Application of deterministic and stochastic analysis to calculate a stadium with
pressure measurements in wind tunnel
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ABSTRACT: This paper aims at comparing different analysis methods in the design of a roof subjected to buffeting wind forces.
The specificity of this study is that aerodynamic pressures acting on the stadium roof are measured in a wind tunnel. Commonly
a deterministic approach is considered in that context and modal superposition is applied. Uncoupled modal equations are solved
either in the time domain with a step-by-step method, either in the frequency domain. As an alternative, we seek to apply the
concepts of a stochastic analysis using the background resonant decomposition. The key idea is to fit a probabilistic model onto the
measured data and to perform the stochastic analysis as a usual buffeting analysis. An important focus is put on the ultimate goal
of designing the structure, i.e. of computing extreme values of representative internal forces in the structure. This is performed
with dedicated approaches for deterministic and stochastic analyses.The deterministic approach is able to capture the non Gaussian
nature of the loading and provides therefore positive and negative peak factors. On the contrary, in the stochastic approach limited
to the second order here (Gaussian context), Rice’s formula provides a unique peak factor and therefore advanced techniques need
to be applied in order to provide suitable estimations of extreme values. This difficulty to model extreme values is a drawback of
the stochastic approach that could be solve by reproducing at higher statistical orders the principles of the method presented in this
paper. For a number of reasons explained in the paper, the stochastic approach performs better than the deterministic one.

KEY WORDS: Buffeting wind forces; Roof; Stochastic analysis; Background resonant decomposition; Extreme values; Non
Gaussian; Peak factor; Wind tunnel.

1 INTRODUCTION processing of these measured signals (calculation of Power
Spectral Densities, PSD, for example) to put them into a
probabilistic model which is the key idea developed in this
paper. Some limitations at the deterministic method are pointed
up and explained. After, the evaluation of the extreme values

and their non Gaussian nature is discussed.

Design of structures subjected to wind loads can be performed
with various analysis methods. The equation of motion may be
solved with three approaches. A first option is a deterministic
approach [1] with modal superposition. Uncoupled modal
equations are solved either with a step-by-step method, either in

the frequency domain, by Fourier transform and multiplication
by the transfer function. A second possibility is a stochastic
analysis [2], using background resonant decomposition (SRSS
and CQC) [3]. The choice of one or another method depends
on the time/frequency and deterministic/stochastic nature of the
loading.

In a wind tunnel context, the loading is defined sometimes
by synchronous pressure measurements, given as time history
recordings. Because wind tunnel measurements inherently
present some limitations (e.g. data acquisition rate), the
description by means of time histories can be less appropriate
to cope with at a design stage, than a more traditional buffeting
loading model. These limitations make some methods more
suitable than others, although the deterministic approach would
appear to be the most appropriate at first glance.

The aim of this paper is to apply and compare deterministic
and stochastic analyses in the design of a stadium roof subjected
to wind forces. Deterministic approaches require only the
measured pressures whereas the stochastic approach needs a

In a first section the considered structure is described. The
large stadium roof (230x200 meters) is composed of an upper
envelope supported by its structural frame. A part of this roof
is retractable in order to close the stadium during exhibitions
or severe winter conditions. The structural system contains
two pre-stressed statically determined main beams (205 meters
span length) and two secondary beams (80 meters span length).
Characteristics of the 3D finite element model and results of the
modal analysis have been provided by the design team. Internal
forces in twelve specific elements of the frame are studied using
the aerodynamic loading measured in the wind tunnel. The
post-processing of the measured data starts by separating the
mean and the fluctuating part of the pressures; further, PSD of
the fluctuating part are computed. By these processing, some
shortcomings of typical measurement signals are identified.

Finally, conclusions of this study are made and negative and
positive aspects of the different methods applied are analysed.
Also, prospects for advanced studies are given.



