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Abstract

One strategy developed by bacteria to resist the action of B-lactam antibiotics is the expression of metallo-f-
lactamases. CphA from Aeromonas hydrophila is a member of a clinically important subclass of metallo-f3-
lactamases that have only one zinc ion in their active site and for which no structure is available. The crystal
structures of wild-type CphA and its N220G mutant show the structural features of the active site of this enzyme,
which is modeled specifically for carbapenem hydrolysis. The structure of CphA after reaction with a
carbapenem substrate, biapenem, reveals that the enzyme traps a reaction intermediate in the active site. These
three X-ray structures have allowed us to propose how the enzyme recognizes carbapenems and suggest a
mechanistic pathway for hydrolysis of the B-lactam. This will be relevant for the design of metallo-p-lactamase
inhibitors as well as of antibiotics that escape their hydrolytic activity.
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Abbreviations used: WT, wild-type ; r.m.s., root-mean-square ; ICP-MS, inductively coupled plasma-mass
spectrometry.

Introduction

B-Lactam antibiotics have been used successfully for several decades to target the enzymes involved in the last
step of peptidoglycan synthesis. Nowadays, the worldwide spread of B-lactamase-pro-ducing organisms is an
important public health threat. Metallo-B-lactamases, enzymes containing approximately 230 residues, are
clustered into three different subclasses, B1, B2, and B3.* Sequence identity ranges from 0.40-0.25 in one
subclass and from 0.20-0.10 between subclasses. Subclass Bl enzymes have been found in strains of Bacillus,
Bacteroides, Pseudomonas, Serratia, and Chryseobacterium, and subclass B3 enzymes have been found in
strains of Stenotrophomonas, Legionella, Fluoribacter, Janthinobacterium, and Caulobacter. Both the Bl and B3
subclasses have a broad-spectrum profile (including penicillins, cephalosphorins, and carbapenems) and, in vitro,
require two zinc ions for maximal enzymatic activity. However, metallo-B-lactamases can display different
metal-binding affinities for zinc ion and, at low concentrations (picomolar range) of free zinc appear to be active
with a single zinc ion per monomer.? Subclass B2 enzymes have a narrow substrate profile, hydro-lyzing
carbapenems almost exclusively. These carbapenemases are produced by various species of Aeromonas and are
active only in the monozinc form.® In contrast to the situation with serine-B-lactamases, no clinically approved
metallo-B-lactamase inhibitor is available.

X-ray structures have been reported for enzymes of subclasses B1 and B3,*® and all show the existence of a
binuclear zinc active site. The Zn1 site is formed by a triad of histidine residues in both subclasses, whereas the
Zn2 site is formed by an Asp-Cys-His triad in subclass B1 and by Asp-His-His in subclass B3. Interestingly, on
the basis of sequence alignments, subclass B2 proteins have Asn-His-His and Asp-Cys-His triads for the Zn1 site
and the Zn2 site, respectively.

Scheme 1. The reaction catalyzed by the CphA enzyme.
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To obtain a better understanding of the metallo-B-lactamase family and of their catalytic mechanism, we have
produced the first crystal structures of the wild-type (WT) and N220G mutant forms of the subclass B2
Aeromonas hydrophila enzyme CphA. These structures reveal that this enzyme has a single zinc ion in the active
site, located in the Zn2 site. Furthermore, by forming a complex of CphA and the antibiotic biapenem (Scheme
1), we were able to trap a reaction intermediate. This is the first crystal structure of a metallo-p-lactamase with
an antibiotic molecule bound in the active site.

Results
Wild-type CphA structure

Aeromonas hydrophila CphA consists of 227 amino acid residues with a calculated molecular mass of 25.2 kDa.
Since crystals of the WT CphA protein could not be obtained, ten single-site mutants were engineered by site-
directed mutagenesis and overproduced. The mutants were selected in order to introduce residues that are
conserved in either subclass B1 or B3, or in both. The N220G mutant crystallized in a few days, allowing us first
to solve the structure of the mutant, then to grow WT crystals. The kinetic parameters of the WT and N220G
mutant enzymes were not significantly different, indicating a good conservation of the WT functional properties
for the mutant (Table 1). The structure of the WT protein was solved by molecular replacement using the CphA
mutant structure as the starting model and was refined to a resolution of 1.7 A. The R-factor and Ry, for the
refined structure were 0.19 and 0.20, respectively. The crystals adopt a C222, space group with one molecule in
the asymmetric unit. The crystallographic and model statistics for the WT and N220G mutant structures, together
with that for the biapenem-CphA complex, are reported in Table 2.

The model of the WT structure includes 224 amino acid residues (41-304, using the BBL numbering)," the
catalytically essential zinc ion, one carbonate anion located in the active site, one sulphate ion, and 178 water
molecules. The electron density for Pro305 (excluding the N backbone atom) and for the last two residues of the
polypeptide chain was not interpretable.

