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ABSTRACT

Soil organic carbon (SOC) represents one of thempeols in the global carbon cycle. However, &aof CQ
from soils into the atmosphere by respiration orensely sequestration of GQhrough photosynthesis and
subsequent immobilisation in the form of humus difécult to quantify. In principle changes in SQstock over
time reflect CQ fluxes. The detection of these stock changes, tenyeequire intensive sampling mainly due to
the large spatial variability of SOC both withirdimidual fields and larger units with similar soélad land use. The
aim of this paper is to evaluate the potential idi@ne-hyperspectral techniques using a CASI geasd hand
held Near Infrared Spectroscopy (NIRS) with an ASiectrometer to conduct SOC inventories of indiaidu
parcels. During a field campaign in the Belgian éades during Octobre 2003, more than 120 sites regar
grid within 13 freshly ploughed fields were selectét these sites, field spectra of the bare sailehbeen
measured and samples from the topsoil were takex@ &ontent (Walkley and Black), soil moisture andkb
density of these samples have been determined fifst step, the soil reflectance has been tramsfd (log (1/R),
Savitsky-Golay smoothing and derivative, gap déiwvea moving average) in order to filter the spattesponses
and to eliminate noise. Then, we used both stepagkpartial least square (PLS) regression analgsielate
these spectra to measured SOC contents. Regressitels performed much better when the data weidetivin
two sub-groups representing different moisture @@ of the soil surface. These statistical mazidibrations
were validated on an independent data set. Starfitaod of Prediction (SEP) ranged from 0.19 to ®%24arbon
for the field spectra determined using the ASD delpgy on soil moisture of the surface layer. Thigilittle bit
more than the reproducibility error inherent to ttMalkley and Black analysis. Airborne CASI techrequ
performed less well mainly due to the narrow sggctinge. Tests on airborne CASI+SASI hyperspedatd from

a previous field campaign [1] showed better resuitgerall, low bias allowed the use of spectrahtégues to
estimate population means with a high confidenselleThe spectral techniques have a strong poteintia
determining changes in carbon tock change stuiiteslarge within field variability of SOC contentegludes the
assessment, using conventional soil sampling, & $anges as a result of management (1 t*£yhd over a
reasonable time period (5 years). Depending owahiance of the SOC content measured in the figld (11-166

t C ha'), we need 16-210 samples to detect a change. Siisceumber of samples is rarely available foiithial
fields, conventional sampling methods can only edufor larger spatial units containing many fieldscontrast,
the airborne-hyperspectral technique and portabiRSNare able to supply these large amounts of dathcan thus
improve the accuracy of SOC stock assessmentdnfidinal fields. This in turn will result in a snhat detection
limit of SOC stock changes.

Keywor ds: soil organic carbon, stock change, hyperspeddimimum Detectable Difference, Partial Least Square
Regression

1INTRODUCTION

Soail organic carbon (SOC) constitutes a large potilin the global carbon cycle. The size of the S&ak within
a given climate depends strongly on the quantitytgpe of organic material entering the soil. Chemim land use
and/or management of agricultural soils will thereflead to changes in SOC stock generally tenttingrds a
new equilibrium status. The assessment of the itnfachanges in land use and/or management on rcdiloces
into or from agricultural soils calls for practicahd accurate method for monitoring these fluxéhe ‘stock
changes’ method is often applied and implies sargdbdefore and after the change in land use or nesmewgt. The
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capacity to detect temporal changes in soil orgaaibon (SOC) is quite limited with traditional Issampling
techniques at the regional scale due to (i) thgelapatial variability of the SOC content and ti¢ slow response
of SOC upon land use conversion. Conventional nteagnt campaigns result often in under-samplinge On
solution consists in reducing the effect of spatiatiability by increasing the number of sample R more
efficient analysis technique is required. Howewrch techniques often compromise the accuracy. NéaRed
Spectroscopy (NIRS) has been shown to be abletesrdime SOC contents rapidly in the laboratory wrefrom
airborne techniques in semi arid regions. Henadférs a great potential in the context of SOC lstowentories
[2-5]. This kind of analysis is cost effective, tf@nd non-destructive, does not use chemical résgem has the
advantages of portability. On the other hand, théthod is less accurate, applicable only to baite and some
disturbing factors can affect the signal like paetisize [4], moisture, soil roughness and vegatadiebris on the
soil surface [1].

