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Abstract

Metallo-S-lactamases are zinc containing enzymes that are able to hydrolyze and inactivate S-lactam antibiotics.
The subclass B2 enzyme CphA of Aeromonas hydrophila is a unique metallo-p-lactamase because it degrades
only carbapenems efficiently and is only active when it has one zinc ion bound. A zinc titration experiment was
used to study the zinc affinity of the wild-type and of several mutant CphA enzymes. It shows that a second Zn®*
is also bound at high ion concentrations. All samples were analyzed using mass spectrometry in combination
with an automated nanoESI source. The metal-free enzyme has a bimodal charge distribution indicative of two
conformational states. A completely folded enzyme is detected when the apo-enzyme has bound the first zinc.
Intensity ratios of the different enzyme forms were used to deduce the zinc affinities. CphA enzymes mutated in
metal ligands show decreased zinc affinity compared to wild-type, especially D120 mutants.

Beta-lactamases play a key role in bacterial resistance by hydrolyzing and thus inactivating g-lactam antibiotics,
the most important group of clinically used antibiotics. They have been divided into four classes (A to D)
according to the Ambler classification; serine-S-lactamases constitute classes A, C, and D, while enzymes of
class B contain metallo-s-lactamases [1, 2]. The latter are metallo-enzymes exhibiting full activity with Zn®* as
cofactor. They are of clinical importance as they can hydrolyze all classes of g-lactams, including fourth-
generation cephalosporins and carbapenems. Moreover, the enzymes are insensitive to available g-lactamase
inhibitors, such as clavulanic acid. Metallo-$-lactamases have been described in a number of environmental
species, but are also found in clinical isolates such as Burkholderia cepacia, Pseudomonas aeruginosa,
Stenotrophomonas maltophilia and some Enterobacteriaceae [3]. Their increasing occurrence and rapid
dissemination by horizontal gene transfer has boosted clinical and biochemical studies in the past few years.
Three subclasses of metallo-g-lactamases, B1 to B3, have been described [4]. The three-dimensional structures
of the subclass B1 enzymes Bcll and CcrA show the presence of two zinc ions in the active site [5, 6]. The first
zinc ion is tetrahedrally coordinated by three histidine residues (H116, H118, and H196) and a water molecule.
The second zinc ion is stabilized by D120, C221, H263, and two water molecules in a trigonal-bipyramidal
geometry. One water molecule acts as a bridge between the two zinc ions, serving as ligand for both atoms. We
will refer to these two binding sites as the histidine site and the cysteine site, respectively. In subclass B3, three-
dimensional structures are solved for Fez-1 and L-1 [7, 8]. These structures show a histidine-site identical to that
of subclass BI, but a modified cysteine site where D120, H121, and H263 coordinate the second zinc ion. C221
is replaced by a serine, but this residue does not participate in zinc binding. On the basis of sequence alignments
the potential zinc ligands for the B2 enzyme CphA of Aeromonas hydrophila were initially predicted to be N116,
H118, and H196 for the histidine site and D120, C221, and H263 for the cysteine site [4, 9]. However, X-ray
crystallography recently showed that the first zinc ion is located in the cysteine site instead of in the histidine site
[10]. Moreover, unlike the other class B enzymes, CphA is only active as a mono-zinc protein. Moreover, the
enzyme has a narrow substrate profile, with only carbapenems being hydrolyzed efficiently [11].

In this work, we used a nanoESI-MS platform for the characterization of CphA. The platform consists of a Q-
TOF instrument interfaced to the automated nanoESI source NanoMate 100 (Advion Biosciences, Ithaca, NY).

In this new system, samples are automatically picked up from a 96-well plate using conductive spraying tips and
are electro-sprayed using a 100 nozzle containing silicon chip, placed in front of the mass spectrometer orifice.
The instrument is well described elsewhere [12] and has been successfully used for the analysis of noncovalent
protein-protein and protein-nonmetal ligand interactions [13-16]. In the present work, we use it to analyze the
zinc affinity of the wild-type CphA enzyme and of several mutated enzymes in a semi-high throughput fashion.
Metal-free enzyme was prepared and subjected to zinc titration. The titration method allows following the
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accumulation of mono-zinc and di-zinc enzymes according to the scheme:
Apo—E+Zn=E-Zn+Zn=E—Zn, (1)

Important advantages of mass spectrometry over many other analytical methods are its sensitivity (and thus low
sample consumption) and the possibility to detect different species simultaneously. NanoESI-MS has been used
previously for studying metallo-peptide and metallo-protein complexes [17-20]. Following the recent description
on the use of the chip-based nanoESI source in monitoring the activity of metallo-enzymes by van den Heuvel et
al. [21], this work reports the characterization (metal constitution, stoichiometry, and affinity) of metallo-
proteins using this nanoESI device.

