properties, a large number of channels is not always required to accurately predict SOM.

This paper investigates the application of HRS for the estimation of the SOM in the context of
precision farming. This approach has never been applied to the agricultural environment in
Belgium. The correlations between ficld SOM  measurements, obtained by laboratory
analysis, and soil reflectances derived from one operational (Compact Spectrographic Imager
— CASI-2) and one experimental (Shortwave Infrared Airbomne Spectrographic Sensor —
SAS hyperspectral data will be analysed.

2- Materials and methods

2-1 Study site and ground measurements

The area selected for this study (50 km?) is located in Southern Belgium (49°38'; 49°43' N
and 5°27'; 5°31' E). This area is typical of agricultural practice in this part of Belgium with a
mixing of meadows and fodder maize with cereal crops. The zone was selected because of its
high variety of soils that provides a large range of SOM. Fourteen agricultural parcels with
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bare soil were selected with about 10 soil samples locations per parcel leading to 135 soil
samples. Five teams collected soil samples and measured field spectra during the day of
flight. The soil samples were stored in plastic bags and brought into laboratory for chemical
analyses and spectra were collected with a portable spectrometer (Analytical Spectral Devices
or ASD). Each target area was described in detail and accurately georeferenced using GPS
(Garmin, GPSMAP 768) and DGPS (Leica 530, Li/L,, 10 Hz) devices.

2-2 Hyperspectral data acquisition and pre-processing

SAST and CASI sensors where mounted onboard a Domnier 228 aircraft from the UK Natural
Environment Research Council (NERC) that flew over the sites during a sunny day
(12/09/02) at an altitude of 1500 m, providing a pixel size smaller than 2.5 m x 2.5 m. The
images, atmospherically, radiometrically and geometrically corrected, came from VITO.
Nevertheless, there remained still small problems of geometry with SASI images that were
solved by image-to-image registration with CASI images on ENVI environment. Spectral
signatures of ail the soil sampling location were then extracted. In a parallel procedure, all the
soil samples were also measured for their reflectance in laboratory conditions (Département
de Production Agricole, Gembloux) across the 400-2500 nm spectral range.

2-3 Laboratory analyses

The SOM content was determined by loss-on-ignition [8], [9]. Soil samples were weighted
before and after a 24h drying into an oven at 105°C [10]. These analyses were performed by
the Laboratoire des Ressources Hydriques at the Fondation Universitaire Luxembourgeoise
(FUL).

2-4 Methodology of analysis

First, SOM provided by laboratory analyses was statistically studied. Then, the hyperspectral
signals obtained by three different techniques (ficld measurements with ASD, signal
measured by plane and measured in the laboratory) were compared for the same points to see
the coherence of their response.

The next step consisted in making an analysis by a forward stepwise multiple regression on
the various spectral bands. Out of this analysis, were extracted the bands with the best
correlation to SOM and established a linear relationship following:

V,= A4+ AR, + 4R, +.. 4R,

where Vp is the predicted value, A, is a constant, A; are the coefficients of the reflectance R,
in the wavelength A;. The equation of prediction is an empirical expression of the estimation
of the content in SOM but it already gave good results in former studies ([3]).

A statistical analysis and a classical calibration-validation procedure allow to judge the
accuracy of this relationship. During this exercise, 2/3 of soil samples were used to calibrate
the regression. The last third part served for the validation,

3- Results and discussion

Table | provides general information on the 135 soil samples selected in the 14 parcels of the
area. These results come from laboratory analytical data and show that a wide range of SOM
does exist (Min = 1.1; Max = 4.3). These results have quite different SOM as expected (large
variety of soils from coarse sand to heavy clay). Another possible reason for such a large
range of SOM might be due to remaining vegetation debris into the soil samples despite our
efforts to eliminate all vegetation before laboratory analysis. SOM mean value is 2.2 % and
stands in good agreement with previous studies [11]. The soil moisture content is also
variable from site to site. In general, high SOM are found in areas with high soil moisture. In
the present study, the coefficient of determination obtained between SOM and soil moisture is
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relatively high (R? = 0.61) and indicates that such a link might exist. This can be problematic
because moisture affects CASI and SASI instruments outputs.