2 STUDIED STRUCTURE: "LE GRAND STADE DE LILLE
METROPOLE”

2.1 Description

The structure studied in this paper is the roof of the stadium Le
Grand Stade de Lille Métropole currently under construction in
Lille, France. Its specificities are a retractable roof and a moving
half-playing field. Its dimensions are 230x200x36 meters. The
roof is made up of three parts: above the grandstands, above the
ambulatories and above the playground as shown in Figure 1.

Il RETRACTABLE ROOF

I ROOF ABOVE THE AMBULATORIES
Il ROOF ABOVE THE GRANDSTANDS

Figure 1. Different parts of the roof, and model of the stadium
(N, S, E and W indicate the North, South, East and West,
respectively).

Figure 2 shows a view inside the stadium from East to West.
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Figure 2. Cross-section from East to West with transversal
dimensions.

As shown in Figures 1 and 2 the retractable roof is composed
of four elements; the two innermost ones are above the other
two, in order to allow their motion. The retractable roof slides
on eccentric beams connected to the middle of the main beams
(depicted in red in Figure 3(a)). These main beams are statically
determined and span 205 meters. They are actually 15 meter
high truss beams. Consequently to this large span, the main
beams are pre-stressed. Secondary beams (depicted in red in
Figure 3(b)) are connected to the main beams and are also truss
beams (8 meter high, spanning 80 meters). Figure 4 depicts
the different components of the structural system bearing the
weight of the roof above the grandstands and the ambulatories.
Foremost, the weight of the retractable roof is transmitted via
purlins which are perpendicularly fixed to the lower and upper
beams which compose the supporting structure (shown in red
in Figure 4,(a,b,c)). The weight of the roof above grandstands
oriented East and West is borne by fifty-two upper beams. These
beams are statically determined and transversally spaced by
13,44 m. On a side they lean on the main beams and on the
other side on the metallic supports (shown in red in Figure
4(d)). Supports transmit the loads on the top of the concrete
grandstands.

Figure 3. Localisation of the main and secondary beams in the
structure: (a) main beams, (b) secondary beams.

(c) (d)

Figure 4. (a) Upper beams east and west, (b) Upper beams north
and south, (c) Lower beams, (d) Supports.

For grandstands oriented North and South, upper beams
(shown in red in Figure 4(b)) lean on one side on secondary
beams and the other side on the metallic supports. The roof
above the ambulatories is realized by sixty-six lower beams
shown in red in Figure 4(c). On the upper extremity they lean
on the metallic supports and at the lower extremity they are
connected to the concrete structure on the ground.

2.2 Finite element model

The finite element model has been realised with FinelG (a FE
software developed at the University of Liege since 1978 [4])
by the design office Greisch [5]. Table 1 collects principal
characteristics of the 3D finite element model for the studied
structure.

Table 1. Characteristics of the 3D finite element model.

Number of elements 4940
Number of types of elements 11
Types of material 3
Number of geometries 153
Number of degrees of freedom 42006

2.3 Modal properties of the roof structure

The frequency of the first mode is equal to 0.475 Hz and eleven
vibration modes have a natural frequency lower than 1 Hertz.



The design office has decided to keep the first twenty-one modes
for the modal analysis which corresponds to a frequency range
lower than 1.415 Hz. Figure 5(a) depicts the fundamental mode
which is an antisymmetric vertical one and Figure 5(b) depicts
the third mode which represents a general vertical movement. A
modal damping (&) equal to 1% for each mode is considered.

(a) Mode 1: 0.475 Hz. (b) Mode 3: 0.517 Hz.

Figure 5. Modal vertical displacements and associated
frequencies.

2.4 Studied elements

A dedicated focus is put on the ultimate goal of designing the
structure, i.e. of estimating extreme values of internal forces.
Twelve elements have been selected for this part of the study
and are identified in Figure 6.

Figure 6. Localisation of the twelve elements in the structure.

