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SUMMARY

This paper presents an improved weighting method for multicriteria structural optimization. By introduc-
ing arti=cial design variables, here called as multibounds formulation (MBF), we demonstrate mathe-
matically that the weighting combination of criteria can be transformed into a simpli=ed problem with a
linear objective function. This is a uni=ed formulation for one criterion and multicriteria problems. Due
to the uncoupling of involved criteria after the transformation, the extension and the adaptation of mono-
tonic approximation-based convex programming methods such as the convex linearization (CONLIN)
or the method of moving asymptotes (MMA) are made possible to solve multicriteria problems as
e?ciently as for one criterion problems. In this work, a multicriteria optimization tool is developed
by integrating the multibounds formulation with the CONLIN optimizer and the ABAQUS =nite ele-
ment analysis system. Some numerical examples are taken into account to show the e?ciency of this
approach. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Regarding the previous summary work by Eschenauer et al. [1], Stadler [2] and Osyczka [3],
it is recognized that multicriteria problems, i.e. multiobjective functions often exist in many
practical engineering designs. For example, the structural design traditionally concerning the
weight minimization, the stress minimization, the stiEness maximization or the minimization
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of damped resonance amplitudes in dynamics (see Saravanos and Chamis [4]). Whatever be
the nature of these criteria is, they are expected to be simultaneously attained at the optimal
design solution.

In contrast with the mono-objective function problem, the multicriteria problem has a set of
compromising solutions called Pareto optima. The Pareto optimum means that any improve-
ment of a certain number of criteria at its neighbourhood will deteriorate at least another
criterion. Many attempts have been made to solve multicriteria problems. Apart from using
set theory approaches, there exist a variety of scalarization approaches such as the weight-
ing method, the trade-oE method, the goal attainment method and the min–max formulation.
Based on the boundary intersection method of Schy et al. [5], Das and Dennis [6] recently
proposed a modi=ed version called the normal boundary intersection method. In addition,
Li et al. [7] proposed the approximation of using the hyper-ellipse to generate the Pareto
optimal curve in the objective space for bicriteria convex optimization problems. Pietrzak [8]
proposed the so-called global overlapping index to identify the Pareto solutions and the close-
ness of any feasible points to them for two design variable problems. In order to reduce the
computing costs of =nite element reanalyses and sensitivity calculations, Grandhi and Bhara-
tram [9] developed a heuristic multiobjective compound scaling method which was used to
deal with the sizing optimization of truss and plate structures.

Although the weighting method has some intrinsic inconveniences, i.e. the incapacity to
capture Pareto optimal points of the non-convex attainable region (see Koski [10]); the uni-
form discrete weightings often leading to very uneven distributions of Pareto optimal points
(see Lin [11]; Das and Denis [6]), this method is still considered as a usual method. The
reason perhaps lies in that the formulation is straightforward and the solution of the weight-
ing problem is mathematically ensured to be a Pareto optimum. Theoretically, this method
proceeds by replacing the vector objective function with a scalar and linear weighting sum-
mation. By changing the values of weighting coe?cients, a sequence of scalar problems will
be de=ned whose solutions constitute the Pareto optima. Therefore, the e?cient resolution of
a considerable number of scalar problems is the key problem for the weighting method to be
practically applicable.

For this purpose, the multibounds formulation (MBF) is developed in this paper. It has the
advantage of converting the original weighting problem even non-diEerentiable into a simple
form. This form is mathematically proved based on the Kuhn–Tucker optimality condition. It
is characterized by a linear objective function and each objective criterion is individually trans-
formed into inequality constraint bounded by the related arti=cial design variable. As a result,
the CONLIN optimizer and other monotonic approximation-based optimization algorithms can
be e?ciently applied because there is no direct coupling among diEerent conOicting criteria.
In this study, sizing optimization of shell structures will be solved by the MBF formulation.

2. MULTIBOUNDS FORMULATION OF THE WEIGHTING METHOD

2.1. The weighting method
The multicriteria optimization is to =nd the design vector x of n-dimension for the following
problem:

Min f(x)
gj(x)60; j=1; m

(1)
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where f(x)= [f1(x); f2(x); : : : ; fr(x)]T is the vector of objective functions to be minimized and
gj(x) designates the jth constraint function. We can easily =nd that the one criterion problem
is a particular case when r=1.

