Iteratively Extending Time Horizon
Reinforcement Learning

Damien Ernst*, Pierre Geurts™, and Louis Wehenkel

Department of Electrical Engineering and Computer Science
Institut Montefiore, University of Liege
Sart-Tilman B28, B4000 Liege, Belgium

{ernst,geurts,lvh}@montefiore.ulg.ac.be

Abstract. Reinforcement learning aims to determine an (infinite time
horizon) optimal control policy from interaction with a system. It can
be solved by approximating the so-called Q-function from a sample of
four-tuples (z¢, ut, ¢, Tr4+1) where x+ denotes the system state at time ¢,
ut the control action taken, r; the instantaneous reward obtained and
T¢4+1 the successor state of the system, and by determining the optimal
control from the @Q-function. Classical reinforcement learning algorithms
use an ad hoc version of stochastic approximation which iterates over the
Q-function approximations on a four-tuple by four-tuple basis. In this pa-
per, we reformulate this problem as a sequence of batch mode supervised
learning problems which in the limit converges to (an approximation of)
the @-function. Each step of this algorithm uses the full sample of four-
tuples gathered from interaction with the system and extends by one step
the horizon of the optimality criterion. An advantage of this approach is
to allow the use of standard batch mode supervised learning algorithms,
instead of the incremental versions used up to now. In addition to a the-
oretical justification the paper provides empirical tests in the context of
the “Car on the Hill” control problem based on the use of ensembles of
regression trees. The resulting algorithm is in principle able to handle
efficiently large scale reinforcement learning problems.

1 Introduction

Many interesting problems in many fields can be formulated as closed-loop con-
trol problems, i.e. problems whose solution is provided by a mapping (or a control
policy) u; = u(xy) where x; denotes the state at time ¢ of a system and u; an
action taken by a controlling agent so as to influence the instantaneous and fu-
ture behavior of the system. In many cases these problems can be formulated
as infinite horizon discounted reward discrete-time optimal control problems, i.e.
problems where the objective is to find a (stationary) control policy p*(-) which
maximizes the expected return over an infinite time horizon defined as follows:

* Research Fellow FNRS
** Postdoctoral Researcher FNRS

N. Lavrac et al. (Eds.): ECML 2003, LNAI 2837, pp. 96-107, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Iteratively Extending Time Horizon Reinforcement Learning 97

N-1
ko)

where 7 € [0, 1] is the discount factor, r; is an instantaneous reward signal which
depends only on the state z; and action u; at time ¢, and where the expectation
is taken over all possible system trajectories induced by the control policy wu(-).

Optimal control theory, and in particular dynamic programming, aims to
solve this problem “exactly” when the explicit knowledge of system dynamics
and reward function are given a priori. In this paper we focus on reinforcement
learning (RL), i.e. the use of automatic learning algorithms in order to solve the
optimal control problem “approximately” when the sole information available is
the one we obtain from system transitions from ¢ to t+1. Each system transition
provides the knowledge of a new four-tuple (zy, us, r¢, x¢+1) of information and
we aim here to compute p*(.) from a sample F = (af, uf,r¥, zf), k=1,... ¢
of such four-tuples.

It is important to contrast the RL protocol with the standard batch mode
supervised learning protocol, which aims at determining, from the sole informa-
tion of a sample S of input-output pairs (z,0), a function h* € H (H is called
the hypothesis space of the learning algorithm) which minimizes the expected
approximation error, e.g. defined in the case of least squares regression by the
following functional:

En" =)" |h(i) —of*. (2)

(i,0)€S

Notice that the use of supervised learning in the context of optimal control prob-
lems would be straightforward if, instead of the sample F of four-tuples, we could
provide the learning algorithm with a sample of input-output pairs (x, u*(x)) (see
for example [9] for a discussion on the combination of such a scheme with re-
inforcement learning). Unfortunately, in many interesting control problems this
type of information can not be acquired directly, and the specific difficulty in
reinforcement learning is to infer a good approximation of the optimal control
policy only from the information given in the sample F of four-tuples. Existing
reinforcement learning algorithms can be classified into two categories:

— Model based RL methods: they use (batch mode or incremental mode) su-
pervised learning to determine from the sample F of four-tuples on the one
hand an approximation of the system dynamics:

fi(z,u, ") = Py = o' |og = 2,0 =) (3)
and on the other hand an approximation of the expected reward function:

fo(z,u) =~ E{ri|z: = x,us = u}. (4)

Once these two functions have been obtained, model based algorithms derive
the optimal control policy by dynamic programming [5, 8].