Table 2 gives the description of the studied elements for an
easy identification into the structure. Only one internal force is
studied by element: N corresponds to an axial force and M, to a
bending moment in the vertical plane.

3  WIND TUNNEL SIMULATION
3.1 Simulated wind properties

The target wind properties are based on the Eurocode EN
1991-1-4 [6] and its french national appendix [7]. A Illa
category terrain is appropriate to represent the surrounding of
the stadium. Table 3 presents the main parameters of this
characterisation. The loads induced by these wind properties
correspond to the Service Limit State ones.

3.2 Wind tunnel measurements

Wind tunnel measurements have been carried out at the
Centre Scientifique et Technique du Bdtiment in Nantes in
France. Figure 7 shows the 1/200 scaled model in the wind

Table 2. List of the studied elements, with considered internal

force.
N°  Description
1 Lower fiber of the main beam N
2 Diagonal of the main beam N
3 Element of the upper beam M,
4 Metallic purlin of the roof N
5  Upper fiber of the secondary beam N
6  Bracing N
7  Lower purlin of the roof N
8  Metallic support N
9  Bracing N
10  Peripheral purlin of the roof N
11 Upper fiber of the main beam N
12 Bracing between support and an upper beam N

Table 3. Target wind properties.

Fundamental wind velocity
Basic wind velocity  V}, 0=26 m/s
Directional factor Cgy;,=1
Seasonal factor  Cegson=1
Return period 50 years
Basic wind velocity V=26 m/s
Mean Wind
Terrain category 3a  Zp=0,2m, Z,;, =5 m

Height of the structure Z; = 36,43 m
Roughness factor &k, = 0,209, ¢,(Z;) = 1,09
Orography factor c¢o=1
Mean wind  V,,(Z;) = 28,3 m/s
Wind Turbulence
Turbulence factor k1 =1

Turbulence Intensity  1,,(Z;) = 19%
Peak velocity pressure
Reference velocity pressure  ¢ean(zs) = 491,7 N/m?
Peak factor g=3,5
Peak velocity pressure  g,(z,) = 1133 N/m?

tunnel. The surrounding buildings and trees are modelled in
the wind tunnel to simulate the environment of the stadium.
Instrumentation of the scaled model needed approximately five
hundred synchronous pressure sensors. The scaled model is
supposed to be infinitely rigid. The sampling frequency 200 Hz
corresponds to 2.94 Hz in full scale; so the Nyquist frequency
is equal to 1.47 Hz and the time step is equal to 0.342 seconds.
Each measurement lasts about 105 minutes full scale. Twenty
four wind directions (0° to 345° with a step of 15°) have been
tested for ten configurations of the retractable roof. This paper
considers only one configuration, 75° wind direction (wind
acting perpendicular to the longitudinal East side), retractable
roof 100% closed (depicted in Figure 9).

3.3 Post processing of the measured pressures

As a first step, wind loads can be separated as a sum of two
parts:

p(t) = tp +p,y (1) )



Figure 7. Model of the stadium in the wind tunnel.
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Figure 8. Only wind direction studied in this paper.

where pp and p,(7) are the mean and the fluctuation part of
wind loads, respectively. An analysis of maps of the means and
standard deviations of the pressures reveals a typical pattern
and is therefore not illustrated here. Further, an interesting
insight into the acquired data consists in analysing the PSD’s
of the fluctuation part of the measured pressures. PSD’s are
computed using Welch’s method with a Hamming window.
This operation reveals a typical decreasing PSD (see Figure
10 for sensor A located in the NE part of the roof, see Figure
8). It appears that almost all acquired pressures are noised by
significant harmonic oscillations (they are labelled and pointed
with dots in Figure 10). Several reasons can explain these
spurious harmonic frequencies: aliased rotation speed of flans,
AC power insufficiently filtered, flexibility of the scale model,
flexibility of the turning table, etc.

