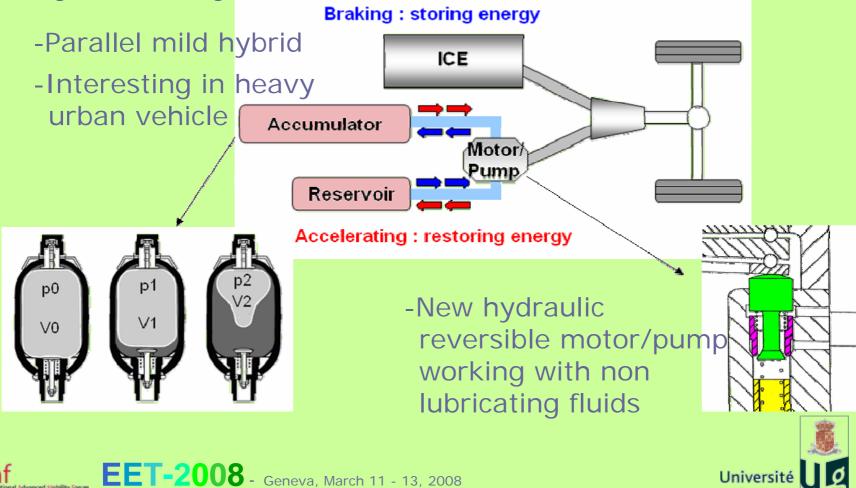
Analysis of hybrid hydraulic vehicles and comparison with hybrid electric vehicles using batteries or super capacitors

Yannick Louvigny, Jonathan Nzisabira and Pierre Duysinx LTAS – Automotive Engineering University of Liège

Introduction


- Great efforts to reduce CO_2 emissions from the transportation sector
- Research for alternative propulsion systems to conventional vehicles using internal combustion engine
- The hybrid electric vehicle (HEV) generally considered as a short term solution
- Another interesting solution that can rise soon is the hybrid hydraulic vehicle (HHV)

Introduction

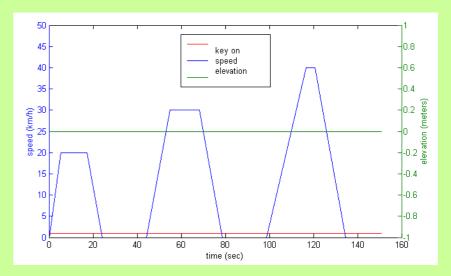
• Hydraulic hybrid vehicle

de Liège

- Simulation and comparison of different solutions adapted to urban buses
 - A conventional internal combustion diesel engine that will serve as a reference configuration
 - A mild HEV using batteries as energy storage system
 - A mild HEV using super capacitors as energy storage system
 - A HHV based on a reversible hydraulic motor pump and hydraulic accumulators
- Modeling and simulation of the vehicles with the software ADVISOR

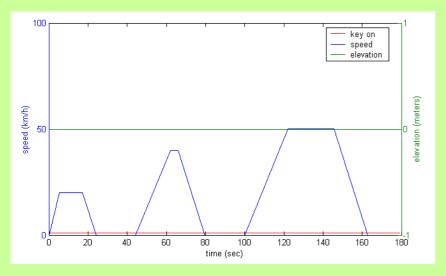
- Calculation of the fuel consumption of the buses on three drive cycles
- Estimation of the development and fabrication cost of the three hybrid systems
- Comparison of the cost of one solution with the annual savings that it allows and calculation of the payoff period

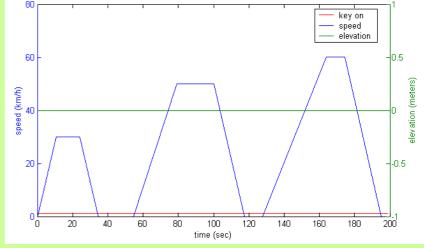
Simulation tools


- ADVISOR is a software code, developed in the MATLAB/Simulink environment, allowing to tailor quickly vehicle models (conventional or hybrid electric) and to simulate their fuel consumption and performance on given drive cycles
- ADVISOR includes a "SOC correction" option, which constrain to the state of charge (SOC) at the end of the cycle to be equal to the SOC at the beginning of the cycle within a given tolerance chosen by the user