98 Damien Ernst, Pierre Geurts, and Louis Wehenkel

— Non-model based RL methods: they use incremental mode supervised learn-
ing in order to determine an approximation of the Q-function associated to
the control problem. This function is (implicitly) defined by the following
equation (known as the Bellman equation):

Q(z,u) = E{rt + ”)/HiE/LXQ(xt_i_l,u/) Ty =X, Up = u} . (5)

The optimal control policy can be directly determined from this (unique)
Q@-function by the following relation

w(x) = arg maxQ(, u). (6)

The most well-known algorithm falling into the latter category is the so-
called @-learning method [11].

Our proposal is based on the observation that neither of these two approaches are
able to fully exploit the power of modern supervised learning methods. Indeed,
model based approaches are essentially linked to so-called state space discretiza-
tion which aims at building a finite Markov Decision Problem (MDP) and are
strongly limited by the curse of dimensionality: in order to use the dynamic pro-
gramming algorithms, the state and control spaces need to be discretized and
the number of cells of any discretization scheme increases exponentially with
the number of dimensions of the state space. Non-model based approaches have,
to our best knowledge, been combined only with incremental (on-line) learning
algorithms (see e.g. [10]).

With respect to these approaches, we propose a novel non-model based RL
framework which is able to exploit any generic batch mode supervised learning
algorithm to model the @-function. The resulting algorithm is illustrated on a
simple problem where it is combined with three supervised learning algorithms
based on regression trees. The rest of the paper is organized as follows: Section
2 introduces the underlying idea of our approach and gives a precise description
of the proposed algorithm; Section 3 provides a validation in the context of the
“Car on the Hill” control problem; Section 4 provides discussions, directions for
future research and conclusions.

2 TIteratively Extending Time Horizon in Optimal Control

The approach that we present is based on the fact that the optimal (stationary)
control policy of an infinite horizon problem can be formalized as the limit of a
sequence of finite horizon control problems, which can be solved in an iterative
fashion by using any standard supervised learning algorithm.

2.1 Iteratively Extending time Horizon in Dynamic Programming

We consider a discrete-time stationary stochastic system defined by its dynamics,
i.e. a transition function defined over the Cartesian product X x U x W of the
state space X, the control space U, and the disturbance space W':

T4l = f(xt,Ut71Ut)7 (7)

Iteratively Extending Time Horizon Reinforcement Learning 99

a reward signal also defined over X x U x W:
ry = (T, Ut, W), (8)
a noise process defined by a conditional probability distribution:
wy ~ Py(w = wi|z =z, u = wy), (9)
and a probability distribution over the initial conditions:
xo ~ Py(x = x0). (10)
For a given (finite) horizon N, let us denote by
wn(t,x) eU,t€{0,...,N—-1};z e X (11)
a (possibly time varying) N-step control policy (i.e. uy = wn (¢, x¢)), and by

N—-1
T =E{)_ A'ri} (12)
t=0

the N-step reward of the closed-loop system using this policy. An N-step optimal
policy is a policy which among all possible such policies maximizes Jy~ for any
P, on the initial conditions. Notice that (under mild conditions) such a policy
always does indeed exist although it is not necessarily unique.

Our algorithm exploits the following properties of N-step optimal policies
(these are classical results of dynamic programming theory [1]):

1. The sequence of policies obtained by considering the sequence of @;-functions
iteratively defined by

Q1(7,u) = E{ri|r = v, us = u} (13)
and
Qn(z,u) = E{rt + 'ymz}xQN_l(xtH,u') Ty =T, U = u} VN > 1, (14)
and the following two conditions!

wn (0, 2) = arg maxQn (x,u), VN > 0 (15)
u

and
an(t+1,2) =7ay_1(tz),VN > 1,t € {0,...,N — 2} (16)
is optimal.
2. The sequence of stationary policies defined by p% (x) = 7% (0, z) converges
(globally, and for any P, on the initial conditions) to p*(z) in the sense that
lim JAN = Jb (17)
N —o00

3. The sequence of functions @y converges to the (unique) solution of the
Bellman equation (eqn. (5)).

! Actually this definition does not necessarily yield a unique policy, but any policy
which satisfies this condition is appropriate, and it is straightforward to define a
procedure constructing such a policy from the sequence of @Q;-functions.