4 STRUCTURAL DESIGN FROM WIND TUNNEL MEA-
SUREMENTS

Let us consider z(¢) a set of structural responses of interest.
Symbol z may therefore refer to nodal displacements (z = x),
modal displacements (z = q), internal forces (z = f), etc or any
combination of them.

Figure 9. Considered configuration: 100 % Closed.
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Figure 10. PSD of measured pressure. The number of points
is 512 (total number of points is equal to 18432) with an
overlap of 50%.

It is divided into three contributions:

Z(t) = Uy + 2, (1) + 2, (t) 2)
z, (1)

where 1, Z, (1), 2, (t) and z, (r) are the mean, background,
resonant and dynamic contributions of responses, respectively.

4.1 Calculation of the mean and background contribution of
the responses

The calculation of p, and z,(¢) is done in the nodal basis which
is more appropriate. For these contributions, a static linear
analysis is performed:

o = Aty 3

z,(t) = Ap, (1) “

where A is a matrix of influence coefficients obtained from
the stiffness matrix K, in a FE context.

4.2 Calculation of the resonant contribution of the responses

The dynamic calculation is performed efficiently in the modal
basis so that the damping matrix is diagonal and the equations of
motion are uncoupled. Only the fluctuation part of wind loads,
p, (1), is now considered. A special attention has to be paid to the
fact that the background component has already been accounted
for in the nodal basis. Only the the estimation of the resonant
contribution remains to be assessed. Depending on the method
of analysis, different approaches are considered next to separate
the background component. However, a common stage of the
different methods presented hereinafter is the computation of the
generalized forces p;(t), which is (deterministically) performed
in the time domain, by projection of the measured pressures into
the known mode shapes ¢:

p;(t)=0"p,(t) 5)

Mode shapes are also obtained with the FE model. Let q()
be the modal responses under pg(¢). They are computed next
with three different approaches.



1. Deterministic time domain:
The modal displacements q(¢) are the solution of the equations
of motion:

M"§(1) +C*q(1) + K*q(1) = p; (1) (6)

where M*, C* and K* are respectively the generalized mass,
damping and stiffness matrices (known from the FE model)
and the dot denotes time derivative. Newmark’s algorithm [10]
(oo =0.25 and 6 = 0.5) is used to solve (6). The background
contribution of the modal displacements is given by:

a4, (1) =K* ' p: (1) %)

so that the resonant contribution of the modal displacements is
here obtained by a simple subtraction:

qR (t) = q(t) - qB (t) (8)

and the resonant contribution of the responses is calculated
using:

2, (1) = 9" qp (1) )

where ¢(® is a modal matrix of influence coefficients (obtained
from a FE model too).

2. Deterministic frequency domain:

The modal transfer function is modified by subtraction of its
value at the origin. This transformation leads to a resonant
modal transfer function, H; (w), defined by:

H (0) = H'(0) - K"’ (10)

which allows to calculate the Fourier Transform of the
resonant contribution of the modal displacements by solving the
equation:

Q;(w) = H;(w)P;(w) (11)

where Qg (®) is the Fourier transform of q,(#); Hy (o) is
the resonant modal transfer function and Po*(a)) is the Fourier
transform of p;(t). The resonant contribution of the modal
displacements is then calculated using the inverse Fourier
transform:

+o0

q (1) = 3 Q(w)e/”dw (12)

and the resonant contribution of the responses, z, (t), is obtained
with (9), as done before in the time domain.