CphA is a monomeric globular protein having the general appo fold as described (Figure 1).* Four B-strands (B1,
B2, B3, and p4), two helix-strand elements (a1p5 and a2f36), one long a-helix (a3), and the B7 strand form the N-
domain, while four B-strands (8, 9, 10, and B11) one 3, helix, the a4 helix, the BI2 strand, and the a5 helix
form the C-domain. The N and C-domains face each other through sheets f1-7 and 8-12. The al and a2 helices
of the N-domain and helices a4 and a5 of the C-domain are located externally on opposite faces of the -strand
core. In contrast to all reported Bl and B3 subclass structures, a long o3 helix is located near the active-site
groove. The a3 helix, formed by residues Arg140-Leul61, has a kink, which allows the helix to follow the
curvature of the protein. The helix is followed immediately by an unusual proline-rich loop (Pro162, Prol165,
Prol168, and Pro172). Comparison of the fold for one representative of each subclass is represented in rainbow-
coloured ribbon in Figure 2. Only non-conserved secondary structures in the three subclasses are labelled to
highlight structural differences in the superfamily.

Table 1. Kinetic parameters of the wild type and selected mutants of CphA

Imipenem Biapenem
Enzyme kcat (S-l) Km (HM) I(cat/Km kcat(si) Km (HM) kcat/Km
(M-ls—l) (M—ls-l)
Wild-type 1200 340 35x10° 300 166 1.8x10°
N220G 390 50 7.8x10° 160 118 1.3x10°

S.D. values were below 10%.
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Table 2. Data collection, phasing and refinement statistics

CphA CphA HgMAD CphA-biapenem

Dataset Native Mutant A mutant Complex
(peak)

A. Data collection statistics
Wavelength (A) 0.9795 0.9797 1.00783 1.54179
Resolution (A)* 23.6-1.70 (1.79-1.70) 58.9-1.60 (1.69-1.60) 58.7-1.65 26.5-1.90 (1.96-1.90)
Unique reflections 27,567 32,222 30,753 20,636
Space group C222, C222, C222, C222,
Unit cell dimensions
a (A 42.63 42.67 42.69 42.83
b (A) 101.21 101.08 101.40 101.51
c(A) 118.23 117.36 117.26 117.36
Completeness? (%) 94.7 (94.7) 93.1(93.1) 96.0 (96.0) 99.9 (99.9)
Multiplicity® 3.5(3.0) 5.8 (3.4) 6.4 (3.9) 5.9 (5.2)
Reym™ (%) 12 (31) 5(7) 5 (8) 12 (29)
I/s(1)? 3.9(1.8) 8.7 (8.1) 11.1(7.4) 12.6(6.6) 3.7 (2.1)
B. Phasing statistics
Heavy-atom sites 1
FOM (centric/acentric) 0.66/0.78
C. Refinement statistics
R-factor/Ryee™® (%) 18.5/20.3 15.6/18.1 15.4/18.5
R.m.s. deviations
Bond lengths (A) 0.017 0.011 0.017
Bond angles (deg.) 1.63 1.36 1.75
Number of atoms
Protein 1759 1775 1759
Zn 1x1 1x1 1x1
Carbonate 1x4 1x4 -
Biapenem - - 1x25
Sulphate 1x5 3x5 6x5
Glycerol - 2X6 1x6
Water 178 258 188
Average B-factor (A?)
Protein 15.9 12.2 18.1
Zn 13.9 10.5 17.8
Carbonate 24.5 23.9 -
Biapenem - - 23.9
Sulphate 33.7 325 35.0
Glycerol - 33.7 42.3
Water 23.7 23.3 26.6

# Numbers in parentheses are for the highest-resolution shell.
® Rym = X1(KI) - (I(hkI) DV'S. (I(hkd) ).

¢ R-factor = Y |Fo(hkl) - Fc(hkI)|/Y|Fo(hkI).
% Riree Was calculated based on 5% of the total data omitted during structure refinement.
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Figure 1. Stereo view of the three-dimensional structure of the wild-type Aeromonas hydrophila CphA metallo-
P-lactamase. a-Helices are shown in red, the 3, helix in orange, strands in cyan, and loops in yellow. The zinc
ion is represented as a green sphere. The triad of zinc ligands D120, C221, and H263, together with the
carbonate ion bonded to the metal ion, are shown.

Figure 2. Ribbon representations of the three subclasses; (a) BCII from Bacillus cereus, (b) this work and (c)
FEZ-1 from Fluoribacter gormanii. The ribbon is coloured along the sequence on a residue-per-residue basis by
a rainbow colour ramp. Secondary structure elements not conserved in one subclass are labelled. Zinc ions are
represented as a grey sphere.

