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ABSTRACT

The immune system may be considered as a sensory
organ able to respond to different kinds of danger signals
that are not detected by nervous cells. The immune
response is not autonomous but also regulated by the cen-
tral and peripheral nervous system, as well as by neuropep-
tides, vitamin D and neuroendocrine axes such as the cor-
ticotrope, somatotrope, thyrotrope and gonadotrope axes.
During evolution, the thymus emerged concomitantly with
recombinase-dependent adaptive immunity as an‘immune
brain’ or a ‘master class’ highly specialized in the orchestra-
tion of central immunological self-tolerance. This was an
absolute requirement for survival of species because of the
high risk of autotoxicity inherent to the stochastic genera-
tion of extreme diversity characterizing this novel adaptive
type of immune defenses against non-self. The thymus
now appears to be an obligatory intersection for the inte-
grated evolution of the major systems of cell-to-cell signal-
ling, the nervous, endocrine and immune systems. The
presentation of many self-peptides by thymic major histo-
compatibility complex (MHC) proteins is controlled by the
autoimmune regulator (AIRE) gene/protein and is respon-
sible for the clonal deletion of self-reactive T cells. In the
same time, by still unexplained mechanisms, MHC presen-
tation of the same self-peptides in the thymus promotes
the generation of self-specific FOXP3+ CD4+CD25+ natural
regulatory T cells (nTreg) that are able to inhibit in periph-
ery self-reactive CD4+ and CD8+ T cells having escaped the
thymus censorship. Moreover, a thymus dysfunction is
more and more established as the primary event driving
the development of organ-specific autoimmunity, which is
the tribute paid, mainly by mankind, for the preservation of
self against non-self. Our novel knowledge about thymus
physiology and physiopathology already serves as the
basis for the development of various innovative and effi-
cient immunomodulating strategies in pharmacology.
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REVIEW

Galen (129 - 210 or 216 AD) first described an organ
located behind the sternum that he named ‘thymus’ because
of its close resemblance with a leaf of the thyme plant. For
Galen, the thymus was the ‘seat of soul, eagerness, and forti-
tude; and this old misconception most probably explains why
some terms like ‘troubles thymiques’ are still used in the French
medical language to designate mood disorders such as those
observed in unipolar and bipolar depressive diseases. Jaco-
bus Berengarius Carpensis (1460-1530) then provided the first
complete anatomical description of the thymus in his work
entitled ‘Anatomia Carpi. Isagoge breves perlucide ac uberime,
in anatomiam humani corporis..

For a very long time, the thymus was considered as a use-
less vestigial organ that had become redundant during both
phylogeny and human ontogeny after puberty. It is only in
the early 19005’ that the first ‘thymologist’ J. August Hammar
initiated in Sweden biomedical research focusing on this
organ (1). His pioneering work was followed by numerous
studies that have highlighted the important neuroendocrine
regulation of the thymus, in particular by the hypothalamo-
hypophysial axis, thyroid hormones, adrenal and sex steroids.
For a long time, the thymus was considered as a gland and an
intrinsic component of the endocrine system until the eluci-
dation of its fundamental role in immunity (2). Starting from
1959, one can distinguish the following milestones leading to
our current knowledge in thymus physiology:

Role of the thymus in mouse leukaemia and in T-cell
development (3, 4).
Developmental biology of and self-recognition by dif-
ferentiating T cells in the thymus (5, 6).

« Promiscuous expression by thymus epithelium of
genes encoding neuroendocrine-related and periph-
eral tissue-restricted antigens (7-11).
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+ ldentification of the autoimmune regulatory (Aire)
gene/protein as a transcription-like factor controlling
promiscuous gene expression in thymus epithelium
(12, 13).

« Intrathymic selection of self-antigen specific natural
regulatory T cells (nTreg) (14-16).

« Embryology of the thymus and deciphering of the
lympho-stromal interactions required for T-cell differ-
entiation in the primary lymphoid organ (17-19).