Materials and Methods
Chemicals

Ammonium acetate (NH4;OACc) and ethylenediami-netetraacetic acid (EDTA) were purchased from Sigma-
Aldrich (St. Louis, MO). Zinc acetate (Zn(OAc),) was obtained from Fluka (Buchs, Switzerland). All buffers
and solutions were prepared in Milli-Q water (Millipore, Bedford, MA).

Preparation of Metal-Free Enzyme

CphA wild-type and mutant proteins were expressed and purified as described [22]. Apo-enzyme was prepared
by incubating the protein with 10- to 20-fold molar excess of EDTA for 1.5 h at room-temperature. The excess
EDTA was removed by an overnight dialysis against 10 mM NH,OAc, pH 6.8, using mini-GebaFlex tubes
(GeBa, Rfar-Hanagid, Israel). The protein concentration was determined using a €g9nm Of 37,500 Miem™.

A 1 mM Zn(OACc), stock solution was prepared in 10 mM NH,OAc, pH 6.8. The titration experiment was
performed by mixing the protein with 0 to 100 pM Zn?*.

Nanoelectrospray lonization Mass Spectrometry (nanoESI-MS)

Denatured proteins, at a concentration of 1 uM, were ionized from a solution containing 50% acetonitrile and
0.1% formic acid. For native measurements, all samples were prepared to a final concentration of 9 to 10 uM (in
10 mM NH,4OAc, pH 6.8) in triplicate, except for CphA K228Q, for which each sample was analyzed only once.
All samples were analyzed using nanoESI-MS on a Q-TOF1 mass spectrometer (Micromass, Manchester, UK)
equipped with a NanoMate 100 device (Advion Biosciences). The system was set to the automatic infusion mode
using a contact closure signal between the NanoMate 100 and the mass spectrometer. Spraying parameters were
a spraying voltage of 1.8 kV (unless mentioned specifically), a sample pressure of 0.2 to 0.3 psi, a cone voltage
of 50 V, a source temperature of 45 °C, and a scan range from 700 to 3200 m/z with a scan time setto 1 s. The
96-well plate was loaded with 5 pL of each sample from which 4 puL was infused for 5 min. An adhesive seal
was used to cover the 96-well plate to prevent evaporation of the samples. A new tip was utilized for each
sample to prevent cross-contamination. All experimental masses were within 50 ppm of the calculated masses.

Data Processing and Ky Determination

All data were processed using MassLynx software version 3.1. Raw spectra were smoothed. The total intensities
of apo-enzyme (E), mono-zinc enzyme (EL), and di-zinc enzyme (EL,) were calculated by summing the peak
height intensities of all charge states, including adduct intensities. Concentrations of E, EL, and EL, were
determined from the relative intensities and by equalizing the sum of all intensities with the initial enzyme
concentration. These concentrations were used to calculate §, the average number of zinc ions bound per
molecule of enzyme, using the following equation:

[EL]+2[EL,]
b= [E]+ [EL]+ [EL.] @
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The 9 values were plotted as a function of the equivalents of zinc added to the enzyme. From this plot, the
dissociation constant Kq for the first zinc ion and Ky, for the second zinc ion were deduced by calculating the
equilibrium zinc concentration at 9 of 0.5 and 1.5, respectively.

Results and Discussion
Spray Optimization

ESI spray stability is affected by several variables such as the applied voltage, solution, and gas flow rates,
distance between capillary and counter electrode, and sample properties. In contrast to pulled capillary needles,
the NanoMate 100 device offers the possibility to control most of these variables. For example, the distance
between the chip and the cone orifice can be adjusted, but once set, the distance will be the same for every
sample. A critical parameter to obtain a stable ESI spray is the voltage applied to generate the charged droplets.
Figure 1 shows the TIC chromatograms of native CphA at 1.5, 1.6, 1.7, 1.8, and 1.9 kV. As the voltage
increases, a more stable spray is generated. The spray reaches its highest stability at 1.8 kV and decreases again
at a higher voltage setting. It is most stable in the cone-jet mode, i.e., when the Taylor cone has a constant shape
[23]. The cone-jet mode is achieved at an intermediate voltage when a constant emission of droplets occurs. If
the voltage is too low, the Taylor cone collapses after ejecting a stream of droplets. At high voltages, multiple
cones can appear, resulting in off-axis droplet formation [24]. On the other hand, a relatively high voltage has to
be applied, taking into account the high water content of the samples. Because water has a higher surface tension
than organic solvents, higher voltages are necessary to maintain the cone-jet operation. All samples, as described
in the next sections, were sprayed at 1.8 kV.

