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Improving the Statement of the Corrective Security-Constrained Optimal
Power-Flow Problem

Florin Capitanescu and Louis Wehenkel, Member, IEEE

Abstract—This letter proposes a formulation of the corrective se-
curity-constrained optimal power-flow problem imposing, in addi-
tion to the classical post-contingency constraints, existence and vi-
ability constraints on the short-term equilibrium reached just after
contingency. The rationale for doing so is discussed and supported
by two examples.

Index Terms—Optimal power flow, security-constrained optimal
power flow.

1. INTRODUCTION

HE security-constrained optimal power flow (SCOPF)
T problem has been formulated under two modes: “preven-
tive” [1] and “corrective” [2], called PSCOPF and CSCOPF.

The CSCOPF computes an optimal combination of preven-
tive and open-loop corrective controls. An implicit assumption
of the classical CSCOPF formulation is that the system reaches
a stable short-term equilibrium just after the contingency ap-
plication and that it will survive until/during the post-contin-
gency control actions are taken. However, this assumption is
not always true, especially for stressed operating states and/or if
voltage instability is a concern. Actually, since the CSCOPF nat-
urally leads to more stressed operating conditions, it may signif-
icantly increase the risk of dynamic instabilities such as voltage
collapse or cascading line trippings which could occur before
the corrective control actions can be applied.

To mitigate this problem, we propose in Section II an im-
proved CSCOPF formulation imposing existence and viability
constraints on the short-term equilibrium reached just after
contingency occurrence and before corrective controls are
applied. In Section III, we provide examples where the clas-
sical CSCOPF formulation leads respectively to power-flow
divergence just after contingency occurrence, or to severe over-
currents which could lead to cascading line trippings before
any post-contingency control could be applied.

II. IMPROVED STATEMENT OF THE CORRECTIVE
SECURITY-CONSTRAINED OPTIMAL POWER FLOW

The proposed improved approach to the CSCOPF problem
can be compactly stated as follows:

min fo(Xo, uo) (1
s.t. gr(Xp,u) =0 kE=0,...,c 2)
gr(x},u0) =0 k=1,...,c 3)
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hk(xk,uk) Shznax kZO,...,C (4)
hy(x},u0) <pehP™ k=1,....c Q)
|lup —ug| <AUF*™ k=1,...,c (6)

where f; models the cost of preventive control actions, and,
for the kth system configuration (k = 0 corresponds to the
pre-contingency configuration, while & = 1, ..., ¢ correspond
to the ¢ post-contingency configurations), xj, is the vector of
state variables, uy, is the vector of preventive and corrective con-
trol variables. Equality constraints (2) and inequality constraints
(4) impose the feasibility of the pre-contingency and corrected
post-contingency states. On the other hand, equality constraints
(3) and inequality constraints (5) impose, for each contingency,
the existence and viability of the intermediate state reached just
after contingency occurrence and before application of correc-
tive control actions.

Equality constraints (2) and (3) are essentially the AC bus
power balance equations, while the inequality constraints (4)
and (5) concern physical limits of equipments (e.g., bounds on:
generators active/reactive powers, transformers equipped with
tap-changer ratio, shunts reactance, phase shifters angle, etc.)
and operational limits (e.g., on branch currents and voltage mag-
nitudes). Note that p;, > 1 is a scalar value modeling how
much the constraints just after the contingency application are
relaxed with respect to the permanent limits. Inequalities (6) are
“coupling” constraints between the base case and post-contin-
gency values of control variables aimed at preventing unreal-
istic values of corrective control variables; Auj'** is the vector
of maximal allowed variations of control variables between the
base case and kth post-contingency state.

With respect to the classical CSCOPF formulation, we thus
propose to include the additional constraints (3) which ensure,
for each contingency, the existence of a post-contingency equi-
librium point when the control variables are frozen to their
pre-contingency values, and the constraints (5), which ensure
that in this state the operational limits are not violated too
much, so that the corrective control action u; — uy may be
taken before cascading tripping or equipment damage occurs.
Note that the exact nature of these additional constraints will
depend on the system dynamics and degree of safety one wants
to ensure. For example, by using a constant power load model
to formulate (3) and pi = 1 in (5), the solution of our modified
CSCOPF becomes actually as conservative and costly as that
of a PSCOPF.

III. NUMERICAL RESULTS

We present two examples supporting the interest of our for-
mulation on a 60-bus/23-generator test system, which is a modi-
fied variant of the “Nordic32” system [3]. We consider, for sim-
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plicity, a single contingency (the loss of a major branch). In our
simulations we use the interior-point method to solve optimiza-
tion problems (see [44]).