The solution that independently minimizes each individual criterion is theoretically an ideal
and unattainable optimum point. To get the Pareto optimum set by the weighting method, we
have to solve the following scalar problem in which the preference function de=ned by the
linear combination of the scalar objective functions will be minimized:

Min
∑
k
wkfk(x)

gj(x)60; j=1; m;
(2)

where the wk’s are positive weighting coe?cients satisfying the normalization equality∑
kwk =1.
To make discussions easy, suppose that the criteria and constraints are all convex and

diEerentiable functions. The preference function is then a convex combination because of
positive weighting coe?cients wk . Without the loss of generality, we can suppose furthermore
that involved weighting coe?cients are always positive wk¿0 because for any wk =0, the kth
term of wkfk(x) will be excluded from (2). As a result, for given values wk , a unique optimal
solution of (2) exists mathematically. This solution is dominated by the Kuhn–Tucker (K–T)
necessary and su?cient optimality condition as follows:

∇xL(x)=
∑
k
wk∇fk(x)+

∑
j
�j∇gj(x)=0

�jgj(x)=0; �j¿0
(3)

in which �j denotes the jth Lagrangian multiplier and the Lagrangian function is de=ned as

L(x)=
∑
k
wkfk(x)+

∑
j
�jgj(x) (4)

2.2. The multibounds formulation

The proposed MBF method is to introduce additional variables �k called arti=cial or slack
variables. Each one will be utilized as an upper bound while each criterion is transformed
into the inequality constraint. Problem (2) will become

Min
∑
k
wk�k

fk(x)6�k ; k=1; r

gj(x)60; j=1; m

(5)

In this formulation, we have r additional design variables and r additional constraints apart
from m original constraints and n design variables. If compared with the one-bound formula-
tion of the min–max statement suggested by BendsHe et al. [12] and OlhoE [13], the above
formulation then corresponds to choose particularly �k =�=wk with only � to be the additional
design variable. Therefore, the MBF is also a generalization of the one-bound formulation.
In fact, the MBF can also be used to deal with one criterion problems with r=1. In this
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case, (5) is simpli=ed as

Min �1

f1(x)6�1

gj(x)60 j=1; m

(6)

2.3. Equivalence between the multibounds formulation and the weighting method

The above explanations point out that the MBF is a general formulation. The multicriteria
problem, the single criterion problem as well as the min–max problem can be handled in a
uni=ed way when the computing code is programmed.

Now, demonstrations are made to prove that the solution of MBF (5) is equivalent to that
of the original problem (2). By writing the corresponding Lagrangian function of (5)

L(x; �)=
∑
k
wk�k +

∑
k
�k(fk(x)− �k) +

∑
j
�jgj(x) (7)

with �k and �j to be Lagrangian multipliers, the K–T condition is then

∇xL(x; �) =
∑
k
�k∇fk(x) +

∑
j
�j∇gj(x)=0

∇�k L(x; �) =wk − �k =0
(8)

with

�k(fk(x)− �k) = 0

�jgj(x) = 0

�k ; �j¿ 0

(9)

By means of the second equality in (8), we obtain �k =wk �=0 and its replacement into the
=rst relation of (9) leads to the following relation:

�k =fk(x) (10)

This means that all additional constraints related to criteria are active at the optimum. By
introducing (10) into (7) and by performing the gradient computation with respect to x, we
=nally get

∇xL(x)=
∑
k
wk∇fk(x) +

∑
j
�j∇gj(x)=0

�jgj(x)=0; �j¿0
(11)

Because this is the same optimality condition as (3) for the original weighting problem, formu-
lation (5) is therefore an equivalent form of (2). We can observe that the basic characteristic
of the MBF formulation (5) is the transformation of the original weighting objective function,
which is linear in the objective space but non-linear and non-monotonic in the design vari-
able space, into a new weighting objective function, which becomes monotonic and linear in
the design variable space. In fact, whether the original weighting objective function is linear
or non-linear in terms of criteria, the substitution of arti=cial variables for criteria can be
proved to be valid in general sense providing that the original weighting objective function is
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monotonically increased with respect to each criterion. In this case, the solution of the MBF
problem is su?cient for convex Pareto optimality.