Figure 1: Total ion current chromatograms of 10 uM wild-type CphA in 10 mM NH4OAc at a spraying voltage
of (a) 1.5 kV, (b) 1.6 kV, (c) 1.7 kV, (d) 1.8 kV, and (e) 1.9 kV.
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Preparation of Metal-Free Enzyme

Figure 2a and b show the spectra of denatured and native wild-type CphA, respectively. Spectrum b is a typical
m/z spectrum for a native protein, with only a few charge states being detected at high mass-to-charge values.
The deconvoluted spectrum (inset) shows a mass of 25,189 Da for the denatured enzyme and of 25,252 Da for
the native enzyme. These values are equal to the theoretical molecular masses. The mass difference between
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them (63 Da) fits the mass of one zinc atom (65 Da), the 2 Da difference being the result of a loss of two protons
upon binding the metal ion. Figure 2c is the m/z spectrum of nondenatured wild-type CphA after complete
removal of the zinc atom by EDTA. The spectrum shows a bimodal charge distribution, typical for two
populations of species having different conformational states. The first more unfolded population has high
charge states (12+ to 27+) similar to the denatured m/z spectrum. The second folded population has low charge
states (9+ to 11+), as has the native mono-zinc enzyme. This result suggests that the protein is destabilized, most
likely unfolded, when the zinc is removed from the active site, at least under the conditions used in this work. On
the basis of microcalorimetric and circular dichroism results, Hernandez-Valladares et al. also concluded that the
mono-zinc form was more stable and more compact than the apo-enzyme [11]. A similar destabilization was
observed using ESI-MS for two other metallo-proteins, the metallo-f-lactamase Bell (our unpublished results)
and colicin E9 endonuclease [20].

Figure 2: Raw mass spectra of mono-zinc wild-type CphA, denatured in 50% acetonitrile/0.1% formic acid (a),
native in 10 mM NH,4OAc (b), and metal-free in 10 mM NH,OAc (c). Insets show the deconvoluted mass spectra.
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On-Line Monitoring of Zinc Removal by EDTA

Metal chelating agents such as EDTA are able to inactivate metallo-S-lactamases by zinc sequestering. Two
possible mechanisms have been proposed [21-24]. The first presumes the formation of a tertiary complex of
enzyme:Zn“*:EDTA, while the second presumes a dissociation of the enzyme:Zn** complex before the zinc is
chelated by EDTA. Although inactivation by the latter mechanism is suggested to occur in a few instances [25,
26], the former mechanism is believed to be the more general one [27, 28]. Also, the chelator mediated
inactivation of CphA has been proposed to proceed via the formation of a tertiary complex [11]. To verify this
proposal, we mixed EDTA (15 uM) with the mono-zinc wild-type enzyme (10 uM) and immediately thereafter
infused the mixture into the mass spectrometer. The result in Figure 3 shows spectra at different time points. The
abundance of zinc-bound enzyme clearly decreases, while the abundance of apo-enzyme concomitantly
increases. As explained in the previous section and illustrated in Figure 2c, a high charge state population is
formed when the holo-enzyme is converted to apo-enzyme. The rise in TIC intensity over time (Figure 3) is most
likely due to the increasing formation of apo-CphA. Without EDTA, no change in the apo/holo-enzyme ratio
could be observed during spraying time. The overall reaction rate appears to be quite high, with 50% of the holo-
enzyme being converted to its apo form after 1 min (part b in Figure 3). However, on the basis of the model that
seems to prevail under the conditions used in solution, a dissociation rate for the complex of 6 x 102 s™* should
be expected, indicating a much slower reaction rate [11]. This difference may be explained by assuming that the
tertiary complex is unstable in the gas-phase and that it dissociates during its flight to the detector. Alternatively,
or in addition, the reaction kinetics in the spraying tip may be influenced by the spraying conditions (high
voltage).
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Zinc Titration of CphA