We solve the CSCOPF problem of minimizing the overall
generation cost with and without the additional constraints and
compare their results, for two different scenarios. In both cases,
the control variables are the active/reactive powers of all gen-
erators. In these simulations, we consider that all equality con-
straints are the AC bus active/reactive power balance equations
with constant power loads, and inequality constraints are bounds
on generator active/reactive powers and current limits for the 81
branches. In the coupling constraints we assume for every gen-
erator that Auj'® is 2% of its active power physical range of
variation.

In the first example we choose a highly loaded base case.
We run the CSCOPF without the additional constraints and,
at the optimal solution, we observe that 302 MW are shifted
in corrective mode between several generators, to ensure
post-contingency state feasibility. Note that most of the cou-
pling constraints are binding at the optimum, indicating that
these generators have exhausted all their available corrective
control capacity, while none of the inequality constraints (4)
are binding. However, when simulating the contingency at the
so-optimized base case, by a classical AC power-flow software
without applying the corrective controls, the computation
diverges. Actually, we have determined that the minimum
load shedding to restore post-contingency feasibility leads to
the curtailment of 49 MW and 32 Mvar at two load buses.
This means that the preventive/corrective control combination
computed with the classical CSCOPF assumptions, leads to a
situation of high risk of voltage collapse. Note that, as expected,
we have found in our experiments many such cases, admittedly
especially among (very) stressed operating points.

When using the additional constraints in the CSCOPF for-
mulation we find that none of the inequality constraints (4) or
(5), for p > 1, are binding at the optimum. Since the set of
power-flow equations just after contingency (3) is obviously
more constraining than the set relative to the corrected state
(2), and that constraints (3) are included also in the classical
PSCOPF, the optimal solution of our CSCOPF approach actu-
ally coincides here with that of the classical PSCOPF. This sug-
gests that contingencies which do not have an equilibrium point
just after the contingency should be treated in preventive mode
without relying on corrective control.

These conclusions hold true at least as long as one uses a con-
stant (apparent) power model for loads in pre- and any post-con-
tingency state, a common assumption in SCOPF computations.
This implicitly assumes that load is restored before the correc-
tive actions (impacting load restoration) start. Clearly, the use
of a different short-term load model, for the power-flow equa-
tions just after contingency (e.g., ZIP, depending exponential of
voltage, etc.), deserves further investigation.

We now choose a thermal “congested” operating point, for
which at the OPF solution (CSCOPF model without contin-
gency constraints) one branch current constraint is binding. We
then run the classical CSCOPF and find that one (different)
branch current is at its maximum value in the post-contingency
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Fig. 1. Influence of the relaxation factor p on the objective value.

state. Now, by simulating the contingency at the classical
CSCOPF optimal base case, several branches are overloaded
among 124% and 158%. These extremely high overloads cor-
respond to the system state right after contingency, while the
optimal corrective actions proposed by the classical CSCOPF
approach succeed to remove all these overloads by shifting
generation in corrective mode. We believe that in such a case
the classical CSCOPF approach is again very risky, since
slightly delaying some coordinated corrective actions may lead
to cascading trippings of the overloaded branches.

Fig. 1 displays the objective value of our CSCOPF approach,
taking as base the objective of the classical CSCOPF, for dif-
ferent increasing values of the relaxation factor p. The quite
linear shape of this curve is due to the fact that we have used
linear (and quite close) bidding prices for all generators. One
can observe that the higher the value of p the less the value of
the objective. Obviously, the objective value obtained for p = 1
[respectively, p > 1.58] corresponds to a classical PSCOPF
(respectively, CSCOPF) approach. Also, for p < 1.58 [respec-
tively, p > 1.58], some inequality constraints of type (5) [re-
spectively, (4)] are binding. Such a curve could yield to the
system operator valuable information for trading off the risk of
cascading events with the price to pay for reducing this risk.

IV. CONCLUSION

We have reformulated the CSCOPF problem by imposing
constraints ensuring existence and viability of the short-term
equilibrium point after a contingency is applied and before
corrective controls may take place. When these constraints are
binding, our approach can provide safer control strategies than
the classical CSCOPF would do. We believe that our proposal
is a sound compromise between the classical CSCOPF formu-
lation and a full dynamic approach to security control.

Since the size of the extended CSCOPF problem is almost
twice that of the classical CSCOPF problem, further work will
aim at developing appropriate relaxation techniques to reduce
the computational burden, for example by introducing the addi-
tional constraints sequentially and only where they are binding,
or by exploiting Benders decomposition [2].
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