3. Stochastic frequency domain: In a stochastic context, the
background resonant decomposition (B/R) is usual in the design
of large structures [8]. Indeed, calculation and storage of
the spectral densities of the responses of the structure (i.e.
nodal/modal displacements, inner forces, etc) are time/memory
consuming and therefore usually not performed. Because it is
more appropriate, the calculation is here performed in the nodal
basis for the background component and in the modal basis for
the resonant one. The PSD matrix of the modal coordinates,
S (@), is obtained as:

59 (w) = H*(0)S™ (0)H* ()T (13)

where S(pp(w) is the PSD matrix of the generalized forces
(obtained as explained next). Using the well-known B/R de-
composition, S@) () can be dispatched into two contributions:

(Y Ee—

SW () =K* 'SP (0)K* ' +H(0)Swd H(0)T  (14)

S(qB)(w) S(qR)((O)

where sif,',’ ) is the equivalent white noise matrix of the
generalized forces; S9)(®) is the PSD matrix of the
background contribution of the modal coordinates and S(dr) ()
is the PSD matrix of the resonant contribution of the modal
coordinates. The introduction of a full white noise matrix
instead of just a diagonal matrix allows the treatment in a CQC
context in place of SRSS as usual. This method is detailed in
[3]. Only its formulation is given here:

for diagonal elements

ey _ S0 (@)

17,,\/ Sr(np 5 (a)m)Si” 0)(w,) for off-diagonal elements

s)

where anp 3)(60,,,) is the value of the auto PSD of the mth

generalized force at its natural frequency @,,. An appropriate
choice of T, is:

an(wm) + an(wn)
2

where I',,(®) is the coherence function between the mth and
nth generalized forces defined by:

an = (16)

(rg)
S
rmn(w) — mnO (w)

anp6>(w)S(p6)(w)

n

a7

where Sl(:; 3)((0) is the cross PSD between mth and nth
generalized forces.
Finally, the PSD matrix of the resonant contribution of the
responses is computed using:
S=) () = ¢<Z>s(qa>(m)WT (18)
Actually [3] proposes an estimation of the correlation
coefficient of the modal displacements as :

(ar)

(KIB) + ’yR pmn

pfnq,,) ~ VB Pmn (19)

where p,(,lq,f ) and p,(nan> are modal correlation coefficients
that would be obtained in case of perfectly background (resp.
resonant) responses. The weighting coefficients yp and Y result

from a solid mathematical development [3] and aim at providing

an accurate estimation of p,Efi,) in case of mixed response.

4.3 Computation of extreme values

A counting procedure in the time domain is applied in the
deterministic approaches. Both deterministic methods provide
the resonant contribution of the responses in the time domain,
eventually after ifft (Inverse Fast Fourier Transform). The



background contribution calculated in the nodal basis, see (4),
added up to the resonant contribution calculated in the modal
basis, see (9), gives the dynamic contribution of the responses:

2,()  + (20)

z, (1) = zy (1)
——

from a nodal analysis  from a modal analysis

This is precisely the extremum of z,(r) that has to be
determined. This is performed with a three-step procedure:

1. each record is virtually divided into twelve sub-records of
about 10 minutes each [6] and the extreme values (min and max)
of each one are identified:

(min)

(min) — min 2, (t); 20" = maxz,,(t) fori=12,..12 (21)

z D.i

2. these maxima and minima are averaged to obtain the
expected maximum and minimum, over the 10-min. observation
period:

12 (min) 12, (max)
Z(emin) _ Z’ZIZVJ . (emax) _ ZZZIZV-i (22)
D 12 > D 12

3. positive and negative peak factors are obtained by dividing
these expected maximum and minimum by their standard
deviations. For the k' response:

Z(emin) Z(emax)
Gi=o 8= (23)
<Dk ipk

where Oz is the standard deviation of the kth response.

In the stochastic context, another approach to calculate the
extreme values is used:

21nng + _r

21nng

(extr) ~
Iy T

o, =0, (24

where ¥ = 0.5772 is Euler’s constant, g is the peak factor
(known as Rice’s formula [11]), ng is the number of zero
up-crossings during the observation period with the following
formulation:

(25)

where T is the observation period on the sub-records and

2,(zp) - :
mk'(ZD) is the auto spectral moment of order 2 of the dynamic

contribution of the kth response. More details about its
computation are given now. A matrix of spectral moments is
defined by:

. too
m':/ |o'S(w)dw

(26)

