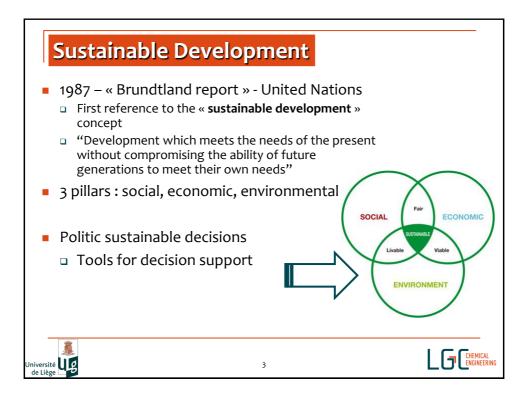
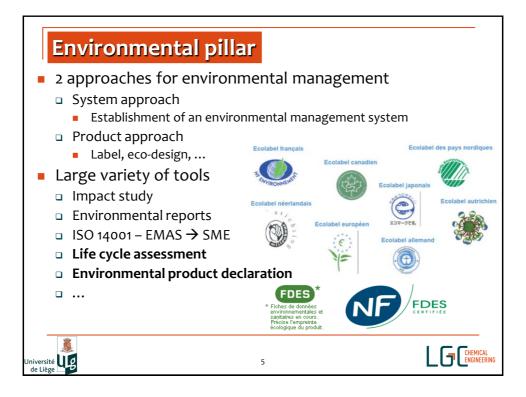
LCA as decision tool for sustainable choices in mineral materials field: environmental declarations of Belgian products and their foreign equivalents

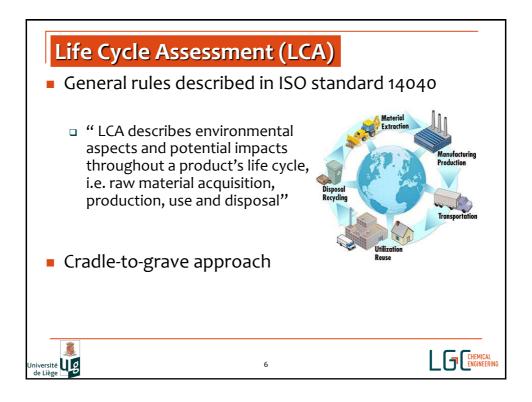
CHEMICAL ENGINEERING

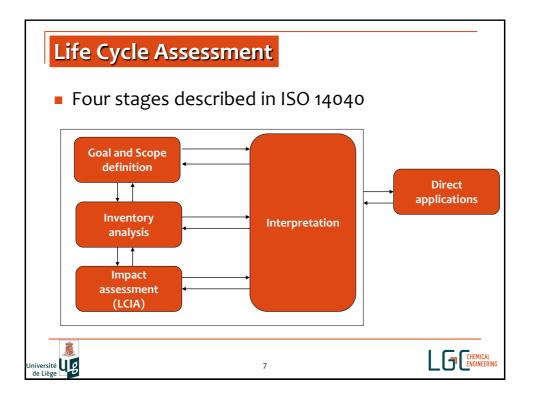

Processes and Sustainable Development

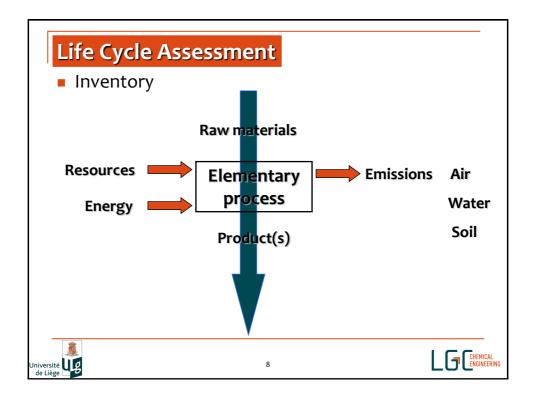
<u>S. Belboom</u> – R. Renzoni – A. Léonard – F. Tourneur sbelboom@ulg.ac.be

Introduction




Environmental pillar


- To take environment into account = essential
 - Industries, public services
- Why essential ??
 - Regulatory compliance
 - « Sustainable development » or « nature protection » approaches
 - To improve its image
 - Environmental damage risk reduction
 - Cost reduction (repair, insurance, etc.)



CHEMICAL ENGINEERING

Life Cycle Assessment

- Impact assessment
 - Carcinogen effects/ human toxicity
 - Respiratory effects caused by inorganics
 - Respiratory effects caused by organics
 - Global warming
 - Ozone layer depletion
 - Ecotoxicity
 - Acidification
 - Eutrophication
 - Resources depletion
 - **...**

۵

Environmental Product Declaration

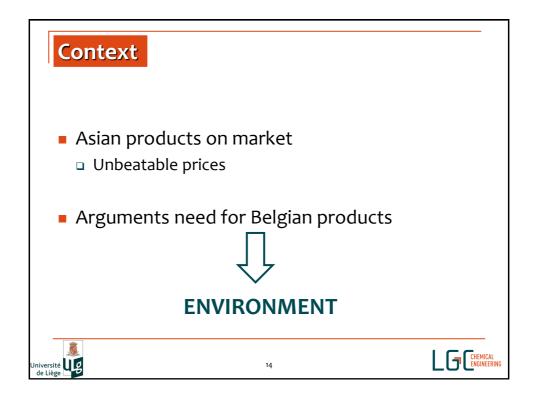
- Tool based on LCA
- Permits the comparison between products using ten environmental impact indicators
 - Energetic resources consumptions
 - Resources depletion
 - Water consumptions
 - Solid waste
 - Global warming
 - Acidification
 - Air pollution
 - Water pollution
 - Ozone layer depletion
 - Photochemicals formation