Soil spectra show generally three large peakdated to C-H, N-H and O-H bonds near 1400, 19002200
nm and a few smaller ones between 2200 and 250@,n81 NIR sensors have been extensively usea@terchine
SOC [3, 7, 8]. Hyperspectral remote sensing tealesqould yield reasonable results as well, bubfies used for
dry soils in semi arid regions [9, 10].

This paper tries to evaluate the benefits thatoamb-hyperspectral technique and NIRS can offertier
realisation of SOC inventories in C sequestratiadies within a temperate region. The Belgian Artenare used
as a case study area, since [11] have shown ttetsexe land use changes have occurred over thed@s/ears.

2 MATERIAL AND METHOD

2.1 Study Site, Flight Campaign, Sample Collection and Preparation

The study area (35 Knis located in Belgian Ardennes near La Roche-emieAnes (covering a rectangle between
50°9'15"N 5°33'50"E and 50°6'34"N 5°33'36"E). Crom (60 % cereal and 30 % silage corn field) co¥e8%o of
this hilly area consisting of silty, shallow an@rsy soils. Thirteen parcels, freshly tilled, westested and 138
surface soil samples were taken on a regular gnithgl three days as well as 3 samples of bulk depsir field
using 100 cm? steel cylinders. The composite soi@es contain + 20 sub-samples collected to ehded cm on
a 6*6 m square (size of a CASI pixel). Each saniptsation was carefully marked and geo-referenceith(w
Garmin GPS). Soil moisture was measured with a daitiyg soil moisture sensor (Theta-Probe, Delta-iicBs
Ltd) and surface moisture conditions were assegsedlly. Samples were stored in a plastic bag lanodght to
the laboratory for preparation. Soil samples werelded (30 °C) and sieved (2 mm) to remove smadks and
coarse residues. Then, samples were sent to thiee@rovincial d’'Information Agricole in Michampsrf soil
carbon analysis by means of wet oxydation in patasslichromate and sulfuric acid [12]. Soil moiguvas
determined gravimetrically as well. Organic carlsontent (%) was expressed as carbon stock (t'Ctoaa fixed
depth of 30 cm using the bulk density.

Soil spectra were taken from the marked sampliteg di day before and 1 day after the day of tigatfiwith a
portable spectrometer Fieldspec Pro FR (AnalytBéctral Devices - ASD). ASD ranges from 350 to(RBth
and measures reflectance every nanometer.

Airborne hyperspectral data was acquired from tASIE2 (Compact Airborne Spectrographic Imager) sens
mounted on a Dornier 228 aircraft from the NERC t(dal Environment Research Council) deployed by the
VITO. CASI-2 operates in the VIS/NIR region (405896m) with a spatial resolution of 6*6 m and a $gpEc
resolution of 96 bands (every 6 nm). The flightk@bace on a clear and windy day, the 15th Oct@863, when
cereal fields and a part of the corn fields hachbevested, ploughed and harrowed. Images weresatrarically,
radiometrically and geometrically corrected by ¥&O. Spectra were extracted from the data cubeguENVI
(Research Systems Inc). Another data set coming &@revious hyperspectral campaign was analyzéd thve
same methodology. The data contained soil spestrging from 444 nm to 2500 nm (CASI+SASI sensdrsfer
to [1] for information about the study area, groumeasurements and data acquisition.

2.2 Statistical Analysis and Pre-tr eatment

In order to eliminate the noise, soil spectra 1dg (1/R) unit - were preprocessed using Matlab tfiWorks
Matlab, vers. 4.2) with combinations of pre-treattse(Savitsky-Golay smoothing and derivative aldponi [13,
14], gap ¥ derivative, moving average and skip), giving 1&éectent combinations for ASD and 26 for CASI and
CASI+SASI (fig.1). Calibrations were developed fesch pre-treatment using both Stepwise and Partast
Square (PLS) Regression using the SAS statistaetage (SAS Institute, Cary, NC, USA). PLS is aarahtive
and useful regression method to determine SOC ftiRhdata since multiple linear regression has sheame
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limitations [6]. This approach seeks linear combores of the predictors, called factors, that explmth response
and predictor variation. The maximum number of Ra&ors was set to 10 and determined using theid®eed
Residual Sum of Squares (PRESS) statistic and-@aseut cross validation.