The /¢ angles of Tyr60, Thr86, Ala195, Asn220, and Asp264 are located in the disallowed areas of the
Ramachandran plot. The last three are adjacent to an amino acid involved in one of the zinc-binding sites (Zn1 or
Zn2) and, in most other sequences, are glycine residues. Tyr60 is on a loop connecting two B-strands (2 and
B3), which force Tyr60 to adopt a strained conformation (y = 58°; ¢ =-123°). Thr86 is on a loop connecting 4
to al and is adjacent to Trp87. A group of hydrophobic side-chains (Tyr59, Val67, Trp87, Tyrl64, Pro165, and
Phe236), together with other side-chains located on the a3 helix (Ile153, Phe156, and Leul61), appear to form a
"hydrophobic wall", which defines the active site. Ala 195 (y =-160°; ¢ = -160°) is located on a loop between
strands B8 and 9, which, at its apex, bears His196, which is involved in the active-site hydrogen bond network.
Asn220 is the first residue of the 3 helix and precedes the zinc-coordinating residue, Cys221, while Asp264
follows another zinc-coordinating residue, His263. Both Asn220 and Asp264 have a strained conformation of
about y = 60° and ¢ = -160°. Another important residue in the CphA structure is Gly84. All available B2
subclass sequences show a glycine residue at position 84, while B1 and B3 subclass enzymes have a buried Asp
(or exceptionally an Asn), which adopts a strained conformation.® Gly84 interrupts the p4 strand and turns the
protein backbone through 90°, creating a hole inside the CphA structure that is occupied by a buried water
molecule close to the Glu69 and Arg121 side-chains. The water molecule has a low B-factor (9 A%) and makes
three hydrogen bonds: two with backbone atoms (the nitrogen atom of Thr40 and the carbonyl oxygen atom of
Asp90) and one with the hydroxyl group of Ser25. Those bonds should increase the stability of the protein. In the
CphA structure, there are four buried charged residues, Asp57, Glu69, Arg121, and Asp199, the first three of
which lie close together. Glu69 and Arg121 form a salt-bridge, while Asp57 and Glu69 form a very short
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hydrogen bond (2.5 A), indicating the presence of a shared hydrogen atom between the two side-chains. The
side-chains of Asp57 and Glu69 bridge the B2 and B3 strands, but these residues are not conserved in the other
sequences. Asp199, conserved in subclasses B1 and B2, makes two hydrogen bonds with the Thrl42 and Thr197
side-chains. The importance of Arg121 and Asn220 is discussed in the following section.

Secondary structure elements bear two of the three residues involved in zinc coordination, Asp120 in the a2
helix and Cys221 in the 3,4 helix. The third residue, His263, is located on the loop connecting $12 and 13
(Figure 1). The distances between the Zn atom and the Asp120 carboxyl oxygen atom, the Cys221 sulfur atom,
and the His263 side-chain nitrogen atom are 1.96 A, 2.20 A, and 2.05 A, respectively. Finally, a carbonate ion is
bonded to the zinc (2.09 A), and the four coordinating atoms, from Asp120, Cys221, His263, and O1 of CO5%,
generate a tetrahedral geometry around the metal ion.

It is interesting to note that the first reported metallo-B-lactamase structure shows the zinc ion in site Zn1.*
However, since the crystal structure of WT CphA was obtained from a crystal soaked in a solution containing a
large excess of Zn®* (10 mM), the presence of a single zinc ion in site Zn2 suggests that the monozinc species
represents the native form of the B2 enzyme, CphA.

The N220G mutant structure

The refined structure of the mutant is essentially similar to that of the WT. The root-mean-square (r.m.s.)
deviation between the C* atoms of the two structures is 0.16 A. Better-diffracting crystals allowed us to model
the position of all 227 residues of the protein in the electron density map. Furthermore, the model contains one
zinc ion, a carbonate ion located in the active site, three sulphate anions, two glycerol molecules, and 263 water
molecules. The structure of the mutant shows two main features not seen in the structure of the WT enzyme. The
first is that the N220G mutation leads to a localized conformational change in the protein backbone involving
mainly residues Tyr218-Gly220 (Figure 3). In the WT structure, the last residue of 11, Tyr218, has backbone
angles of ¢ = - 79° and y = 122°. Asn220 is the first residue of the 340 helix, and Gly219 connects these two
secondary structure elements. In the mutant structure, Gly220 increases the flexibility of the protein backbone,
Tyr218 turns to = -114°, y = 133° and allows the Tyr218 hydroxyl group to form a hydrogen bond with the
Val203 backbone nitrogen atom; two water molecules occupy the volume no longer occupied by the Asn220
side-chain. The second feature is a consequence of the previous one. The increased backbone mobility due to the
N220G mutation alters the ability of Cys221 to coordinate the zinc ion. As a consequence, the zinc ion occupies
two sites that are 1.5 A apart, the WT site and the new site, with respective occupancies of 0.75 and 0.25 (Figure
2). In the new site, the zinc ion again presents a tetrahedral geometry with the Asp120-Cys221-His263 triad, but
the fourth coordinating atom is NH2 of the buried Arg121. The distance between NH2 and the zinc in the new
site is 2.3 A and, surprisingly, the Arg121 side-chain seems to act as an electron donor for the zinc. Such
coordination is unusual in proteins. To look for an example in small molecules, the Cambridge database® was
searched, yielding the X-ray structure of a 1:1 complex between [(2-guanidinyl)ethyl-cyclen] and zinc, which is
stable in aqueous solution at pH 7.5. In this small molecule complex, four nitrogen atoms of a cyclen ring and a
nitrogen atom of guanidine in an imine form coordinate the zinc ion. In the WT and mutant CphA structures, the
buried Arg121 side-chain makes several hydrogen bonds in the core of the protein with Glu69, Asn70, Tyr218,
and Gly262 (Figure 3). Interestingly, in the mutant CphA structure, the buried Arg121 maintains all hydrogen
bonds, whatever the position of the zinc. The guanidine group of the free arginine has a pK, of around 12.5. The
local environment inside the enzyme may significantly lower the pK, value to generate the imine form of the
guanidine group, which explains the observed coordination for zinc with a low occupancy.