100 Damien Ernst, Pierre Geurts, and Louis Wehenkel

2.2 Iteratively Extending Time Horizon in Reinforcement Learning

The proposed algorithm is based on the use of supervised learning in order to
produce a sequence Q; of approximations of the Q;-functions defined above, by
exploiting at each step the full sample of four-tuples F = (z¥, u¥, rF, xfﬂ), k=
1,...,¢ in batch mode together with the function produced at the preceding
step.

Initialization. The algorithm starts by using the sample F of four-tuples in
order to construct an approximation of @1 (x,u). This can be achieved using the
¢, uy components of each four-tuple as inputs, and the r; component as output
and by using a supervised regression algorithm in order to find in its hypothesis
space H a function satisfying

l
Q1 = argmin Y _ |h(zf,up) —rf|*. (18)
heH 1

Iteration. Step i (¢ > 1) of the algorithm uses the function produced at step
i—1 to modify the output of each input-output pair associated to each four-tuple
by

of =rf+ VQ?XQifl(fﬂfﬂvul) (19)

and then applies the supervised learning algorithm to build

14

Q; = argminz |h(zh, ul) — o2 (20)
heH 1

Stopping Conditions. For the theoretical sequence of policies an error bound
on the sub-optimality in terms of the number of iterations is given by the fol-
lowing equation
’YNBT
1—7’
where B, > supr(z,u,w). This equation can be used to fix an upper bound on
the number of iterations for a given a priori fixed optimality gap.

Another possibility is to exploit the convergence property of the sequence of
@;-functions in order to decide when to stop the iteration, e.g. when

|QN—QN_1‘ < €. (22)

|JEY — T | < (21)

Control Policy Derivation. The final control policy seen as an approximation
of the optimal stationary closed-loop policy is in principle derived by

pr(x) = py(z) = argflaXQN(x, u). (23)

If the control space is finite, this can be done using exhaustive search. Other-
wise, the algorithm to achieve this will depend on the type of approximation
architecture used.

Iteratively Extending Time Horizon Reinforcement Learning 101

Consistency. It is interesting to question under which conditions this algorithm
provides consistency, i.e. under which conditions the sequence of policies gener-
ated by our algorithm and using a sample of increasing size would converge
to the optimal control policy within a pre-specified optimality gap. Without
any assumption on the used supervised learning algorithm and on the sampling
mechanism nothing can be said about consistency. On the other hand, if each
one of the true Q;-functions can be arbitrarily well approximated by a function
of the hypothesis space and if the sample (in asymptotic regime) contains an
infinite number of times each possible state-action pair (z,u), then consistency
is ensured trivially. Further research is necessary in order to determine less ideal
assumptions both on the hypothesis space and on the sampling mechanism which
would still guarantee consistency.

Solution Characterization. Another way to state the reinforcement learning
problem would consist of defining the approximate @-function as the solution of
the following equation

R 2
Q = arg minz ’h(xf, uk) — (Tf + ’YH}E}Xh(mﬁl,u'))‘) (24)

Our algorithm can be viewed as an iterative algorithm to solve this minimization
problem starting with an initial guess Qo(z,u) = 0 and at each iteration ¢ > 0
updating the function according to

A 2
= argmlnz ‘h (zF, uk) (rf + 'ym:}XQi,l(me,u’))‘ . (25)
heH u

2.3 Supervised Regression Algorithm

In principle, the proposed framework can be combined with any available super-
vised learning method designed for regression problems. In order to be practical,
the desirable features of the used algorithm are as follows:

— Computational efficiency and scalability of the learning algorithm. Specially
with respect to sample size and dimensionality of the state space X and the
control space U.

— Modeling flexibility. The @;-functions to be modeled by the algorithm are
unpredictable in shape; hence no prior assumption can be made on the para-
metric shape of the approximation architecture, and the automatic learning
algorithm should be able to adapt its model by itself to the problem data.

— Reduced variance, in order to work efficiently in small sample regimes.

— Fully automatic operation. The algorithm may be called several hundred
times and it is therefore not possible to ask for a human operator to tune
some meta-parameters at each step of the iterative procedure.

— Efficient use of the model, in order to derive the control from the Q-function.

102 Damien Ernst, Pierre Geurts, and Louis Wehenkel

In the simulation results given in the next section, we have compared three
learning algorithms based on regression trees which we think offer a good com-
promise in terms of the criteria established above. We give a very brief description
of each variant below.

Regression Trees. Classification and regression trees are among the most pop-
ular supervised learning algorithms. They combine several characteristics such
as interpretability of the models, efficiency, flexibility, and fully automatic op-
eration which make them particularly attractive for this application. To build
such trees, we have implemented the CART algorithm as described in [4].