CASI samples clearly showing a spectral responfleeimced by the vegetation were removed from the
analysis. ASD samples with low signal-to-noiseaatere also removed from the analysis. For ASD tsagone
range of the signature corresponding to water végaod (1815-1940 nm) was removed. Beyond 2385 he, t
signal tends to be noisy and was eliminated. Dutiregcalibration and validation procedure, samplagng t-
statistic> 2.5 were considered as spectral outliers and rechdvhe expression foiis

X pred - xobs X pred xobs

SEC SEP

where Xeqis % carbon predicted by NIRS andyis % carbon analyzed by Walkley-Black method, S&E@e
standard error of calibration and SEP is the stahelaor of prediction.

for the calibration set anti=

for the validation set, (1&2)

ASD and CASI data were randomly split into two detscalibration and validation (1/4 of soil samg)l@urposes.
The best treatment was the one with the lowesb fa¢tween standard error of calibration (SEC) aaddzard

deviation (SD). SEC is the SD of all the pointairthe reference values in the calibration set. 8=6D ratio is a
measure of the predictive power of the model. Arggrod model has a SEC-to-SD rati®.2. If 0.2 < SEC-to-SD
ratio < 0.5, quantitative predictions should bearegd with caution [15]. The Standard Error of Regoh (SEP),

R? and Bias were also computed to assess the predatility of the model. SEP must be comparecheoSEL

(Standard Error of Laboratory analyses i.e. theoBDifferences between duplicate samples). SEC, SEP. and

SD are expressed in % of organic carbon.
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Fig 1. Example of the effect of some pre-treatments ensibectral signature measured by the CASI of oflesample: (a)
signal without pre-treatment, (b) moving averagaflow size = 5 bands), (¢) moving average (wind@e s= 5 bands) and
gap F'derivative (gap = 4 bands) and (d) Savitsky-G@ldyderivative and smoothing).
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In order to detect an evolution in SOC stocks, éhesed to be determined with the highest precigassible.
Minimum Detectable Difference (MDD) has been calted for each field and for the entire study ahBD is
the smallest detectable difference between tredtmeans once the variation, significance leveljstteal power,
and sample size are specified [16]. Minimum sansjte required to achieve a specified precisionia group
comparisons has been calculated as well. Thisllsdcgower analysis’. Numerous papers addresptbblem of
spatial variability and change detection in SO®.(§16-19]). When samples are unpaired aAds unknown
(unpaired t-test), the minimum sample size in egclp is given by

n= ZEZ (Zi—a/z + 21—/? )2 + le—a/z

MDD? 4

where n is the minimum sample sizew/2-is the significance level; fi-is the power of the test and is the
estimated variance [20]. The last term in the esgiom is a correction factor to enable Normal nathan Student’s
tdistributions to be used.

: ®)

3 RESULTS AND DISCUSSION

Initially, three data sets had to be analyzeddfighbectra from the ASD, airborne spectra from t#SICand

airborne spectra from the CASI+SASI from a previsusdy [1]. We noticed that the soil surface driather
quickly during the first day when the field speatvere measured. Therefore, the question arised ioisture has
to be taken into account in the regression modietkeed, soil moisture affects the signal in severays and can
disturb the spectral response of SOC. The soil ton@scontent of the soil surface was not measunedrather the
soil moisture content of the 0-6 cm topsoil usighithe ThetaProbe and a gravimetric approach.efdrey, field

spectra from the ASD were split in two sub-clas§dwese two groups represent two different topsaistore
conditions encountered during three days of gromedsurements (wet during th& day and dry during the'3
day). CASI data were not split as soil moisturemsed equivalent across all fields during the daylight (the

weather was windy and fields were drying out quickFinally, five different data sets were processkeld

spectra using all ASD data (ASD), field spectrangsihe ASD data in ‘dry’ conditions (ASPand in ‘wet’

conditions (ASR), airborne data from the CASI and the CASI+SASI.