Finally, it should be indicated that the MBF is also convenient to deal with min–max
multicriteria problems where some criteria are themselves identi=ed with the maximization of
certain functions, e.g. the stress concentration minimization in structural design:

Min{f(x)= [f1(x); f2(x); : : : ; fr(x)]; max h(x)= {h1(x); h2(x); : : : ; hs(x)}}
gj(x)60; j=1; m

(12)

This is a non-diEerentiable problem. In this case, the MBF can be readily established as

Min
r+1∑
k=1
wk�k

fk(x)6 �k ; k=1; r

hp(x)6 �r+1; p=1; s

gj(x)6 0; j=1; m

(13)

with
r+1∑
k=1

wk =1; wk¿0

2.4. Relationship between the multibounds formulation and the trade-o5 method

The trade-oE method also called constraint method is another scalarization approach to solve
multicriteria problems. It consists in retaining one of criteria as the objective function and
put others as inequality constraints. The original problem (1) is then transformed into the
following scalar problem:

Min
x

fi(x)

fk(x)6 �k ; k=1; r; k �= i

gj(x)6 0; j=1; m

(14)

where �k are arti=cially imposed upper-bound parameters whose values are prescribed accord-
ing to the designer’s judgement. Theoretically, to reveal the relationship between the MBF
and the trade-oE method, we can write the related K–T optimality condition of (14) as

∇xL(x)=∇fi(x) +
∑
k

R�k∇fk(x) +
∑
j

R�j∇gj(x)=0

R�k(fk(x)− �k)=0; R�k¿0; R�jgj(x)=0; R�j¿0

k=1; r (k �= i); j=1; m

(15)

When multiplied by the non-zero value of the weighting coe?cient wi, we can get

wi∇xL(x)=wi∇fi(x) +
∑
k
wi

R�k∇fk(x) +
∑
j
wi R�j∇gj(x) =0

wi
R�k(fk(x)− �k)=0; wi

R�k¿0; wi R�jgj(x)=0; wi R�j¿0
(16)
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Now, the comparison of (8), (9) and (16) shows that if the MBF is equivalent to the trade-oE
method and if both of them provide the same optimum solution, following relations should
exist.

For weighting coe?cients,

wi =
1

1 +
∑

k �=i R�k
; wk =wi

R�k =
R�k

1 +
∑

k �=i R�k
(17)

and for Lagrangian multipliers,

�k =
wi

R�k
wi(1 +

∑
k �=i R�k)

=
R�k

1 +
∑

k �=i R�k
; �j =

wi R�j
wi(1 +

∑
k �=i R�k)

=
R�j

1 +
∑

k �=i R�k
(18)

From these relations, it can be observed that the weighting coe?cients uniquely depend upon
the Lagrangian multipliers of the trade-oE problem. Therefore, the conversion of the trade-
oE problem into MBF problem can be easily performed if the dual approach is adopted to
solve (14) because Lagrangian multipliers will be automatically provided as the by-products
of solution results. Note that in the work of Das and Dennis [14], a similar relationship as
above was elaborated between their normal-boundary intersection subproblem and the goal
programming problem.

3. ADAPTATION OF THE CONLIN OPTIMIZER TO THE RESOLUTION
OF THE MULTIBOUNDS PROBLEM

Firstly, let us have a brief summary of the CONLIN approximation. Details can be found in
the work of Fleury [15]. For a given function f(x), the CONLIN approximation at x= x0 has
the expression

f(x)≈f(x0) +
∑
+
f′(x0)(xi − x0i )−

∑
−
f′(x0)(x0i )

2
(

1
xi

− 1
x0i

)
(19)

with
∑

+ and
∑

− to be the summation over the terms with positive and negative =rst-order
derivatives, respectively. Three basic characteristics are held for (19):

• Convexity: The dual approach can be e?ciently used to solve the optimization subproblem
for which the objective function and constraints are explicitly de=ned by (19).

• Separability of design variables: Therefore, each primal variable xi can be explicitly
expressed as a function of dual variables (Lagrangian multipliers).

• Monotonicity: The approximation is hence suitable to describe structural responses such as
stresses and displacements in terms of transversal sizing and even shape design variables.

However, as con=rmed by the authors with the help of numerical tests, when the CONLIN
approximation is directly applied together with the dual approach to solve the original weight-
ing problem (1), the optimization process will surely fail and diverge. The reason is that mul-
tiobjective functions are conOicting and incommensurable among them. Hence, the preference
weighting objective function will not be monotonic and it will be unsuitable for the CONLIN
approximation.
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Figure 1. Convex combination of multiobjective functions.

To have a clear idea, imagine for example the simultaneous minimization of a plate structure
weight of the mathematical form f1(x)= ax and its Oexibility of the form f2(x)= b=x3 in terms
of the thickness design variable x. As shown in Figure 1, the convex combination of these
two functions is no longer monotonic.