The CphA-biapenem complex structure

Crystals of the CphA-biapenem complex were obtained by soaking crystals of the N220G mutant in mother
liquor containing the antibiotic. The structure was solved by molecular replacement and, after refinement of all
protein atoms, a difference electron density map (|Fcompiex| - |Fmutant]) Was calculated,where |Feompiex| 2nd |Fmutant]
are the structure factor amplitudes of the mutant crystal soaked in solution containing biapenem and of the
mutant crystal alone, respectively). A well-defined electron density in the active site could not be interpreted as
either a biapenem or a hydrolyzed biapenem molecule. The presence of two fused rings near the zinc ion was an
unexpected finding (Figure 4). In order to shed light on this observation, substrate and product inhibition studies
were initiated. The kinetic data clearly support the model of product inhibition with K; values of 320 pM and
300 pM (x10%) for the WT and N220G enzymes, respectively. Both map interpretation and kinetic data agree
with the presence of an intermediate in the hydrolysis reaction. The complex with the WT enzyme was prepared;
however, the extra electron density in the active site was weaker, indicating a lower occupancy of the ligand
bound to the enzyme. The refined CphA-biapenem complex structure comprises 227 protein residues, one zinc
ion, six sulphate anions, and the intermediate molecule located in the groove of the active site with full
occupancy. The r.m.s. deviation between the C* atoms of the complex and mutant structures is 0.17 A.
Superimposition of the two structures shows that the binding of the intermediate induces a very localized
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conformational change (G232-N233) in the active site (Figure 4). The intermediate is bonded to the zinc ion
located at the WT position. The distance from the nitrogen atom of the p-lactam ring (N4) to the Zn** is 2.22 A
(Table 3). N4 also forms a hydrogen bond with Wat11 (2.9 A) (Figure 5), which, in turn, forms hydrogen bonds
with Asp120 and His118. The distance between Watll and the zinc atom is 3.39 A. It was immediately clear
from the first difference electron density map that the f-lactam ring had been cleaved between N4 and C7.

Furthermore, the map clearly indicated the presence of two free carboxyl groups in positions C3 and C7 (Figure
4).

Figure 3. Stereo view of the active site of the N220G CphA mutant showing the backbone conformational
change and the zinc coordination environment. The Y218-C221 residues of the wild-type CphA are coloured in
magenta and superimposed for comparison. The two partially occupied positions of the zinc ion in the mutant
are shown. The "natural” coordination position of zinc with occupancy 0.75 has D120, C221, H263, and a
carbonate ion as ligands. The second coordination position with occupancy 0.25 has D120, C221, H263, and
R121 as ligands. Water molecules referred to in the text and the hydrogen bond network in the active site are
shown.

Table 3. Interactions of the Zn ion and the intermediate with CphA

Intermediate CphA Distance (A)
Zn D120 OD2 2.03
C221 SG 2.27
H263 NE2 2.12
032 2.39
N4 2.22
N4 Watl1l 2.9
H263 NE2 2.9
L224 NZ 3.1
031 N233 NE2 3.1
L224 NZ 29
L224 NZ 29
071 T119 OG1 3.1
T157 OG1 29
062 H196 NE2 3.0
H196 NE2 3.0
S21 His263 3.6
Cl W87 CH2 4.1
C62 N233 CB 3.8
F236 CD2 3.7
H118 CE1 4.2
C22 G232 CA 3.9
C25 V67 CG1 3.7
C29 V67 CG1 3.3

C25 H263 CG 4.0
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Figure 4. The F, — F¢ map (blue) at 20 corresponding to the area of the complex structure where the enzyme-
modified biapenem molecule was modelled. The phases were calculated from coordinates not completely refined
without biapenem or solvent molecules in the active site. Final refined coordinates of modified biapenem, zinc,
Watll, D120, C221 and H263 residues have been superimposed.

The C3 carboxyl group forms strong hydrogen bonds with the Lys224 side-chain nitrogen atom and the Asn233
backbone nitrogen atom. The C7 carboxyl group formed after antibiotic hydrolysis makes two hydrogen bonds
with the two hydroxyl groups of Thr119 and Thr157. Surprisingly, both C2 and C3 of the intermediate exhibit
sp® hybridization, showing that the molecule in the active site has lost the C2=C3 double bond. The side-chains
containing the sulfur atom and the C3 carboxyl group are in the cis configuration. The biapenem is hydrolyzed
and has lost the double bond, and it has undergone an internal molecular rearrangement. In fact, the electron
density map shows a continuous density linking C3 to the oxygen atom of the C6 1-hydroxyethyl group, forming
a six-membered ring fused to the hydrolyzed B-lactam ring (Figure 4). As the presence of a C2=C3 double bond
and a C6 hydroxyethyl group are two main features of the carbapenem antibiotics currently in clinical use, we
propose that a similar internal rearrangement may be common to all carbapenems. The intermediate in the active
site is stabilized by several hydrophobic contacts. The biapenem sulfur atom interacts with the His263 ring,
inducing a small rotation of its plane; the 1B-methyl group is in van der Waals contact with the side-chains of
Trp87 and Val67, and the methyl group of the C6 1-hydroxyelthyl forms hydrophobic contacts with Phe156,
Phe236 and the Asn233 side-chain carbon atom. In particular, the position of the Phe156 and Phe236 side-chains
seems to preclude the possibility of having any bulkier group in C6 and retaining an efficient interaction between
the intermediate and the enzyme. The biapenem o-symmetric bicyclotriazoliumthio moiety is inserted between
the Val67 side-chain and Gly232. Furthermore, its positively charged nitrogen atom interacts strongly with a
water molecule located outside the active site (Figure 5).