In order to relate the spectra with SOC conteepwise and PLS regression were applied to eactrgamament.
Each model was sorted according to the SEC-to-3D. ratepwise regressions yielded generally goo€ 8kt
SEP were not good enough to produce reasonabléetioed (results not shown). SEP were high probaloly to
collinearity and over-fitting. These problems asmiaily fixed by the standard PLS procedure. Tabdadws, for
each data set, the PLS output statistics of thierbedel. Table 2 presents (combinations of) prattnent yielding
the best model for each data set.

Results suggest that the calibration performedbethen ASD is split into two classes of surfacé moisture.
Validation shows closer results between the data SEP varies between 0.19 (Aj@nd 0.24 (ASD) % of SOC
(Table 1). SEP is an important statistic sincesggesses the ability of the model to predict theiaoy of SOC
predictions at unsampled sites. Another usefulssiaiis the f. When the 7> 0.8, the model allows quantitative
prediction while with an r2 between 0.5 and 0.2 thodel allows only rough estimates [15]. ThefrASD, was
greater than 0.8 denoting a reliable model. Ftof ASD,, and ASD were 0.59 and 0.71 respectively. Low S&C-t
SD ratios indicate very good models for ASahd ASL,. The SEC-to-SD ratio of ASD was not good enough to
make quantitative prediction. Attention should lzdpto the results of ASPand ASL, because there are large
differences between SEC and SEP whereas the vafu®EC and SEP should be normally within 20 % afhea
other [15]. Bias, which is a measure of the diffexe between reference and predicted means, arérdmging
from —0.0261 to 0.0332 %). This implies that modeting the data from the portable spectrometer alo n
systematically under- or overestimate carbon cdatdatermined by the classic Walkley and Black mettThe
PLS regression on CASI data did not yield satigfyiesults (Table 1). The SEC-to-SD ratio is highan 0.5 and
the P is as low as 0.22. Furthermore, the SEP is grétaaerthe SD, which implies that one obtains betsults by
simply using the mean of the calibration set asegliptor of the samples of the validation set thaimg the PLS
model. The CASI+SASI data performed better thanQA&I alone. This is most probably due to the wisigectral
range of the CASI+SASI (444 to 2500 nm) compareth&éoCASI (405-950 nm) sensor and, possibly, duiéo
smaller pixel size (giving a more homogeneous sejfand the larger soil diversity in the other gtacea. The7
is greater than 0.8, the bias is low and the SESBaatio is below 0.5, indicating a good model wdwer, the
SEP (0.34 %) is sensibly higher than the SEC.

The SEL of the carbon analysis using the WalklegeBImethod has been approximately estimated at%.15
SOC. This number has to be used with caution bectiescalculation was based on five replicates eMbeless,
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SEP of ASQ ASD,, and CASI+SASI models are close to the SEL, sugggeshat those portable NIR and
hyperspectral remote sensors could efficiently jote®OC. It should, nevertheless, be noted thatvireance of
SOC samples is small (SOC content varies betwedhth.4.27 %C), so that SEC and SEP are low as \Med
SEP of all models appears to be too high in corsparivith their SD, and therefore carbon contentsirgle
samples estimated by the spectral techniques abalply less reliable. The spectral techniques shitndrefore at
present not be used for precision farming studigs accurately predict carbon contents for cadphic purposes.
However, the low bias enables one to use NIR detdn, ASD and CASI+SAI, to estimate population meaith
confidence using a large number of samples. Iméxe section it will be explained how the mean S¢6tent of a
large number of samples can be used to estimaidl@@s between the soil and the atmosphere.

Calibration robustness is an important issue wipplyang the spectral technigues to different ar@aander
different soil moisture status. The results frora different dates and pilot areas have yieldecewfit calibration
curves (Table 1). Therefore, at present calibratias to be developed simultaneously with the flghtluring the
field campaign in order to monitor the disturbirgtbrs. This can be tedious. Moreover, soils instudy area are
quite homogeneous (small variance in SOC contethtsanilar soil texture) so that the models devetbpere are
applicable only to our study area.