The proposed MBF formulation is well adapted to the CONLIN approximation because
the highly non-linear preference objective function is replaced by a linear function and that
each criterion can be individually handled in the standard CONLIN form as for one criterion
optimization problem. At the initial design point, the explicit subproblem is then constructed
in the form

Min
∑
k
wk�k

a0
k +

+∑
i
aikxi +

−∑
i

bik
xi

+
ck
�k
6 0; k=1; r

d0
j +

+∑
i
dijxi +

−∑
i

eij
xi
6 0; j=1; m

(20)

with xi and �k to be the design variables. The coe?cients a0
k ; aik ; bik ; ck ; d

0
j ; dij and eij to be

all constants depending upon the function values and the =rst-order derivatives at the initial
design point. Note that the reciprocal term is used for �k in (20) because the related =rst-order
derivative is negative and equal to −1. To avoid the singularity of this term, �k should be
limited to take the positive value. This limitation can be realized through the conventional
translation shift for each criterion.

It is important to remark that the basic purpose of the MBF method is devised to be a
general formulation well adapted to the numerical solution procedure of any available opti-
mizers in use. Its junction with the CONLIN optimizer is just one e?cient combination of all.
The reason to favour this combination is based on the fact that convex programming methods
have been appreciated for about 20 years in amounts of numerical practices and they acquire
great successes both in suitability and in e?ciency for structural optimization. One can see
in the next section that these successes can equally be met with in multicriteria optimization
thanks to the MBF formulation.

4. NUMERICAL EXAMPLES

Shell elements are widely used in the sizing optimization of complex structures. Two shell
panels are studied here to test the e?ciency of the MBF method and the applicability of
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Figure 2. Plane shell panel problem. Figure 3. Pareto-optimal curve for weight–
displacement minimization (=rst case).

CONLIN algorithm in multicriteria optimization. The convergence history of the objective
function de=ned in MBF and the Pareto-optimal curve will be examined. The design tool is
integrated with the sensitivity analysis procedure developed in the framework of ABAQUS
optimization system by Zhang et al. [16]. Two cases are taken into account:

(1) The simultaneous minimization of the panel weight and the transversal point-wise
displacement at the central point of the panel. Constraints are imposed on the element
thickness. The mathematical programming statement is

Minw1

(
W
W 0

)
+ w2

(
U
U 0

)

ti6ti6Rti
(21)

(2) The simultaneous minimization of the panel weight and the stress concentration in the
panel.

Min
[
w1

(
W
W 0

)
+w2 max

i

(
�iv:m
�0
max

)]

t i6 ti6Rti
(22)

In both cases, each criterion is normalized to be dimensionless by its initial value. Besides, the
weighting coe?cients are uniformly discretized as w1 = [0; 0:1; 0:2; : : : ; 0:9; 1] and w2 = [1; 0:9;
0:8; : : : ; 0:1; 0].

4.1. Square plane shell panel

The =rst structure shown in Figure 2 is a panel loaded by a transversal force F at the central
point Q. Four edges are completely clamped. Due to the symmetry, only a quarter of the
panel will be considered. A discretization of 5× 5 =nite element mesh is used by means
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Figure 4. Iteration history of the MBF objective
function for weight–displacement minimization

(w1 =w2 = 0:5).

Figure 5. Thickness distribution in weight–
displacement minimization (w1 =w2 = 0:5).

of the four-node S4R shell elements of the ABAQUS library. Thickness of each element is
considered as one design variable. Initial data are given below.

AB=BC=20 in; Initial thickness: t0 = 1 in

Lower bound: t=0:1 in; Upper bound: Rt=2 in

Physical properties: E=107 psi; &=0:3; '=0:1 lb=in3

Loads: F =4× 105 lb

The initial design corresponds to the weight of the studied portion of the panel W 0 = 10 lb.
The transversal displacement U 0

Q =1:061 in at the point Q; the maximum Von-Mises stress
�0
v:m =4:2× 105 psi.
In the =rst case, the criterion associated with the displacement minimization is, in fact,

equivalent to minimizing the compliance of the panel due to the concentrated force F . For
diEerent discrete values of weighting coe?cients, the problem will be repeatedly solved by
using the MBF formulation in junction with the CONLIN optimizer. The Pareto-optimal curve
is then obtained and plotted in Figure 3. Note that the real extremity point in the right-hand
of the curve, which corresponds to the solution of the minimum of the compliance and the
maximal thickness of all elements is not plotted since it is located far from the zoom of
the actual curve segment. In this case study, numerical results point out that the iteration
history is indeed stable and has a quick convergence rate for all discrete values of weighting
coe?cients given above. For example, the iteration curve shown in Figure 4 indicates that
the convergence of MBF objective function with the weighting coe?cients w1 =w2 = 0:5 has
nearly no signi=cant variation after 10 =nite element analyses. The related optimal thickness
distribution and Von-Mises stresses are also shown in Figures 5 and 6, respectively.