In all living species, the neuroendocrine and innate
immune systems have evolved in parallel and still coexist
without any apparent problem (Fig. 1). Indeed, Toll-like recep-
tors (TLR) that are the most important mediators of innate
immunity do not have the capacity of reaction against normal
self. Some anticipatory immune responses already existed in

jawless vertebrates (agnathans), and were mediated by
diverse variable lymphocyte receptors (VLR), with 4-12 leu-
cine-rich repeat modules assembled by a gene conversion
process. Some 450-500 million years ago, the emergence of
transposon-like recombination activating genes RAGT and
RAG2 in jawed vertebrates (gnathostomes) promoted the
development of adaptive immunity (20-22). The appearance
of RAGT and RAG2 in the genome of jawed vertebrates (most
putatively via horizontal transmission), and the subsequent
appearance of the combinatorial immune system, has some-
times been assimilated to the immunology’s ‘Big Bang’ Gene
recombination in somatic lymphoid cells is responsible for
the random generation of diverse immune receptors for anti-
gens, B-cell- (= 5x 10" BCR combinations) and T-cell recep-
tors (+ 10" TCR combinations). Because of its inherent risk of

Jawless
Inverteibro'res Protoch?rdaies verteti;rcnes Jawed veirtebrates
I |} Vi | | \
RAG-mediated anticipatory and
VCBP VLR adaptive immunity

Ancestral forms of anticipatory immunity

Thymoids

RAG1 and RAG2

TCRo - TCRB - TCRy - TCRd

IgV germline diversity

Somatic hypermutation

Polymorphic MHC proteins

g First thymus

Innate immunity (TLR)

Figure 1: Integrated evolution of the neuroendocrine system, innate and RAG-dependent immunity.

Essential components of the neuroendocrine system have been established long ago and did not display important variation during
evolution besides gene duplication or differential RNA splicing. The appearance of RAG-dependent adaptive immunity in jawed verte-
brates was associated with a high risk of autotoxicity directed against the neuroendocrine system. Of note, from ancestor lamprey thy-
moids, the first unique thymus emerged quite concomitantly in jawed fishes, and the intrathymic presentation of neuroendocrine-related
genes may be viewed a posteriori as a very efficient and economic way in instructing the adaptive T-cell system to tolerate neuroendocrine
antigens as early as during intrathymic T-cell development and differentiation.

VCBP: variable-region-containing chitin-binding protein; VLR: variable lymphocyte receptor; TCR: T-cell receptor.
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autotoxicity, the emergence of this sophisticated type of
immune response exerted an evolutive pressure so powerful
that, in concordance with Paul Ehrlich’s concept and predic-
tion of ‘horror autotoxicus’, novel structures and mechanisms
appeared with a specific function in the setting-up of immu-
nological self-tolerance. Of note, the first thymus appeared in
cartilaginous-jawed fishes but was preceded by thymus-like
lympho-epithelial structures in the gill baskets of lamprey
larvae as very recently demonstrated (23). These structures
named ‘thymoids’ express the gene encoding forkhead box
N4 (FOXN4), the orthologue of FOXN1. FOXN1 is the tran-
scription factor specific for the differentiation of thymus epi-
thelium in jawed vertebrates, and Foxn1 mutation is respon-
sible for the nude phenotype in mouse. Therefore, FOXN1
stands at a crucial place in the development of thymus epi-
thelium that is an absolute requirement for T-cell differentia-
tion. Moreover, the same study has provided strong evidence
for a functional analogy between VLR assembly in these thy-
moids and TCR recombination in the thymus. This important
discovery opens the question about the potential existence
of autoimmune-like responses in jawless vertebrates.

Two essential and closely associated mechanisms are
responsible for ensuring the thymus-dependent central arm
of self-tolerance: 1) negative selection of self-reactive T cells
that are stochastically generated by recombinase-dependent
generation of TCR diversity in the thymus (recessive toler-
ance), and 2) positive selection of self-specific nTreg, which
are able to inactivate in periphery self-reactive T cells having
escaped thymic negative selection (dominant tolerance).
Today, the major unresolved question is to understand the
precise mechanisms by which the same associations of self-
antigens and thymic major histocompatibility complex (MHC)
proteins are able to mediate both dominant and recessive
self-tolerance (reviewed and discussed in 24).