Table 1. Calibration and validation statistics for ASD, CASIASI+SASI data.

Calibration Cross-validation Validation

Total X Total Y Minimum  Number
Data type N variatior? variatior? RMPRESS of PLS N?

SEC SD' SEC
(% C) (% C) to SD

SEF  ,  BIAS
(% C) (% C)

(%) (%) (% C)  factor$
ASDy 49 61.39 99.83 0.010.36 0.04 0.62 9 13 0.19 0.84 0.0046
ASD,, 31 4155 97.26 0.050.27 0.17  0.80 4 9 0.23 0.59 -0.0261
ASD 80 99.52 53.10 0.230.34 0.69 0.78 4 22 0.24 0.71 0.0332
CASI 89 8.23 4859 0.270.39 071  0.87 1 30 0.41 0.22 -0.0120
CASI+SASI 70 98.92 86.77 0.230.63 0.36 0.62 10 26 0.34 0.87 0.0536

@ Number of samples in the calibration/validationqedure? total predictor (X) or response (Y) variation (&&plained by the
model, Standard Error of Calibration (SEC) and Rtimh (SEP)? Standard Deviatiorf, Root Mean Predicted Residual Sum of
Square$ smallest number of PLS factors determined by thesevalidation procedure.

Table 2. Best pre-treatments Table 3. SOC statistics per field

Variance C.V. MDD a

Datatype Mathematical pre-treatment type ID N tCha?l) (tCha) (tC had) n
moving average with a wimgv size of @ g 17 0 1161683?6 (())013;, 5'7580 1805
ASDqy bands, 1st derivative with a gap o ' : :

bands, keep one band every 10 nm c 11 21.24 0.06 5.76 14

L 11 149.37 0.12 15.28 95

ASD,, 1st derivative with a gap of 2 bands, k M 11 52.20 0.08 9.03 34
one band every 10 nm N 11 12404 012 1393 79
SavitskyGolay smoothing with a 3 o 11 21.05 0.07 S.74 14

ASD  polynomial covering 40 nm, keep c P 11 101.08 0.14 1257 64
band every 5 nm Q 11 105.64 0.11 12.85 67

o . R 11 113.09 0.12 13.30 72

CASI 1st devivative with a gap of 1 band s 11 2504 0.06 6.26 17
CASI+SASI no pre-treatment T 11 91.26 0.12 11.95 58
U 11 68.54 0.09 10.35 44

ALL 121 148.58 0.14 4.41 94

& Number of samples each group required to detect a
stock change of 5 tC Haresulting from a hypothetical
management change.
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4 APPLICATION

The major problem that soil C sequestration or simisstudies have to cope with is the large spatahbility.
The intra-field variability of the study area is timle same order of magnitude as the variabilitpsrll fields
(Table 3). As a consequence, it requires many sesripl calculate a SOC stock for an individual fiflde MDD
expresses the smallest amount of change that cabdaeved with a given spatial variability and seampumber.
Figure 2 shows MDD as a function of sample size\arihince observed in the study area. The samplbegsity
of our study (+ 11 samples per field) yields MD2mging from 5.55 t C hato 17 t C h&. MDD of the entire
study area (considered as a homogeneous spatiplsulmwer (4.41 t C H§ because of the larger sample size and
comparable variance. In order to detect a SOC ehasa result of management of 1 t C k&' [21, 22] over a
reasonable time period (5 years) applied acrod&hls, one requires 8-105 samples per field @&l To detect a
similar change in the mean SOC stock in the estindy area, the number of samples required isdrséime order
of magnitude (n = 94).