Tree Bagging. One drawback of regression trees is that they suffer from a high
variance. Bagging [2] is an ensemble method proposed by Breiman that often
improves very dramatically the accuracy of trees by reducing their variance.
With bagging, several regression trees are built, each from a different bootstrap
sample drawn from the original learning sample. To make a prediction with this
set of M trees, we simply take the average predictions of these M trees. Note
that, while bagging inherits several advantages of regression trees, it increases
their computing times significantly.

Extremely Randomized Trees (Extra-trees). Besides bagging, several
other methods to build tree ensembles have been proposed that often improve
the accuracy with respect to tree bagging (e.g. random forests [3]). In this paper,
we propose to evaluate our own recent proposal which is called “Extra-trees”.
Like bagging, this algorithm works by taking the average predictions of several
trees. Each of these trees is built from the the original learning sample by se-
lecting its tests fully at random. The main advantages of this algorithm with
respect to bagging is that it is computationally much faster (because of the ex-
treme randomization) and also often more accurate. For more details about this
algorithm, we refer the interested reader to [6, 7].

3 Illustration: “Car on the Hill” Control Problem

The precise definition of the test problem is given in the appendix. It is a version
of a quite classical test problem used in the reinforcement learning literature.

A car is traveling on a hill (the shape of which is given by the function H (p) of
Figure 3b). The objective is to bring the car in minimal time to the top of the hill
(p = 1 in Figure 3b). The problem is studied in discrete-time, which means here
that the control variable can be changed only every 0.1s. The control variable
acts directly on the acceleration of the car (eqn. (27), appendix) but can only
assume two extreme values (full acceleration or full deceleration). The reward
signal is defined in such a way that the infinite horizon optimal control policy is
a minimum time control strategy (eqn. (29), appendix).

Our test protocol uses an “off-line” learning strategy. First, samples of four-
tuples are generated from fixed initial conditions and random walk in the control

Iteratively Extending Time Horizon Reinforcement Learning 103

space. Then these samples are used to infer control strategies according to the
proposed method. Finally these control strategies are assessed.

3.1 Four-Tuples Generation

To collect the samples of four-tuples, we observed a number of episodes of the
system. All episodes start from the same initial state corresponding to the car
stopped at the bottom of the valley (i.e. (p,s) = (—0.5,0)) and stop when the
car leaves the region of the state space depicted in Figure 3a. In each episode, the
action u; at each time step is chosen at random with equal probability among its
two possible values © = —4 and u = 4. We will consider hereafter three different
samples of four-tuples denoted by Fj, F» and F3 containing respectively the
four-tuples obtained after 1000, 300, and 100 episodes. These samples are such
that #F; = 58089, #F, = 18010, and #F3 = 5930. Note also that after 100
episodes the reward r(z¢, us, wy) = 1 (corresponding to the goal state at the top
of the hill) has been observed only 1 time, 5 times after 300 episodes, and 18
times after 1000 episodes.

3.2 Experiments

To illustrate the behavior of the algorithm, we first use the sample F; with Extra-
trees? As the action space is binary, we choose to separately model the functions
QN(ac, —4) and QN(JJ,4) by two ensembles of 50 Extra-trees. The policy i}
obtained is represented in Figure la. Black bullets represent states for which
Ql(x, —4) > Ql(z,4), white bullets states for which Ql(:c, —4) < Ql(x,4), and
grey bullets states for which Ql(x, —4) = Ql(x,4). Successive policies i} for
increasing N are given on Figures 1b-1f. After 50 iterations f}, has almost
stabilized.

To associate a score to each policy fi}, we define a set X’ : X' = {(p,s) €

X|3i,5 € Z|(s,p) = (0.125 % ¢,0.3755)} and estimate the value of JEN when
P.(x9) = ﬁ if o € X’ and 0 otherwise. The evolution of the score for in-
creasing N is represented in Figure 2a for the three learning algorithms. With
Bagging and Extra-trees, we average 50 trees. After about 20 episodes, the score
does not improve anymore. Comparing the three supervised learning algorithms,
it is clear that bagging and Extra-trees are superior to single regression trees.
Bagging and Extra-trees are very close to each other but the score of Extra-trees
grows faster and is also slightly more stable.

On Figure 2b, we compare score curves corresponding to the three different
sample sizes (with Extra-trees). As expected, we observe that a decrease of the
number of four-tuples decreases the score.