Another question has long concerned the nature of self
that is presented in the thymus to differentiating T cells dur-
ing foetal life. Since its formulation some 75 years ago, ‘self’
has been a seminal word coined in immunological language
as a fecund metaphor with some equivocal correlations to
philosophy and neurocognitive sciences. For unknown rea-
sons, there was no serious attempt to elucidate the precise
identity of self before a series of consecutive studies in the
late 1980s and in the 1990s (7, 25-30). Our personal contribu-
tion in this field was to define the biochemical nature of the
neuroendocrine self. First, thymic neuroendocrine self-anti-
gens usually correspond to peptide sequences that have
been mostly conserved throughout evolution of their related
protein family. Second, a hierarchy characterizes their expres-
sion profile in the thymus as one dominant member synthe-
sized in thymus epithelium represents its related neuro-
endocrine family in front of differentiating T lymphocytes
(i.e. oxytocin for the neurohypophysial family, neurokinin A
for tachykinins, neurotensin for neuromedins, corticostatin
for somatostatins, and insulin-like growth factor 2 [IGF-2] for
the insulin family). This hierarchical pattern is meaningful
because the strength of immunological tolerance to a protein
is proportional to its intrathymic concentration (31). Third, fol-
lowing Aire-regulated gene transcription, thymic neuroendo-
crine precursors are not processed according to the classic
model of neurosecretion but undergo an antigen process-
ing for presentation by, or in association with, thymic MHC
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proteins. Finally, for some of them, their transcription in the
thymus precedes their eutopic expression in neuroendocrine
glands (32).

This hierarchy in the organization of the thymic repertoire
of neuroendocrine self-antigens is also significant from an
evolutionary point of view. Since many major physiological
functions had been established before the emergence of the
anticipatory adaptive immune response in jawless fishes, they
had to be protected from the risk of autoimmunity inherent
to this type of immune lottery. Oxytocin is a hypothalamic
neuropeptide that is closely implicated at different steps of
the reproductive process, starting from social affiliation and
bonding to control of parturition and lactation. Thus, this
neuropeptide is fundamental for preservation of animal and
human species. Through its dominant expression in thymus
epithelium, oxytocin is more tolerated than its hypothalamo-
neurohypophysial homologue vasopressin, which essentially
controls water homeostasis. Interestingly, rare cases of auto-
immune hypothalamitis with vasopressin deficiency and dia-
betes insipidus have been repeatedly observed whereas any
autoimmunity towards hypothalamic oxytocinergic neurons
has never been reported. A similar reasoning may be applied
to the members of the insulin family, IGF-2, IGF-1 and insulin
itself. There is no report of autoimmunity against IGF-2, the
dominant thymic self-peptide of the insulin family during foe-
tal life, whereas insulin is the primary autoantigen of type 1
diabetes. Because of their close homology, thymic neuroen-
docrine self-antigens promote immunological cross-tolerance
to their whole family, and tolerance to insulin was shown to
be weaker in Igf27- mice than in wild-type mice (33).

As already theorized by Burnet, the pathogenesis of
autoimmune diseases may first depend on a failure of self-
tolerance and the development of ‘forbidden’ self-reactive
immune clones (34). The progressive increase in immune
complexity during evolution is associated with a higher inci-
dence of self-tolerance failures, most of them occurring in the
human species. There is more and more evidence that a dys-
function in the mechanisms responsible for thymus-depend-
ent dominant and recessive self-tolerance is playing a primary
role in the development of the autoimmune response toward
many organs. Thymus transplantation from non-obese dia-
betic (NOD) mice, an animal model of type 1 diabetes, was
shown to induce diabetes in normal recipients (35). Igf2 tran-
scription is deficient in the thymus of diabetes-prone Bio-
Breeding (DPBB) rats, another animal model of type 1 diabe-
tes, and such defect might contribute to both the absence of
tolerance to f cells and the usual lymphopenia (including
RT6+ Treg) observed in these animals (36). Mice with thymus-
restricted insulin defect develop strong proinsulin-specific
T-cell reactivity (37). Loss-of-function Aire single mutations
are responsible for a very rare autosomal recessive disease
named autoimmune polyendocrinopathy, candidiasis and
ectodermal dystrophy (APECED) or autoimmune polyglandu-
lar syndrome type 1 (APS-1). Depending on their genetic
background, Aire” mice exhibit several signs of peripheral
autoimmunity, which are associated with a significant
decrease in the level of intrathymic neuroendocrine gene
transcription, including those encoding oxytocin, insulin and
IGF-2 (38, 39). Of note with regard to autoimmune thyroiditis,
which is the most frequent autoimmune disease, all major
thyroid-related antigens (thyroperoxydase, thyroglobulin and
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thyrotropin receptor [TSHR]) are also transcribed by thymic
epithelium in normal conditions (29, 40). Thymic hyperplasia
is commonly observed in Graves’ disease (1, 41), and it was
recently shown that homozygotes for an SNP allele predis-
posing to Graves' disease have significantly lower intrathymic
TSHR transcripts than carriers of the protective allele (42).
Another recent credit to a defective central tolerance in
organ-specific autoimmune disease was provided by a very
elegant study showing the central role played by a defect of
intrathymic a-myosin expression in autoimmune myocarditis
in mice and humans (43). Our current in-depth knowledge in
thymus physiology and physiopathology should translate
very soon into the design of innovative tolerogenic and regu-
latory strategies aimed at restoring central self-tolerance that
is defective in autoimmunity, the heavy price paid by so many
patients for preserving human self against non-self (44, 45).