In the second part of this work, we investigated the affinity for zinc of wild-type CphA using a titration
experiment. Titration of the wild-type apo-enzyme with increasing concentrations of zinc ions initially shifts the
apo-enzyme to its mono-zinc (Figure 4). At concentrations higher than 40 uM zinc, also the di-zinc forms are
visible. The less compact apo-enzyme population disappears completely when the enzyme binds one zinc atom.
The unfolding process of the metal-containing enzyme to the metal-free enzyme is thus reversible and the
equilibrium between the unfolded and folded state is shifted towards the folded native state when a zinc atom is
sequestered. The number of zinc atoms per enzyme (9 ) was calculated using eq 2, with the concentrations [E],
[EL], and [EL,] being calculated from the intensity ratios E/EL and EL/EL.,, and was plotted versus the
equivalents zinc added to the apo-enzyme (Figure 5a). Experimental errors, calculated as coefficients of
variation, were within 20%. The wild-type enzyme is completely mono-zinc at 1.5 equivalents of zinc, while the
di-zinc enzyme is not formed with less than 3 equivalents. There is still a considerable fraction of mono-zinc
enzyme at 7.5 equivalents. Ky, and K, », the dissociation constants for the first and the second zinc atom can be
deduced ata 9 value of 0.5 (50% mono-zinc enzyme formed) and 1.5 (50% di-zinc enzyme formed),
respectively. For the wild-type enzyme, this results in a value for K4, of 8 uM and of 55 uM for Ky, (Table 1).
The dissociation constants for the zinc atoms reported by Hernandez-Valladares et al. are 7 pM and 46 uM,
respectively [11]. Although the K, determined in this work is only slightly higher than the K, determined using
solution-based techniques, it is remarkable that the dissociation constant for the first zinc atom is a factor 10°
higher than Kq; determined in solution. With a K4 of 7 pM, the enzyme is expected to be completely mono-zinc
at 1 equivalent of zinc. In our work, only 20% mono-zinc enzyme was detected at 1 equivalent of zinc and, as
already stated above, a completely mono-zinc enzyme was only reached at 1.5 equivalents of zinc.

Figure 3: On-line monitoring of the zinc removal by EDTA. Mass spectra a to g are the combined spectra over a
period of 30 s. Spectra on the right side show the 10+ charge state and the formation of the apo-enzyme.
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Figure 4: Titration spectra of apo-CphA with 0,10, and 30 uM Zn?*. Peaks labeled with one asterisk and two
asterisks are charge states of the apo-enzyme and mono-zinc enzyme, respectively.
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Figure 5: Titration plot of number of zinc atoms per molecule of enzyme, ¢, versus equivalents of zinc for wild-
type CphA (filled circle), K228Q (open triangle), N116H (open circle), N220G (filled diamond), and N116H-
N220G (asterisk) before (a) and after (b) applying the correction factor of 12.5 (see text).
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As reported by van den Bremer et al., nanoESI-MS can overestimate the contribution of the loosely packed
conformation state of an apo-metallo-enzyme [20], a feature that may be explained by the increased exposure of
hydrophobic residues enhancing the droplet surface affinity and, consequently, the ESI response. Moreover,
highly charged ions have slightly higher detection efficiency. The enhanced ESI response of the less compact
apo-enzyme will certainly affect the ratio of apo-enzyme to mono-zinc enzyme and, consequently, also the K.
As the dissociation constant of CphA for the second zinc ion agrees well with the solution-based results, this
indicates that the ionization efficiency of the apo-enzyme may indeed contribute to the discrepancy of the results
for the first dissociation constant. Evidently, we need to introduce a correction factor for the difference in
ionization efficiency between the two protein species E and EL when calculating K, values. Following the
reasoning described hereafter, we conclude that this factor is 12.5.

In titration methods such as the one described in this work, the concentration of protein (P) and protein-ligand
complex (PL) in solution is assumed to be proportional to the observed intensities (1) in the mass spectrometer,
following the equations

[P]=to I (3a)
[PL] = ter - 1p (3b)

The proportionality constants t and tp, are the so-called transfer coefficients of P and PL. When L is much
smaller in size than P, tp_ and tp are nearly equal and the concentration ratio of [P]/[PL] is equal to the intensity
ratio Ip/lp_, an assumption which is only valid when there are no structural differences between the protein and
the protein-ligand complex. To determine the relative transfer coefficient for apo-CphA and mono-zinc CphA,
we followed the method described in [29]. In this method, equal amounts of two proteins are mixed and
measured by ESI-MS. The ratio in intensity of the different species reflects the ratio of the transfer coefficients
for these species. Using a mixture of equal amounts of (10 M) apo-CphA and mono-zinc CphA, three
independent measurements were performed and the ratio of the sum of the intensities of all charge states for both
protein forms was calculated. It was found that apo-CphA has an ionization efficiency that is 12.5 times higher
than the mono-zinc form.