Soil moisture  SOM (%) Clayey soil
content (%) .
=)
b
R
Minimum 11,9 L1 ‘E; —o— Image
Q
Mean 157 2.2 E —a— Laboratory
® — Field
T
Sdt. Dv. 3,1 0,7 r
. 428 711 1130 1740 2230
Maximum 3L1 43 Wavelength (nm)
Table 1: General information about
the soil as obtained by lab analysis. Figure 1: Comparison of spectra from laberatory, field and airboine

images.
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Fable 2: Statistical parameiers of Figure 2: Cumulated and R? change values for
two representative models, stepwise produced models.

In order to determine whether the spectral signatures given by laboratory, field measurements
and remote sensing sensors are similar, these three signals were compared. Figure 1 presents
the spectra of a clayey soil. As it can be clearly seen, the spectral signature from laboratory is
lower than the others from 530 to 2500 nm. This can probably be explained by higher water
content in the soil. In fact, the soil samples were taken on a 20 cm depth. The flying sensors
and the ASD, which measure the soil surface reflectance (drier soil), give similar signatures
except for CASI-2 sensor in the range of 730 to 950 nm. This is probably due to small
inaccuracies in the wavelength and/or radiometric calibration (VITO team, pers. comm.).
Others [12], [13] noticed the same problems.

The regression method presented in 2.4 was applied to 120 bands of both CASI-2 and SASI
spectral data on 102 samples of SOM. The goal is to obtain the best correlation between the
120 spectral bands and the SOM given by chemical analysis. The same work was also done
for the two sensors separately (not presented here). Doing so will reveal the ability of each
sensor to predict SOM from its reflectance information.

In table 2, statistical parameters are provided for two typical models. The first model (3
variables) has all its 3 bands (Ryg:0; Razge and Rozo) situated in the SASI spectral region and is
statistically significant (**). Figure 2 shows the evolution of RZ? values for the different
models and the contribution of each model. When adding more bands the R? value increases
(e.g. for model 5 with 5 bands, the R* reaches 57%). This means that the model 5 can properly
predict SOM with only five spectral bands. This result is in agreement with multi-spectral
bands studies even if the band size is much larger in classical multispectral approaches.

The hyperspectral procedure, using much more channels, is well illustrated by the same
figure. The precision of the models significantly increases with the number of bands. But for
some combinations, this precision decreases (e.g. model 6). The model 16, performed with 12
bands, gives high predicted power (R-value = 0.91 and std. error = 0.32; see Table 2) and is
statistically highly significant (***). Besides this model, R? does not increase more than 5%
even if the number of bands goes to 16. Actual SOM values and predicted values by model 16
are presented on figure 3. It appears that an excellent relationship occurs between the two set
of data.
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Figure 3: Measured and estimated SOM values. Figure 4 : Validation plot showing SOM actual

values vs. predicted values.

Figure 4 illustrates the result based on a validation on an independent set of soil samples by
using the above model. In this validation, spectra were extracted from SASI and CASI-2
images as indicated above. The predicted values are in good agreement with field values (R?
= 0.83). It should be noted that the prediction equation developed in this study is appropriate
only for the area of investigation. But as this validation has been performed on a large area
and on a great number of soil conditions, the current results do indicate that HRS method is
an accurate tool for assessing surface soil organic matter.

Conclusion and perspective

This study shows a methodology to estimate the surface soil organic matter of agricultural
parcels from hyperspectral remote sensing data. These preliminary results appear quite
promising despite some disturbing factors (soil moisture and soil roughness variability,
vegetation debris on the soil surface ...} not yet taken into account. A new APEX campaign in
October 2003 will serve to study these factors more carefully.
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