Immunoneuroendocrinology was recognized as a scien-
tific field early in the 20th century, soon after Paul Ehrlich
identified immunology as a specific domain of scientific
investigation. By the 1930s, Hans Selye introduced the con-
cept of stress-induced and adrenal cortex-mediated thymus
involution and secondary immunosuppression. The dissec-
tion of the intricate cellular and molecular interactions
between the major systems of cell-to-cell signalling - the
neural, endocrine, and immune systems — was relaunched in
the 1980s but this scientific domain has received only gradual
acceptance by the scientific community. Endocrinologists did
not hesitate to widely open the door to this new field and
provided the first robust experimental arguments for its
fundamental relevance to physiology. Immunoneuroendocri-
nology has been expanded exponentially and the immuno-
logical self-tolerance of neuroendocrine proteins is now rec-
ognized as an obvious necessity for preserving general
homeostasis of living organisms. Indeed, all hormones and
neuropeptides exert an important control upon the immune
and inflammatory responses through binding to and activa-
tion of neuroendocrine receptors expressed by immunocom-
petent cells (reviewed in several chapters of 46, 47). If self-
tolerance to neuroendocrine ligands and receptors were not
firmly installed, then the risk of developing autoimmune phe-
nomena would be extremely high and species survival would
be severely compromised.

Aging of the immune system (immunosenescence) is
characterized by a higher susceptibility to infections, an
increase in the incidence of cancer, as well as a decrease in
response to vaccines. Although thymopoiesis (generation of
naive T cells) is maintained until late in life, thymus adipose
involution has been long considered as ‘the’ hallmark of
immunosenescence. Thymic involution is associated with a
marked decrease in the generation of diverse T cells (in par-
ticular naive CD4+ T cells), an expansion of memory CD8+ T
cells, and a diminished influence of thymus-dependent cen-
tral self-tolerance. Involution of the thymus after hypophysec-
tomy was one of the first evidences for the control of the
immune system by a neuroendocrine structure (48). Numer-
ous studies have unambiguously demonstrated that the ante-
hypophysial growth hormone (GH) is able to reverse the age-
dependent involution of the thymus (49-51). The intrathymic
proliferation of T-cell precursors and thymic output of naive
T cells are significantly decreased in adults with GH deficiency
and GH replacement restores these two parameters (52).
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Today, the restoration of thymus function appears as an
important objective in the elderly, as well as in patients suf-
fering with AIDS or several hematological diseases (53, 54).
It can now be anticipated that GH, IGF-1, GH secretagogues
(such as ghrelin), GH and ghrelin receptor agonists, as well as
other thymus-specific growth factors will be used in the near
future for regenerating thymopoiesis and thymus tolerogenic
function as well as, secondarily, several immune functions
including responses to vaccines in aged and other immuno-
compromised patients.

In conclusion, as discussed in this short overview, a novel
era is now widely open for objective clinical investigation of
thymus function in a variety of immune and infectious dis-
eases. Moreover, the pharmacological manipulation of both
thymus-dependent thymopoietic and tolerogenic function
will provide the scientific community with innovative strate-
gies for the treatment of a large number of immune-mediated
disorders.
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