Figure 5. Stereo view of the active site of CphA in complex with modified biapenem (carbon atoms colored in
orange). The conformational change upon substrate binding is represented by superimposition of the wild-type
Gly232 and Asn233 residues (magenta).
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Figure 6. The van der Waals surface of CphA in complex with modified biapenem (carbon atoms colored in
orange). The zinc ion is represented as a green sphere.

Upon biapenem binding, the Asn233 y angle changes from -18° to +121°, and this rotation orients the amide
group of the Asn233 backbone towards the interior of the active site, allowing interaction with the C3 carboxyl
group. As a result of the Asn233 side-chain rotation, the entrance to the active site is closed and Gly232 comes
closer to the biapenem bicyclotriazoliumthio group. Furthermore, the Asn233 side-chain oxygen atom forms a
hydrogen bond with the Ser235 hydroxyl group, stabilizing the closure of the loop. As a consequence, the
"hydrophobic wall" from the N-domain and the mobile loop from the C-domain trap the antibiotic in the active
site pocket, leaving only the terminal portion of the biapenem bicyclotriazoliumthio group outside the pocket
(Figure 6). These interactions between the intermediate and the active site of the enzyme show that the active-
site groove of CphA is designed perfectly for a carbapenem molecule.

Proposed reaction pathway

Comparison of the three new structures suggests how subclass B2 metallo-p-lactamases recognize carbapenem
antibiotics and allows detailed mechanistic proposals for antibiotic hydrolysis (Figure 7). In the resting state, the
enzyme has a carbonate ion at its active site (Figure 3), bonded to the positively charged zinc ion and the Lys224
side-chain. The Gly232-Asn233 loop located at the entrance of the active site that has been implicated in
substrate binding is in the open position. The side-chains of His118 and His196, which are ligands of Zn1 site,
are involved in a hydrogen bond network with water molecules and appear to aid in holding the carbonate ion in
place. A carbonate ion was found in the B. cereus metallo-B-lactamase structure (PDB code 1BVT) and in leucyl
amino-peptidase (PDB code 1LAM), another zinc hydrolase. For the CphA enzyme, the inhibition constant is
rather high (Kp 13( = 2) mM), suggesting no physiological role for the carbonate ion. In the structure of the
CphA-biapenem complex, eight hydrogen bonds between the carbapenem molecule and the protein as well as
two bonds with the zinc ion are observed (Figure 7e and Table 3). The former involve the side-chains of Thr119,
Thr157, His196, and Lys224, the nitrogen backbone of Asn233, and Wat11. Intermediate structures (Figure 7a-
d) were modeled on the basis of the X-ray structures of native and biapenem-complexed proteins, allowing only
a rotation of side-chains (Figure 7b). The presence of a carbapenem molecule in the active site leads to the
closure of the external loop, trapping the antibiotic. In the structure of the complex (Figure 7e), the C3 carboxyl
group makes a bond with the zinc ion, and interacts with the NH;" of Lys224, and the Asn233 nitrogen
backbone, the last of which is brought into the correct orientation by the loop closure. Thr119 and Thr157 form
hydrogen bonds with, and Phe156 and Phe236 form hydrophobic interactions with, the hydro-xyethyl group,
which helps to stabilize and orient the antibiotic molecule. Substrate binding promotes the polarization of the -
lactam ring carbonyl oxygen atom by His196 (Figure 7a). The Asn116 side-chain nitrogen atom and the Thr197
hydroxyl group form hydrogen bonds with the His196 side-chain nitrogen atom. This hydrogen bonding network
allows His196 to partially donate its hydrogen atom to the B-lactam ring carbonyl oxygen atom. A water
molecule, activated by His118, attacks the carbonyl carbon atom and cleaves the $-lactam bond. As a
consequence, N4 of carbapenem bonds to the zinc ion. The Zn®* also helps in the correct orientation of the f-
lactam ring during hydrolysis (Figure 7b and c).
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Figure 7. Scheme of the proposed mechanism of -lactam hydrolysis by CphA, as deduced from the structures
described here.
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The carboxyl group generated by the hydrolytic process is stabilized initially by His196, Asp120, and His118
(Figure 7b) but, after rotation around the C5-C6 bond, these interactions are replaced by those observed in the
complex (Figure 7¢) between the carboxyl group and Thr119, Thrl57. Interestingly, the incoming water
molecule (Watll) is located in a position suitable for promoting the protonation of the lactam nitrogen atom,
which will weaken the interactions with the zinc ion (Figure 7¢). At the last step of the catalytic reaction (Figure
7f), the hydrolyzed carbapenem molecule can leave the active site. Finally a shorter pathway is possible between
the intermediate (Figure 7¢) and the product models (Figure 7f). However, in the present experimental
conditions, the kinetic parameters support the longer one. The tautomeriza-tion between an enamine and an
imine form of the B-lactam ring allows the transfer of a proton from the hydroxyethyl group OH to C2, followed
immediately by nucleophilic attack on C3 by the oxygen atom of the same side-chain. The presence of the
carboxylate group will render the imine group electron-deficient, promoting nucleophilic addition. The
cyclization process appears to be supported strongly by the proximity of the Zn** (Figure 7d). Another interesting
observation is that the active site of CphA is fully occupied by the intermediate (Figure 6), leaving no space for
further water molecules in the proximity of Wat11, the closest being the buried Wat43, which forms hydrogen
bonds with His196, Asn116, and Thr197. The position of Wat43 suggests a possible way of access of water
molecules to the zinc catalytic center during hydrolysis.