To give a better idea of the quality of the control strategy induced by our
algorithm, it would be interesting to compare it with the optimal one. Although it
is difficult to determine analytically the optimal control policy for this problem,
it is however possible to determine Jgo* when the probability distribution on
the initial states is such that P,(zg = x) = 1 if = corresponds to the state

2 The results with regression trees and tree bagging are discussed afterwards.

Damien Ernst, Pierre Geurts, and Louis Wehenkel

104

1.p

(c) argmaxQio(z,u)

uelU

l.p

0.5

0.0

o
gE iy

(b) arg maxQs(z,u)

uelU

(a) arg maxQ(z,u)

uelU

§08 0 eeee e eeeeeeee 0002200000
8ee. @#u?“punuununnnnnuuuuunnuunuunu

1'P

(f) arg maxQ1o0(z,)

u€eU

(e) arg maxQso(z, u)

uelU

(d) arg maxQao(z,u)
welU

~

Fig. 1. Representation of iy for different values of N. Sample F;

N

20. '30. '40. '50. '60. '70. 80. 90.

10.

@ @ 5 ol 4 o
*NUU,UO |
SN
R
B0
ElE
@ |
s R
e}
o L
° 2
= .
(=]
I~
S
|©
S)
R
.t
(=3
s 5
z s 2
m a2 m
£ Y
g N @
+ .
kS =}
! =
2o ol
xZ S S o o |
'3
~

Extra-trees used on
the samples Fi, F2, and F3

)

b

(

Sample F1 used with different
supervised learning algorithms

~ %

Fig. 2. Evaluation of the policy jin

, trying

stive search

(p,s) = (—0.5,0) and 0 otherwise. This is achieved by exhau

out all possible control sequences of length k when the system initial state is
(p,s) = (—0.5,0) and determining the smallest value of k for which there is a

control sequence that leads the car on the top of the hill. From this procedure,

*

I

If

).

with

(

k-

our algorithm

0.397214 (

state the policy learned by

19 and then

we find a minimum value of &
we use from the same initial

Extra-trees), we get:

Iteratively Extending Time Horizon Reinforcement Learning 105

— from Fp, JH0 = 0.397214 = 48
— from Fy, JEI° = 0.397214 = ~'8
— from Fs3, J5°0 = 0.358486 = 720

For the two largest samples, C’EOD is equal to the optimum value Jgo* while it is
only slightly inferior in the case of the smallest one.

3.3 Comparison with a Non-model Based Incremental Algorithm

It is interesting to question whether our proposed algorithm is more efficient in
terms of learning speed than non-model based iterative reinforcement learning
algorithms. In an attempt to give an answer to this question we have consid-
ered the standard @-learning algorithm with a regular grid as approximation
architecture®.

We have used this algorithm during 1000 episodes (the same as the ones used
to generate Fi) and then we have extracted from the resulting approximate Q-
function the policy i* and computed Jfo* when considering the same probability

distribution on the initial states as the one used to compute the values of Jé?v
represented on Figures 2a-b. The highest value of Jfo* so obtained by repeating
the process for different grid sizes (a 10 x 10, a 11 x 11, --- and a 100 x 100 grid)
is 0.039 (which occurs for a 13 x 13 grid). This value is quite small compared

to Jé?oo = 0.295 obtained when using F; as sample and the Extra-trees as
regression method (Figure 2a). Even when using ten times more (i.e. 10,000)
episodes with the @Q-learning algorithm, the highest value of Jé‘o* obtained over
the different grids is still inferior (it is equal to 0.232 and occurs for a 24 x 24
grid).

4 Discussion and Conclusions

We have presented a novel way of using batch mode supervised learning algo-
rithms efficiently in the context of non-model based reinforcement learning. The
resulting algorithm is fully autonomous and has been applied to an illustrative
problem where it worked very well.

Probably the most important feature of this algorithm is that it can scale
very easily to high dimensional problems (e.g. problems with a large number
of input variables and continuous control spaces) by taking advantage of recent
advances of supervised learning techniques in this direction. This feature can
for example be exploited to handle more easily partially observable problems,
where it is necessary to use as inputs a history of observations rather than just
the current state. It could also be exploited to carry out reinforcement learning
based on perceptual input information (tactile sensors, images, sounds) without
requiring complex pre-processing.

3 The degree of correction « used in the algorithm has been chosen equal to 0.1 and the
Q-function has been initialized to zero everywhere at the beginning of the learning.