SORT drive cycle

 The buses are simulated on the three SORT (standardized onroad test) drive cycles developed by the UITP (International association of public transport)




Heavy urban SORT drive cycle Commercial speed = 12 kph

SORT drive cycle

Easy urban SORT drive cycle Commercial speed = 17 kph Commercial speed = 27 kph

Suburban SORT drive cycle

Vehicles design and modeling

- Conventional bus based on Vanhool A300 bus
- Hybrid buses designed to have equivalent or even better performance (max speed, gradeability and acceleration) than reference bus
- Hybrid ratios and size of the storage systems chosen to give the smallest fuel consumption (parametric studies)

Conventional bus

Diesel engine	Power	205 kW	
	Max Efficiency	44 %	
Aerodynamics	S	7.24 m ²	
	Сх	0.79	
Tires	Rolling resistance	0.00938	
	Rolling Radius	0.5 m	
Vehicle	Curb weight	11280 kg	

EET-2008 - Geneva, March 11 - 13, 2008

HEV bus with batteries

Diesel engine	Power	150 kW	
	Max efficiency	44 %	
AC induction	Power	39 kW	
motor	Max efficiency	92 %	
NIMH batteries	Voltage	574 V	
	Energy	26.25 kWh	
Vehicle	Curb weight	11663 kg	

HEV with super capacitors

Diesel engine	Power	160 kW	
	Max efficiency	44 %	
AC induction	Power	64 kW	
motor	Max efficiency	92 %	
Maxwell	Voltage	390 V	
BMOD0018	Available energy	0.564 kWh	
Vehicle	Curb weight	11542 kg	

Hybrid hydraulic bus

Diesel engine	Power	160 kW	
	Max efficiency	44 %	
Reversible Power		64 kW	
motor/pump	Max efficiency	92 %	
Accumulator	Max pressure	345 bar	
+reservoir	Energy	0.771 kWh	
Vehicle	Curb weight	12318 kg	

<u>Results</u>

- Methodology
 - Consumption calculated for each bus configuration
 - Calculation of the fuel savings compared to the reference bus
 - Estimation of the hybrid system costs (literature)
 - Calculation of the annual economy (brake maintenance and fuel savings) on the basis of a annual traveled distance of 45000 km
 - Calculation of the annual cost of the storage system
 - Estimation of the payback period

Fuel savings

	ICE	HEV Bat.	HEV SC.	HHV
Consumption SORT 1 (I/100km)	64.1	48.6	54.7	53.1
Saving SORT 1 (%)	-	-24.2	-14.7	-17.2
Consumption SORT 2 (I/100km)	52.6	42.1	43.0	43.9
Saving SORT 2 (%)	-	-20	-18.3	-16.5
Consumption SORT 3 (I/100km)	46.9	36.2	37.5	40.4
Saving SORT 3 (%)	-	-22.8	-20.0	-13.9

Payback HEV with batteries

Hybrid system cost (€)	+27760		
Energy storage cost (€/year)	+2617		
Brake economy (€/year)	-850		
Fuel economy (€/year)	-7631	-5169	-5268
Economy (€/year)	-5864	-3402	-3501
Payoff period (years)	4.7	8.2	7.9
	Sort 1	Sort 2	Sort 3

Payback HEV with super **capacitors**

Hybrid system cost (€)	+18273		
Energy storage cost(€/year)	0		
Brake economy (€/year)	-850		
Fuel economy (€/year)	-4628	-4726	-4628
Economy (€/year)	-5478	-5576	-5478
Payoff period (years)	3.3	3.3	3.3
	Sort 1	Sort 2	Sort 3

Payback HHV

Hybrid system cost (€)	+20113		
Energy storage cost(€/year)	Ο		
Brake economy (€/year)	-850		
Fuel economy (€/year)	-5415	-4283	-3200
Economy (€/year)	-6265	-5133	-4050
Payoff period (years)	3.2	3.9	5
	Sort 1	Sort 2	Sort 3

Conclusion

- All the three hybrid solutions are environmentally friendly and economically attractive
- HEV with batteries is the best in terms of CO₂ reduction but it is penalized by the cost of the batteries
- HEV with super capacitors offers a short payoff period in every driving conditions
- HHV has also a good payoff period in particular in heavy urban traffic

Thank you for your attention