The correction factor was used to recalculate the intensities of the apo-enzyme determined by the titration
experiment. As such, a corrected plot could be constructed, which now gives lower K, ; values than previously
calculated (Figure 5b and Table 1). Instead of 8 uM, Ky, for wild-type CphA is 1 pM or less, which is near the
lower limit for the dissociation constant that can be determined using this plot.

Table 1: Dissociation constants K4 ; and Kq, for CphA mutants determined using nanoESI-MS. All values were
derived using the plots from Figures 5 and 7

CphA Kg1 (LM) before Kg1 (UM) after Kaz (UM)
correction correction
Wild-type 8 <1 50-55
K228Q 10 <1 50-55
N116H 50 50 >100
N220G 45 25 >100
N116H-N220G 40 25 >100
H118A 30 30 >100
H263S 30 20 >100
D120A 80 80 -

D120T 80 80 -
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Figure 6: Mass spectrum of mono-zinc CphA N116H-N220G after addition of 50 uM Zn** to the apo-enzyme.
The peak labeled with an asterisk is a triply charged peptide impurity present in the sample.
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Zinc Titration of CphA Mutants

We applied the titration experiment to species of CphA in which key residues involved in Zn?*" binding were
mutated. The mutant enzyme K228Q has a Ky similar to that of the wild-type enzyme. K228 is not a zinc ligand
in any of the two zinc binding sites and can therefore be expected to have an equal zinc affinity. This result thus
shows that the method we used is reliable to deduce affinities of the mutant enzymes relative to the wild-type
enzyme. The mutants N116H, N220G, and N116H-N220G are enzymes in which the B2 class motif
(N116XH118XD120 ...H196...G219N220C221...H263) has been remodelled into a B1 class motif
(H116XH118XD120... H196...G219G220C221...H263). All mutant enzymes have a decreased affinity for the
first and the second zinc ion (Figure 5b). It was suggested by Vanhove et al. [30] that N116 is not involved in the
binding of the second metal because N116S has a similar K, as the wild-type enzyme. N116H has been shown
to have a broader substrate profile and a 5-fold increase in affinity compared to wild-type enzyme [30]. Our
results, however, show a decreased affinity of N116H for zinc, and suggest a K, higher than 100 pM. More data
points were not obtained because of decreasing ionization efficiency at higher zinc concentrations and to exclude
the formation of nonspecific binding of zinc. Kq; of this mutant does not change remarkably after applying the
correction factor, as seen from the steep slope of the curve between 5 and 7 equivalents of zinc. For N220G, a
slightly higher affinity for the first zinc ion was recorded compared to N116H, but a similarly low affinity for the
second zinc atom. Activity measurements for this mutant reported a K4, for N220G of 86 uM with imipenem as
substrate and of 110 uM with nitrocefin as substrate [22], values which agree with our mass spectrometric
results. For the double mutant N116H-N220G a 5-fold decrease in K, was reported, compared to wild-type
enzyme [22]. The apo-enzyme of N116H-N220G is unstable in ammonium acetate, as observed by the formation
of a precipitate. When the enzyme binds a first zinc ion, the protein does not get refolded properly. The refolded
mono-zinc species has charge states from 9+ to 17+ instead of 9+ to 11+, indicating only partial refolding of the
protein (Figure 6). But even though the relative affinity of N116H-N220G, for the reasons mentioned above, is
possibly incorrect, the double mutant still has a slightly higher zinc affinity than the single mutants N116H and
N220G, as also reported in [22].

X-ray crystallography has revealed that D120 is a zinc ligand in the mono-zinc CphA, in contrast to the mono-
nuclear enzymes of subclasses Bl and B3 [10]. The titration experiment indeed reveals that the mutant enzymes
D120A and D120T have a decreased zinc affinity (Figure 7). D120A does not bind zinc unless at least 8
equivalents are added, and a completely mono-zinc enzyme is only detected when nine or 10 equivalents are
added to CphA D120T and D120A, respectively. Even at these high zinc concentrations, the di-zinc enzyme is
not formed. So, although it is the first binding site that is altered by the mutations, the second binding site
appears to be affected as well. ICP-MS has revealed that these mutants do not form di-zinc enzyme in the
presence of 100 pM Zn®*, and that they have a very high decrease in activity towards imipenem (Christine Anne,
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unpublished results). The mutants H118A and H263S have a similar affinity for zinc, with a K4, around 30 uM
and a Ky, higher than 100 pM. The latter value agrees well with the solution results (Christine Anne,
unpublished results).