106 Damien Ernst, Pierre Geurts, and Louis Wehenkel

Although we believe that our approach to reinforcement learning is very
promising, there are still many open questions. In the formulation of our al-
gorithm, we have not made any assumption about the way the four-tuples are
generated. However, the quality of the induced control policy depends obviously
on the sampling mechanism. So, an interesting future research direction is the
determination for a given problem of the smallest possible (for computational
efficiency reasons) sample of four-tuples that gives a near optimal control policy.
This will raise the related question of how to interact at best with a system
S0 as to generate a good sample of four-tuples. One very interesting property
of our algorithm is that these questions are decoupled from the question of the
determination of the optimal control policy from a given sample of four-tuples.

Appendix: Precise Definition
of the “Car on the Hill” Control Problem

S

3.

2 H(p)

1. Y-YResistance

0.0 0.2 w
—1. mg
-2 1 —.5 0.0 0.5 Lp
-3 0.2

-1 —.5 0.0 0.5 1 D
Representation of H(p) (shape of the hill) and
(a) X\ (=} (b)) ()

of the different forces applied to the car

Fig. 3. The “Car on the Hill” control problem

System dynamics: The system has a continuous-time dynamics described by
these two differential equations:

p=s (26)
5 — u . gH'(p) . SQHI(p)H”(p) (27)
- om(l+H'(p)?) 1+H'(p? 1+H'(p)?

where m and ¢ are parameters equal respectively to 1 and 9.81 and where H(p)
is a function of p defined by the following expression:

p>+p if p<0
H(p) = P it p>0 (28)
\/ 1+5p? -

The discrete-time dynamics is obtained by discretizing the time with the time
between ¢ and ¢ 4+ 1 chosen equal to 0.100 s.

Iteratively Extending Time Horizon Reinforcement Learning 107

If piy1 and sp4q are such that |pii1] > 1 or |si1| > 3 then a terminal state x*
is reached.

State space: The state space X is composed of {(p, s) € R?||s| < 1and |p| < 3}
and of a terminal state z*. X \ {z'} is represented on Figure 3a.

Action space: The action space U = {—4,4}

Reward function: The reward function r(z,u,w) is defined through the fol-
lowing expression:

-1 if P41 < —1 or |St+1| >3
r(wg,we,ug) =1 if pip1>1 and [spyq| <3 (29)
0 otherwise

Decay factor: The decay factor v has been chosen equal to 0.95. Notice that
in this particular problem the value of « actually does not influence the optimal
control policy.

References

1. D. Bertsekas. Dynamic Programming and Optimal Control, volume I. Athena
Scientific, Belmont, MA, 2nd edition, 2000.

2. L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.

L. Breiman. Random forests. Machine Learning, 45:5-32, 2001.

4. L. Breiman, J. Friedman, R. Olsen, and C. Stone. Classification and Regression
Trees. Wadsworth International (California), 1984.

5. D. Ernst. Near optimal closed-loop control. Application to electric power systems.
PhD thesis, University of Liege, Belgium, March 2003.

6. P. Geurts. Contributions to decision tree induction: bias/variance tradeoff and time
series classification. PhD thesis, University of Liege, Belgium, May 2002.

7. P. Geurts. Extremely randomized trees. Technical report, University of Liege,
2003.

8. A. Moore and C. Atkeson. Prioritized Sweeping: Reinforcement Learning with Less
Data and Less Real Time. Machine Learning, 13:103-130, 1993.

9. M. T. Rosenstein and A. G. Barto. Supervised learning combined with an actor-
critic architecture. Technical report, University of Massachusetts, Department of
Computer Science, 2002.

10. W. Smart and L. Kaelbling. Practical Reinforcement Learning in Continuous
Spaces. In Proceedings of the Sixteenth International Conference on Machine
Learning, 2000.

11. C. Watkins and P. Dayan. Q-learning. Machine learning, 8:279-292, 1992.

w

	1 Introduction
	2 Iteratively Extending Time Horizon in Optimal Control
	2.1 Iteratively Extending time Horizon in Dynamic Programming
	2.2 Iteratively Extending Time Horizon in Reinforcement Learning
	2.3 Supervised Regression Algorithm

	3 Illustration: “Car on the Hill” Control Problem
	3.1 Four-Tuples Generation
	3.2 Experiments
	3.3 Comparison with a Non-model Based Incremental Algorithm

	4 Discussion and Conclusions
	Appendix: Precise De.nition of the “Car on the Hill” Control Problem
	References