10

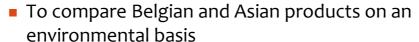
CHEMICAL ENGINEERING

Environmental Product Declaration

- Example: global warming
 - GHG inventory: CO₂, CH₄, N₂O throughout the whole life of the product
- French standard NF Po1-010
- No Belgian equivalent (under discussion)
- Declarations published on internet
 - □ To help decision for the building sector
 - □ → sustainable construction


11

Study context



Goals of study

- To obtain an environmental product declaration
 - □ To perform a Life Cycle Assessment
 - Belgian products
 - Bluestone
 - Sandstone
 - Transport Asia Belgium

15

Scope of study

- Functional Unit
 - One thousand square meters of paving
- System boundaries
 - Production of paving
 - Extraction
 - Shaping
 - □ Transportation from production site to Brussels
 - Implementation

16

Main results

- Arguments against Asian products
- Environment
 - □ Transport from Asia → very disadvantageous
- Tool to insert in buildings specifications?

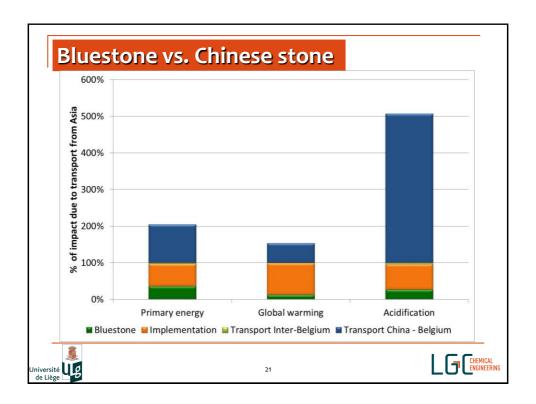
17

Main results – details

Bluestone vs. Chinese stone

- Compared products:
 - Outside paving in Belgian bluestone
 - Outside paving in Chinese stone
- Environmental product declaration for Belgian product
- Environmental product declaration for transport from China to Belgium

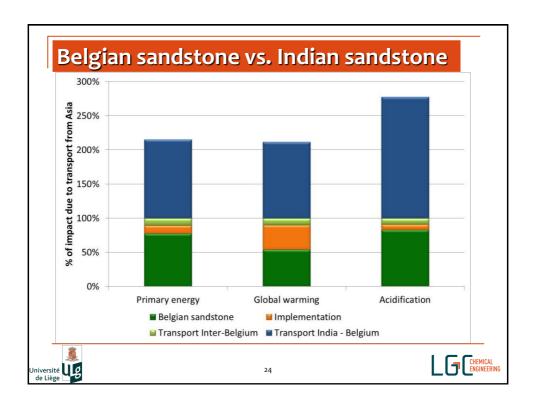
9



Bluestone vs. Chinese stone

Impact Category	Production Bluestone	Implemen tation	Transport Inter- Belgium	Transport China – Belgium	Impact Chinese stone
Primary energy	1209,15 MJ	2046,28 MJ	72,37 MJ	3493,5 MJ	6821,3 MJ
Global warming	55,44 kg _{eq} CO ₂		4,56 kg _{eq} CO ₂	eqCO ₂	681,85 kg _{eq} CO ₂
Acidification	o,28 kg _{eq} SO ₂		o,o36 kg _{eq} SO ₂	4,26 kg _{eq} SO ₂	5,3 kg _{eq} SO ₂

CHEMICAL ENGINEERING



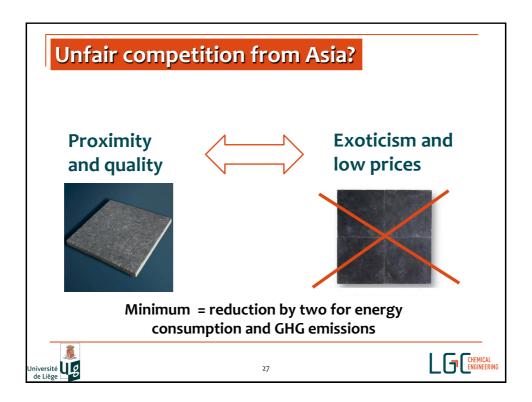
Belgian sandstone vs. Indian sandstone

- Compared products:
 - Outside pavement in Belgian sandstone
 - Oustide pavement in Indian sandstone
- Environmental product declaration for Belgian product
- Environmental product declaration for transport from India to Belgium

iniversité de Liège 22 CHEMICAL ENGINEER

Belgiar	sandsto	one vs.	Indian	sandsto	ne
Impact Category	Belgian sandstone production	Impleme ntation	Transport Inter- Belgium	Transport India - Belgium	Impact Indian sandstone
Primary energy	4631,27 MJ	703 , 52 MJ	637,57 MJ	6887 MJ	12859 MJ
Global warming	212,76 kg _{eq} CO ₂	143,70 kg _{eq} CO ₂	_	_	_
Acidification	2,48 kg _{eq} SO ₂	0 , 25 kg _{eq} SO ₂	o,27 kg _{eq} SO ₂	5,33 kg _{eq} SO ₂	8,33 kg _{eq} SO ₂
		·			
ersité Ug Liège		23	3		CHEMICAL ENGINEER

Conclusions and perspectives



Conclusions and perspectives

- Impact of the sole transport from Asia is equivalent to the impact of the production and the implementation of Belgian products
- Impact is twofold for Asian products
 - Global warming
 - Primary energy
 - Acidification

T CHE ENG