Application of (26) to (18) provides the spectral moment
matrix of the resonant contribution of the responses:

mi,(zR) _

too
/ |o'S™) (0)dw

—o0

doo —
0 [ o'W (@0 57"

- ¢(Z)mi-(qR)WT 27
where m"(9®) is the spectral moments matrix of the resonant
contribution of the modal displacements. Only the diagonal
of m"%r) is necessary and these elements are in principle
calculated using the complete quadratic combination:

. M M .
LW R (28)
m=1n=1

where M is the number of modes. The PSD of z,(r) is
calculated via Welch’s method from the value obtained in (4)
in the nodal basis and the matrix of spectral moments as in (26).
Finally:

i-,(Z[)) _ iv(zg) i7<ZR)
me = my + oom
——
from a nodal analysis

so that (25) and (24) may be applied.

(29)

from a modal analysis

5 FITTING OF A MODEL ONTO THE GENERALIZED
FORCES

Section 3.3 has thrown light onto some shortcomings related to
the measured signals. Their potential impact on the structural
response must be assessed carefully. The influence of noise
frequencies on the background contribution is relatively weak
(because they do not affect significantly the variance). On the
contrary for the resonant contribution, the diagonal elements of
the white noise matrix are directly related to the values taken by
the PSD at the natural frequencies. So if a deterministic analysis
is applied without an appropriate processing of the measured
data (which is not a trivial task), it is suggested to check at least
that noise frequencies are not too close to with the structural
natural frequencies. A proposed criterion is to fix a frequency
range around each natural frequency where no noise frequencies
can be present. This range can be the half height width of the
peak of the transfer function which is equal to 2& f,,. So one of
the two following conditions should be validated:

fn()ise > (1 +§)fnat or fnuixe < (1 - é)fnut

where foise» & and fy, are the frequency of the noise, the
damping ratio and the natural frequency, respectively. For this
study, this criterion has been checked and validated as shown at
Figure 11.

As developed in sec}ion 4.2, the calculation of the equivalent

(30)

white noise matrix, Sg}},, requires estimation of the PSD matrix
of the generalized forces, S(Pb) (w), for every natural frequency.
The analysis method proposed in this paper precisely consists in
fitting a probabilistic model onto the deterministic generalized
forces po*(t). In a stochastic approach a possible solution is to
follow this four-step method:



Figure 11. Squares represent the noise frequencies and dots
represent the natural frequencies. In potentially critical
cases vertical lines represent the range around the natural
frequencies where no noise frequencies are allowed to be
present.

1. calculation of the PSD via Welch’s method (or another
classical method);

2. identification of the noise frequencies (a criterion has to be
adopted, more details can be found in [9]);

3. filtering of the noise frequencies by a band-stop;

4. calculation of the PSD on the filtered signal with a parametric
estimator (6" order Yule-Walker).

()
8140

[KN/Hz]

Freq [Hz]

Figure 12. Application of the proposed solution. 1=Welch’s
method - raw signal; 2=Yule-Walker - raw signal;
3=Welch’s method - filtered signal and 4=Yule-Walker -
filtered signal. Dots have an abscissa equal to the natural
frequency of the mode.

This solution restores the energy for filtered noise frequen-
cies. Figure 12 shows the effectiveness of the proposed
solution for the auto PSD of the generalized force in the 14™
mode. Indeed it gives good results as the curve 4 smoothly
represents the actual signal without being affected by the noise
frequencies. Moreover curve 2 shows that the application
of a parametric method onto noised generalized forces is not
recommended. In fact the value taken at the natural frequency
(dot on curve 2) is erroneous. As a conclusion, the stochastic
approach is a smart way to bypass the drawbacks related to these
noise frequencies. Indeed, a stochastic model is fitted on the
generalized forces, for the whole frequency range, independent
of the noise frequencies. In addition to providing a simple way
to treat these noise frequencies, it also provides a model that is
consistent with physical intuition.