Discussion

Here, we report the first structures for a member of metallo-p-lactamase subclass B2 in both the native and
mutant forms and in the form of a complex with an intermediate generated during hydrolysis of a carbapenem
antibiotic. The overall general architecture of CphA is similar to that of enzymes of the other subclasses.
However, it has an elongated helix («:3) located just above the active-site pocket. The a3 helix is a key element
of the hydrophobic wall that defines the active-site pocket. In subclass B1, there is a long loop between 2 and
B3, which is disordered in the native structure, but is stabilized upon binding of inhibitor."* This long loop is
missing from subclasses B2 and B3. However, compared to subclass B2, subclass B3 enzymes have a shorter
insertion between o3 and B7, also forming a mobile loop near the active site. Consequently, in CphA, we observe
a very well defined active site, which explains the very narrow activity profile of the enzyme. CphA is
mononuclear, the zinc ion being located in the Zn2 site, whereas, in all other structures known, two zinc ions can
be bound and, if a functional monozinc enzyme can be produced in the native form, the zinc ion is located in the
Zn1 site. In CphA, as hypothesized, even in the presence of a large excess of zinc, ligands in positions 116, 118,
and 196 (Zn1 site) do not interact with any zinc ion. Instead, Asn116, His118, and His196, together with Lys224,
form a hydrogen bond network in the active site involving several water molecules. This could be due to the
His116Asn mutation seen in subclass B2. GOB-1, a subclass B3 enzyme, harbors GIn116 and may therefore be a
monozinc enzyme. Finally, an excess of zinc results in a loss of enzymatic activity. Although the dissociation
constant of the second zinc ion is about 50 uM, we did not observe the binding of a second zinc ion, even at a
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very high concentration of zinc in the mother liquor. This apparent discrepancy might result from the presence of
a carbonate ion in the active site and/or the conditions used to grow crystals. Indeed, the residues in the putative
Znl site are not positioned adequately to bind Zn in the native enzyme and solution NMR measurements indicate
major conformation changes upon binding of the second zinc ion (C. Damblon, personal communication).

Attempts to obtain substrate complexes or convincing information about modes of substrate binding using
docking procedures have always failed for B1 and B3 enzymes.”**** Recently an interesting report was
published on simulations of substrate binding to the mononuclear B. cereus metallo-B-lactamase.™ Using a high
concentration of substrate in the crystallization drop, we succeeded in trapping an intermediate filling the narrow
active-site pocket of CphA. Previous failures with subclass B1 and B3 enzymes could be due to the presence of a
long active-site cleft covered by a mobile loop.

In metallo-B-lactamases containing two zinc ions, the catalytic mechanism of B-lactam hydrolysis has been
proposed to involve a bridging hydroxide group located between the two zinc ions, which can serve as the
attacking nucleophile on the carbonyl oxygen atom of the B-lactam ring.>"*® In this mechanism, Znl would
polarize the carbonyl oxygen atom. However, it has been suggested that under physiological conditions and in
the presence of substrate, metallo-p-lactamases would act as monozinc enzymes,” but it is not known whether the
zinc is in the Zn1 or the Zn2 site or partially in both. For the CphA enzyme, the dissociation constants for the
binding of zinc ions in the presence or absence of substrate are 1.2 pM and 7.0 pM, respectively® and the present
structures show that the zinc ion is located in the Zn2 site. These results support earlier finding demonstrating a
full occupancy of a single zinc ion with a Cys sulphur atom as a ligand.**° So, for the first time in the metallo-p-
lactamase family, we have determined the structure of the enzyme as it is under the expected physiological
conditions. The first reported structure of the family reveals a monozinc enzyme with the ion located in the Znl
site. On the basis of the observed active-site geometry, a catalytic mechanism was proposed by analogy to the
zinc peptidases,” in which the zinc ion has a dual role in catalysis. Firstly, a zinc-bound water molecule is
activated to perform a nucleophilic attack on the B-lactam carbonyl group. Secondly, the zinc ion binds and
polarizes this carbonyl group. Asp120 participates in the activation of the water molecule. A more recent
publication analyses the proposed catalytic mechanism on the basis of the pH-dependence of the hydrolysis rate
and kinetic constants.!” This mechanism and our proposed mechanism for CphA are completely different.
However, since the active sites of the B. cereus and CphA enzymes are quite different, it is reasonable to
hypothesize that the B-lactam hydrolysis proceeds according to different mechanisms in the two enzymes.

In conclusion, the three reported structures reveal one molecular mechanism of B-lactam hydrolysis by subclass
B2 metallo-p-lactamases and may help in designing small molecules for specific therapeutic applications.