Conventional sampling strategies are often too tooesuming and expensive to provide such amount of
samples. Such sampling intensity can only be aeldiavhen studies are carried out on larger spatigs.uJsing
airborne hyperspectral and portable NIR sensotsgdbmes much more feasible to obtain these laugear of
samples. Since the bias is close to zero, NIR nmeasnts can be used as a reliable estimator dfrthe2 mean
SOC content. Hyperspectral remote sensing is alppedvide a large amount of samples (x 250 pixetshya with a
spatial resolution of 6m*6m) but is less accuratant hand held spectrometers. However, to use pertab
spectrometers is more time-consuming. Three impbgaints should be kept in mind. Firstly, modeds/é been
calibrated in such a way that bias was minimizdte $tudy area is small and soils or managementaypejuite
homogeneous. This reasoning is thus only validsfiorilar soils and management type. It stressesideel of a
larger study area, to calibrate models on a largege of soils. Secondly, the MDD and its assodiatember of
samples are calculated from parametric statistieadry which is based on the independence of thplss. It is
well-known that the spatial correlation is quaetifiby the range of the semivariogram. For SOC rtegaanges in
the semivariograms vary between 50 and 343 me28tsi{levertheless, as shown in Ref. [23], measunésteould
be made at least at the sub-meter or meter levidgoribe the variability of soil properties. Tiydhese methods
are only useful for arable soils. On the one hane,airborne spectral techniques use the refleetafthe bare
soils and on the other hand these techniques argbieto detect vertical gradients in SOC witlia topsoil. For
arable soils this is not a major problem sincetdipsoil is mixed during ploughing.

50
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40 4 =& yar min
var study area
<304 ® 0 tmmmrs Management
< change
e
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Fig.2. Minimum Detectable Difference as a function of gtarsize and variance
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5 CONCLUSION

This study evaluates the application of NIRS ineassg the changes in SOC leading to C sequestratio
emission. The handheld ASD spectrophotometer (JR02m) produced more accurate estimations of 3@€ t
hyperspectral remote techniques. ASD performectbethen the data set was split in two classes septig soil
surface moisture condition. Results from the aimbo€ASI sensor (405-950 nm) were not good enoughake
quantitative prediction. The airborne CASI+SASIs@n(444 — 2500 nm) yielded reasonable resultdgbly due
to its larger spectral range. It appears that tiemo universal calibration due to various disitugbfactors and
different soil type. Calibration should be done digneous with the flight or the ground measuremsént
compensate for these disturbing factors. Calibnasibould also be done on a larger study area tedse soil
diversity. Models showed low bias, suggesting tNERS can efficiently estimate population mean. Tage
amount of samples provided by these techniqueseasibly reduce MDD, which is important for assegsmall
differences in SOC stocks between different datkese differences can then be used to assess setu@stration
or emission.

ACKNOWLEDGMENTS

This work was funded under the PRODEX programmtnefEuropean Space Agency (contract number C90166)
and the support is gratefully acknowledged. We grateful to the Vlaamse Instelling voor Technolebis
Onderzoek (VITO) for organizing the flight campaignd carrying out the spectral measurements ogribhiend.

We also wish to thank T. Stevens, C. Schmit an@Mvin for their assistance during the field measents.

REFERENCES

[1] TOurg S.AND TYCHON, B., 2003: Estimation of soil organic matter by meaf hyperspectral data analysis.
Paper presented at the CASI-SWIR2002 Workshop, &rugeptember 4, 2003.

[2] McCaARTY, G.W. AND REEVESIII, J.B., 2001: Development of rapid instrumental methiodsneasuring soil
organic carbon. In: Lal, R. (ed.): Assement metHodsoil carbonpp. 371-380. Lewis, Boca Raton.

[8] MARTIN, P.D., MALLEY, D. F., MANNING, G. AND FULLER, L., 2002: Determination of soil organic carbon and
nitrogen at the field level using near-infraredapescopy Canadian Journal of Soil Science 82 (4), pp. 413-422.
[4] Reeveslll, J.,McCaARTY, G. W. AND MIMMO, T., 2002: The potential of diffuse reflectance speciopy for
the determination of carbon inventories in sdisvironmental Pollution 116 (S1), pp. 277-284.

[5] McCaRTY, G.W., REEVESIII, J.B., REEVES V. B., FOLLETT, R.F. AND KIMBLE, J.M., 2002: Mid-infrared and
near-infrared diffuse reflectance spectroscopystol carbon measuremersoil Science Society America Journal
66 pp. 640-646.

[6] FIDENCIO, P.H., PoPp| R.J.,DE ANDRADE, J.C. AND CANTARELLA, H., 2002: Determination of organic matter
in soil using near-infrared spectroscopy and plaldiast squares regressid@ommunications in Soil Science and
Plant Analysis 33 (9-10), pp. 1607-1615.