Figure 7: Titration plot of number of zinc atoms per molecule of enzyme, v, versus equivalent of zinc for wild-
type CphA (filled circle), H118A (open square), H263S (filled triangle), D120A (open diamond), and D120T
(asterisk) after applying the correction factor of 12.5 (see text).

4 ] u "]
= A o®
¢ &g *
3

0 seee , w © o
L] A

0.8 o

06 -

04- ©

o0m W&o oo m % —F—F 00—
0 2 4 6 8 10 12

Equivalents zine

Conclusion

The metallo-g-lactamase CphA is an exceptional enzyme among the class B enzymes because of its narrow
substrate profile and the inhibiting activity of the second zinc atom. Recently, the three-dimensional structure of
CphA was determined, revealing that, unlike the other metallo-4-lactamases, the first zinc atom binds in the
cysteine site, whereas the ligands of the potential histidine site are not well positioned for coordinating a zinc ion
[10]. Several mutated enzymes were prepared to understand the mechanism towards carbapenems and the lack of
activity towards penicillins and cephalosporins [22]. In the present work, the zinc affinity of some mutants was
analyzed using nanoESI-MS. A chip-based nanoESI source was used, capable of analyzing the samples in an
automatic infusion mode. The apo-enzyme of CphA was shown to exist in two different conformations: a less
folded conformation with high charge states, and a compact conformation with low charge states. The removal of
zinc by EDTA could be followed on-line after mixing enzyme and EDTA. Titration of the apo-enzyme with zinc
results in a completely folded mono-zinc enzyme. Dissociation constants Kq ; and Kq, for the first and second
zinc atom are deduced from the titration curves. The values are listed in Table 1. The dissociation constant K,
of the wild-type enzyme is comparable with the values reported from solution-based techniques. A correction
factor based on the different ionization efficiency for the apo and mono-zinc form was determined and used to
correct the calculated ratio of apo-enzyme to mono-zinc enzyme. As such, K, for the wild-type enzyme
decreased nearly 10-fold and thus agreed better with results obtained in solution. For some mutant enzymes, the
Kq1 also decreased, but in fact remained quite high. It should be noted that a K4, of 7 pM for the wild-type
enzyme is too low to be determined using this method. The detection limit of the native CphA protein under our
experimental conditions was 3 pM. For a protein with a single binding site, Ky is given by [E] x [L]/[EL]. If less
than 3 pM CphA remains in solution at 1 equivalent of zinc (10 uM), then the lower limit for the dissociation
constant is only slightly higher than 1 uM (Kq = (3 x 3)/7 = 1.3 uM).

In reference [22] the mutant enzymes were shown to exist as mono-zinc enzymes in buffer solutions with less
than 0.4 uM Zn”*. Therefore, the K values cannot be higher than 0.4 uM. At this stage, it is not clear to which
extent the gas-phase stability of the complex reflects its solution stability. It should be noted that if some
decomposition of the enzyme:Zn complex occurs in the gas-phase, this can result in a strong overestimation of
Kq.1, especially when the Kq; values are very low. This is even enhanced by the fact that the ligand concentration
is not much higher than the enzyme concentration. Therefore, the error on the calculation of the free zinc
concentration at equilibrium can be very large, resulting in inaccurate dissociation constants. However, the
relative affinities of the mutant CphA enzymes to the wild-type enzyme before and after data correction were
found to be the same, and agree with those reported by Bebrone et al. [22], except for N116H and N116H-
N220G. Our work also shows the importance of D120 in zinc coordination. It should be noted that the
dissociation constants Kq, in [22] are determined by measuring the enzymatic activity of the mutants at
increasing zinc concentrations. The method used in the present study is a direct measurement of the zinc affinity,
which is not per se correlated to the enzymatic activity. Although several studies have successfully obtained



Published in: American Society for Mass Spectrometry (2006), vol.17, pp.180-188
Status: “Postprint (Author’s version)

dissociation constants from gas-phase measurements, one can doubt whether ESI-MS will ever be routinely used
to derive ligand affinities of proteins. In cases where no control sample or experiment can be performed or where
there are no reference values available, the researcher should be careful about making conclusions solely on MS

data.
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