Materials and Methods
Protein purification and crystallization

Site-directed mutagenesis, protein expression at 18 °C and purification of the proteins were performed as
described.'® The purified enzyme solution was dialyzed against 15 mM sodium cacodylate (pH 6.5). As
measured by inductively coupled plasma-mass spectrometry (ICP-MS), the WT and mutant enzyme contained
one zinc ion per molecule. Initial screening experiments were performed by a TECAN Genesis robot using
commercial Hampton crystallization screens. N220G CphA (~10mg ml™) was crystallized at 8 °C from 30-34%
(w/v) PEG8000, 0.6-0.8 M ammonium sulphate, and 100 mM sodium citrate (pH 6.5), using the hanging-drop
method. The (2 pl) reservoir solution was mixed with the protein solution (2 pl) and the mixture was left to
equilibrate against the reservoir solution. Typically, crystals grew within a few days to dimensions of 80 pum x
100 pm x 100 um. Crystals of the WT protein were obtained under similar crystallization conditions using mutant
micro-crystals as starting seeds. Before data collection, both the WT and the mutant crystals were transferred to
drops of reservoir solution containing 10 mM ZnCl, and soaked for one day. In order to obtain the mercury
derivative, crystals of the mutant were instead washed using the reservoir solution for removing the excess of
ZnCl,, and transferred to a drop of reservoir solution containing 1 mM sodium p-hydroxy-mercurio-benzoate.
The biapenem-CphA complex was obtained by adding an excess of biapenem powder directly to a drop
containing mutant CphA crystals.

Data collection and processing

A mercury derivative crystal was transferred to cryoprotectant solution (reservoir solution containing 20% (v/v)
glycerol), while WT and mutant crystals were transferred to cryoprotectant solution containing 10 mM ZnCl,,
then the crystals were mounted rapidly in loops and flash-cooled. X-ray data for the WT and for the mutant
CphAs were collected at the European Synchrotron Radiation Facility at the BM30A beam-line. X-ray data for
the biapenem-CphA complex were obtained in-house using a Nonius FR591 rotating anode X-ray generator
coupled to a Mar Research Imagine Plate detector. Data were processed using CCP4 programs (MOSFLM and
SCALA)® (Table 2).
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Structure determination and refinement

The structure of mutant CphA was solved using the single isomorphous replacement with anomalous scattering
(SIRAS) method, in which phases to 1.7 A were generated using data from the inflection and peak of the
mercuric derivative and data from the mutant. One mercury atom was located in the asymmetric unit using
SOLVE.? Phase refinement resulted in a figure of merit (FOM) of 0.60 and yielded a partially interpretable map.
Density modification and automatic building using RESOLVE? resulted in a model that included 81% of the
sequence. Multiple rounds of model building with 0% and refinement with REFMAC gave the final structure.
The crystals of native and complexed CphA were isomorphous with the mutant crystals. Initial phases for the
native and complexed structures were obtained using the structure of the mutant as the starting model.
Refinement was carried out using O and REFMAC. For the complex, the calculation of the first (F,—F;)
electron density map clearly showed the presence of the antibiotic molecule in the active site. Biapenem was
modeled in the map after most of the protein main-chain and side-chain atoms and most of the water molecules
were built and refined. Conformational torsion angle restraints and charge assignments for the intermediate
molecule were obtained using CCP4i Libcheck. The refinement statistics for all structures are shown in Table 2.

Enzyme kinetics

Kinetic parameters were determined routinely on the basis of initial rate measurements at 30 °C and in 15 mM
sodium cacodylate (pH 6.5). Absorbance variations were monitored at 300 nm (Ae= -9000 M* cm™) and 294 nm
(Ae =-9960 M™ cm™) for imipenem and biapenem, respectively. Substrate concentrations ranged from 0.5 K, to
2 K. Above 250 uM, a 0.2 cm light-path cell was utilized.

Product inhibition determination

The Kkinetic parameters of the enzymes with biapenem as substrate were determined on the basis of both
complete time-courses and initial rates. For both the WT and the mutant enzymes, the k. and K, values were
significantly lower according to the latter technique. This suggested an inhibition by the product.? Indeed, after
biapenem solutions were hydrolyzed completely, addition of a fresh substrate sample yielded initial rates lower
than the original ones.

Protein Data Bank accession codes

Coordinates and structure factors have been deposited with the Protein Data Bank using accession codes 1X8G
(wild-type), 1X8H (N220G mutant), and 1X8I (biapenem complex).

Acknowledgements

We are grateful to Richard Kahn for assistance in data collection at the BM30A beam-line at the European
Synchrotron Radiation Facility, Grenoble, France. G.G. is a recipient of a postdoctoral fellowship from the
European Union in the frame of the MEBEL contract (HPRN-CT-2002-00264). The work in Liége was
supported by a grant from the Belgian Federal Government (PAI P5/33) and the FNRS (Brussels, Belgium,
FRFC contract 2.4508.01). C.B. is a pre-doctoral fellow of the FRIA (Brussels) and C.A. was a recipient of a
Marie Curie Postdoctoral fellowship (Human Potential-grant IHM-MCIF-01-1).

References

1. Garau, G., Garcia-Saez, ., Bebrone, C., Anne, C., Mercuri, P., Galleni, M. et al. (2004). Update of the standard numbering scheme for
class B beta-lactamases. Antimicrob. Agents Chemother. 48, 2347-2349.

2. Wommer, S., Rival, S., Heinz, U., Galleni, M., Frére, J. M., Franceschini, N. et al. (2002). Substrate-activated zinc binding of metallo-
beta-lactamases: physiological importance of mononuclear enzymes, J. Biol. Chem. 277, 24142-24147.