6 RESULTS
6.1 Modal coordinates

As a first comparison, PSD of the modal coordinates obtained
with the three analysis methods are given in Figure 13.
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Figure 13. PSD of the first modal coordinate for the three

analysis methods. The vertical dash-dotted line indicates
the natural frequency. The vertical dashed line represents
the frequency corresponding to the peak obtained with the
Deterministic-Time domain method.

Owing to the typical smallness of the sampling frequency,
results show that the deterministic step-by-step method pro-
duces period elongation [10] and is therefore not recommended.
The deterministic Fourier transform and the stochastic approach
yield very similar results. However, the advantage of a
stochastic-B/R decomposition is that it does not take into
account noise frequencies and the results depend on a
probabilistic property fitted on the measured data. The results
from the deterministic approach still show noise frequencies;
they also depend on a unique non repeatable measurement (all
other things remaining equal) and the PSD’s have an erratic
behaviour. As an illustration, Figure 14 presents the modal
correlation coefficient p5 (upper left corner) related to the
background contribution that would be obtained in a modal
analysis. If the dynamic behaviour was essentially quasi-static,
it would reflect the actual correlation pattern between modal
responses. However, it results from a weighting with the
resonant component p/X (lower right corner) so that for this
particular structure and loading, the resulting correlation matrix
is fairly diagonal, see Figure 15, which shows a predominant
resonant behaviour. This further indicates that SRSS is probably
acceptable for this problem.
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Figure 14. Correlation coefficient of the background (upper left
corner) and the resonant (lower right corner) contribution
of g.
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Figure 15. Dynamic correlation coefficient of g.

6.2 Evaluation of extreme values

Extreme values are computed for twelve elements of the roof’s
structure. Table 4 collects standard deviations obtained with
the deterministic - frequency approach (second row) and the
stochastic approach (third row). They show a very good
agreement. Peak factors from the two methods are represented
in Figure 16. The deterministic counting process is able to
capture the non Gaussian nature of the loading (henceforth of
the response) and provides therefore positive and negative peak
factors. This is explained by the skewness of the response (itself
due to the skewness of the loading). On the contrary, Rice’s
formula for extreme values was developed under the assumption
of a Gaussian process and provides therefore a unique peak
factor. The positive and negative peak factors do not necessarily
bracket the peak factor obtained with Rice’s formula (e.g. E: 3,
5, 6,7,9 and 10). Moreover the difference between the positive
and negative peak factors can be important (see E-8).

Table 4. Standard deviations (o). Units: kN and kN.m.

El | 2 3 4 5 6| 7|89 10 | 11 12
766 | 96| 100 | 152 129| 77| 11| 10| 37| 28 | 328 | 82
7571 95| 95 | 151 | 123| 74| 11| 10| 36| 28 | 321 | 82

Oy

Figure 16 also plots gt — |g~ | versus the skewness coefficient
Y3 The correlation between the difference in peak factors
and the skewness coefficients is strong and positive: a positive
skewness coefficient corresponds to a positive peak factor
greater than the negative one and vice versa.

7 CONCLUSIONS

The use of a stochastic approach from deterministic wind tunnel
measurements is benchmarked against a fully deterministic
approach. The main argument is obviously the flexibility in
pre-processing the time histories measured in the wind tunnel in
order to smoothen them. It also provides a model consistent with
physical intuition. This study also reveals the need for advanced
techniques as presented in [12,13] for suitable estimations of the
peak factors in the context of a stochastic approach. Actually,
subsequent researches are focused on extending the idea of
probabilistic model fitting at the bi-spectrum of the generalized
forces [14,15] to perform non-Gaussian analyses for structures
under wind loads and to apply extended B/R decomposition to
the third order [16].
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Figure 16. The peak factors obtained from the deterministic
and the stochastic approach (left). The correlation
between g™ — |g~ | and the skewness coefficient y; (right)
(calculated via the Deterministic - Frequency approach).
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