[7] CHANG, C.-W.AND LAIRD, D. A, 2002: Near-infrared reflectance spectroscopic amalyf soil C and NSoil
Science 167 (2), pp. 110-116.

[8] SubbuTH, K. A. AND HUMMEL, J. W., 1993: Soil organic matter, CEC, and moisture sengiith a portable
NIR spectrophotometeTransactions of the ASAE 36 (6), pp. 1571-1582.

[9] BEN-DOR, E., PATKIN, K., BANIN, A. AND KARNIELI, A., 2002: Mapping of several soil properties usibwylS-
7915 hyperspectral scanner data - a case studyclayery soils in Israelnternational Journal of Remote Sensing
23 (6), pp- 1043-1062.

[10] PaLACIOS-ORUETA, A. AND UsSTIN, S. L., 1999: Remote sensing of soil properties in $snta Monica
Mountains. I. Spectral analysRemote Sensing and Environment 65 pp. 170-183.

[11] PeTiT, C.C. AND LAMBIN, E. F.,2002: Long-term land-cover changes in the BelgiadeAnes (1775-1929):
Model-based reconstruction versus historical m@jsbal Change Biology 8 (7), pp. 616-631.

[12] WALKLEY, A. AND BLACK, I. A., 1934: An estimation of the Degtjareff method fotedmining soil organic
matter and a proposed modification of the chromid &tration methodSoil Science 37 pp. 29-37.

[13] SaviTzKy, A. AND GOLAY, M. J.E., 1964: Smoothing and differentiation of datasbyplified least squares
proceduresAnalytical Chemistry 36 (8), pp. 1627-1638.

[14] STEINER, J., TERMONIA, Y. AND DELTOUR, J., 1972: Comments on smoothing and differentiatibdata by
simplified least square procedufmalytical Chemistry 44 (11), pp. 1906-1909.

[15] CouTeEAUX, M.-M., BERG, B. AND ROVIRA, P., 2003: Near infrared reflectance spectroscopygdtermination
of organic matter fractions including microbial fniass in coniferous forest soifil Biology and Biochemistry 35
(12), pp- 1587-1600.



Proceedings of the Airborne Imaging Spectroscopy Wor kshop - Bruges, 8 October 2004

[16] GARTEN, C. T. AND WULLSCHLEGER S. D., 1999: Soil carbon inventories under a bioenecggp
(Switchgrass): measurement limitatiodaurnal of Environmental Quality 28 pp. 1359-1365.

[17] CoNANT, R. T., SMITH, G. R. AND PAUSTIAN, K., 2003: Spatial variability of soil carbon in &sted and
cultivated sites: implications for change detectimurnal of Environmental Quality 32 pp. 278-286.

[18] HomANN, P.S.,BORMANN, B. T. AND BoYLE, J.R., 2001: Detecting treatment difference in soiboa and
nitrogen resulting from forest manipulatio®sil Science Society America Journal 65 (2), pp. 463-469.

[19] YaNAI, R. D., STEHMAN, S.V., ARTHUR, M. A., PRESCOTT, C. E., FRIEDLAND, A. J., SICCAMA, T. G. AND
BINKLEY, D., 2003: Detecting change in forest floor cartfnil Science Society America Journal 67 (5), pp. 1583-
1593.

[20] CamPBELL, M. J.,JuLious, S. A. AND ALTMAN, D. G., 1995: Estimating sample sizes for binary, ceder
categorical, and continuous outcomes in two graupparisonsBritish Medical Journal 311 pp. 1145-1148.

[21] Guo, L. B. AND GIFFORD, R. M., 2002: Soil carbon stocks and land use change: a aralysis.Global
Change Biology 8 pp. 345-360.

[22] PosT, W. M. AND KwWON, K. C.,2000: Soil carbon sequestration and land-use chg@ngeesses and potential.
Global Change Biology 6 pp. 317-327.

[23] SoLE, J. B., RAUN, W. R. AND STONE, M. L., 1999: Submeter spatial variability of selectsnll and
Bermudagrass production variabl8sil Science Society America Journal 63 pp. 1724-1733.