3. Hernandez-Valladares, M., Felici, A., Weber, G., Adolph, H. W., Zeppezauer, M., Rossolini, G. M. et al. (1997). Zn(ll) dependence of the
Aeromonas hydrophila AE036 metallo-beta-lactamase activity and stability. Biochemistry, 36, 11534-11541.

4. Carfi, A., Parés, S., Duée, E., Galleni, M., Duez, C., Frére, J. M. et al. (1995). The 3-D structure of a zinc metallo-beta-lactamase from
Bacillus cereus reveals a new type of protein fold. EMBO J. 14, 4914-4921.

5. Concha, N. O., Rasmussen, B. A., Bush, K. & Herzberg, O. (1996). Crystal structure of the wide-spectrum binuclear zinc B-lactamase
from Bacteroides fragilis. Structure, 4, 823-836.

6. Fabiane, S. M., Sohi, M. K., Wan, T., Payne, D. J., Bateson, J. H., Mitchell, T. et al. (1998). Crystal structure of the zinc-dependent beta-
lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme. Biochemistry, 37, 12404-
12411.

7. Ullah, J. H., Walsh, T. R., Taylor, I. A., Emery, D. C., Verma, C. S., Gamblin, S. J. et al. (1998). The crystal structure of the L1 metallo-
beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution. J. Mol. Biol. 284, 125-136.

8. Garcia-Séez, ., Mercuri, P. S., Papamicael, C., Kahn, R., Frére, J.-M., Galleni, M. et al. (2003). Three-dimensional structure of FEZ-1, a
monomeric subclass B3 metallo-beta-lactamase from Fluoribacter gormanii, in native form and in complex with D-captopril. J. Mol. Biol.
325, 651-660.



Published in: Journal of Molecular Biology (2005), vol. 345, iss. 4, pp. 785-795.
Status: Postprint (Author’s version)

9. Allen, F. H. (2002). The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallog. sect. B, 58,
380-388.

10. Aoki, S., Iwaida, K., Hanamoto, N., Shiro, M. & Kimura, E. (2002). Guanidine is a Zn(2+)-binding ligand at neutral pH in aqueous
solution, J. Am. Chem. Soc. 124, 5256-5257.

11. Garcia-Saez, 1., Hopkins, J., Papamicael, C., Franceschini, N., Amicosante, G., Rossolini, G. M. et al. (2003). The 1.5-A structure of
Chryseobacterium meningosepticum zinc B-lactamase in complex with the inhibitor, D-captopril. J. Biol. Chem. 278, 23868-23873.

12. Hernandez-Valladares, M., Kiefer, M., Heinz, U., Meyer-Klaucke, R., Nolting, W., Paul Soto, H. F. et al. (2000). Kinetic and
spectroscopic characterization of native and metal- substituted beta-lactamase from Aeromonas hydrophila AE036. FEBS Letters, 467, 221-
225.

13. Concha, N. O., Janson, C. A., Rowling, P., Pearson, S., Cheever, C. A, Clarke, B. P. et al. (2000). Crystal structure of the IMP-1 metallo
beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent,
broad-spectrum inhibitor. Biochemistry, 39, 4288-4298.

14. Dal Peraro, M., Vila, A. J. & Carloni, P. (2004). Substrate binding to mononuclear metallo-beta-lactamase from Bacillus cereus.
Proteins: Struct. Funct. Genet. 54, 412-423.

15. Wang, Z., Fast, W., Valentine, A. M. & Benkovic, S. J. (1999). Metallo-beta-lactamase: structure and mechanism. Curr. Opin. Chem.
Biol. 3, 614-622.

16. Meyer-Klaucke, W., Soto, R. P., Valladares, M. H., Adolph, H. W., Nolting, H. E., Frere, J.-M. et al. (1999). A comparison of Bacillus
cereus and Aeromonas hydrophila Zn-beta-lactamases. J. Synchrotron Radiat. 6, 400-402.

17. Bounaga, S., Laws, A. P., Galleni, M. & Page, M. I. (1998). The mechanism of catalysis and the inhibition of the Bacillus cereus zinc-
dependent beta-lactamase. Biochem. J. 331, 703-711.

18. Vanhove, M., Zakhem, M., Devreese, B., Franceschini, N., Anne, C, Bebrone, C. et al. (2003). Role of Cys221 and Asnll6 in the zinc-
binding sites of the Aeromonas hydrophila metallo-beta-lactamase. Cell Mol. Life Sci. 60, 2501-2509.

19. The CCP4. (1994). CCP4 suite: programs for protein crystallography. Acta Crystallog. sect. D, 50, 760-763.
20. Terwilliger, T. C. & Berendzen, J. (1999). Automated MAD and MIR structure solution. Acta Crystallog. sect. D, 55, 849-861.

21. Terwilliger, T. C. & Berendzen, J. (2000). Maximum-likelihood density modification. Automated MAD and MIR structure solution.
Acta Crystallog. sect. D, 56, 965-972.

22. Jones, T. A, Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Improved methods for building protein models in electron density maps
and the location of errors in these models. Acta Crystallog. sect. A, 47, 110-119.

23. Orsi, B. A. & Tipton, K. F. (1979). Kinetic analysis of progress curves. Methods Enzymol. 63, 159-183.