Similarly, in the second case of minimizing the panel weight and stress concentration,
it is found that the MBF method and the CONLIN algorithm are also well adapted to

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 52:889–902
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Figure 6. Von-Mises stress distribution in weight–displacement minimization (w1 =w2 = 0:5).

all given weighting coe?cient values. Take, for example, the case w1 =w2 = 0:5, the opti-
mal thickness distribution and Von-Mises stresses are shown in Figures 7 and 8, respec-
tively. The convergence curve is shown in Figure 9. It can be seen that the layout of ma-
terials is concentrated along the symmetric lines of the panel, where maximal constraints
occur.

4.2. Curved shell panel

The second problem is given in Figure 10. Two edges AB and CD are clamped. The shell is
loaded by a concentrated load Fz =4× 104 lb in the transversal direction. Due to the symmetry,
only a quarter of the whole panel needs to be considered. The =nite element model corresponds
to a mesh of 18× 18 S4R shell elements of ABAQUS library. By grouping each set of 9
=nite elements, a total number of 36 independent thickness design variables are then de=ned
together with 2 arti=cial design variables associated with the bi-criteria. For this problem,
because of the ratio of initial shell thickness to the radius: t0=R=3× 10−3�1, the hypothesis
of the thin shell elements is assumed. Initial data are given below.

Radius: R=300 in; Length: AB=CD=600 in; Open angle: +=80◦

Initial thickness: t0 = 1 in; Lower bound: t=0:01 in; Upper bound: Rt=4 in

Physical properties: E=107 psi; &=0:3; '=0:1 lb=in3

Stress limit:�v:m625 000 psi

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 52:889–902
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Figure 7. Thickness distribution in weight–stress minimization (w1 =w2 = 0:5).

Figure 8. Von-Mises stress distribution in weight–stress minimization (w1 =w2 = 0:5).

In the =rst case of weight–displacement minimization where the transversal displacement of
the central point of the entire panel is concerned, the Pareto-optimal solution curve is obtained
and given in Figure 11. For the second case of weight–stress minimization with weighting
coe?cients w1 =w2 = 0:5, results of =nal thickness and Von-Mises stress distributions are
plotted in Figures. 12 and 13, the iteration history is shown in Figure 14. The =nal weight
W ∗ is reduced and equal to 82.04 per cent W 0 with respect to the initial weight; the maximum

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 52:889–902
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Figure 9. Iteration history of the MBF object-
ive function for weight–stress minimization

(w1 =w2 = 0:5).

Figure 10. Curved shell panel problem.

Figure 11. Pareto-optimal curve for weight and
displacement minimization (=rst case).

Figure 12. Thickness distribution in weight–stress
minimization (w1 =w2 = 0:5).

Von-Mises stress �∗v:m is also reduced with respect to the initial maximum Von-Mises stress
and equal to 44.74 per cent �0

v:m.

5. CONCLUSIONS

A multibounds formulation (MBF) is presented for multicriteria structural optimization. Al-
though the mathematical proof shows that this formulation is intrinsically equivalent to the
classical weighting formulation, its simpli=ed form is suitable to the numerical resolution pro-
cedure. The MBF formulation readily extends the one criterion problem-oriented application
of convex programming methods, e.g. the CONLIN optimizer and its variants to multicriteria
optimization. In addition, the MBF formulation is shown to be a uni=ed formulation of one
criterion and multicriteria problems. Numerical results of shell design problems indicate that
the integration of the MBF formulation with the CONLIN optimizer constitutes an applica-
ble and e?cient structural optimization tool. The iteration history is found to be stable and

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 52:889–902
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Figure 13. Von-Mises stress distribution in weight–stress minimization (w1 =w2 = 0:5).

Figure 14. Iteration history of the MBF objective function for weight–stress minimization.

very satisfactory. The convergence is not sensible to the selections of weighting coe?cient
values.
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