

The breakdown behavior of the TCLUST procedure

The breakdown behavior of the TCLUST procedure

Joint work with L.A. García-Escudero, A. Gordaliza and A. Mayo-Iscar from the University of Valladolid (Spain)

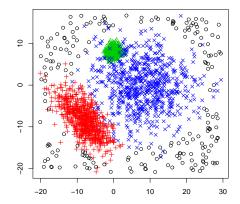
Ch. Ruwet

University of Liège

Namur - May 18th 2011

Introduction - Simulated dataset

The breakdown behavior of the TCLUST procedure


Ch. Ruwe

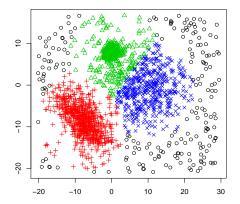
Definition

Parameters

example

Breakdow

Introduction - Estimation by trimmed k-means


The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameter:

Breakdow

Outline

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameters

. .

Breakdow

- Definition of the TCLUST procedure
- Choice of the different parameters
- A real example
- Breakdown behavior
- Conclusions

Outline

The breakdown behavior of the TCLUST procedure

Ch. Ruw

Definition

raiaiiieleis

. .

Breakdow

- Definition of the TCLUST procedure
- Choice of the different parameters
- A real example
- Breakdown behavior
- Conclusions

Notations

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameters

Brookdown

Dieakuowi

Conclusio

- k the fixed number of clusters;
- $\alpha \in [0, 1]$ the trimming size;
- (PR) $X_n = \{x_1, \dots, x_n\} \in \mathbb{R}^p$ a dataset that is not concentrated on k points after removing a mass equal to α ;
 - R_0, R_1, \ldots, R_k a partition of $\{1, \ldots, n\}$ with $|R_0| = \lfloor n\alpha \rfloor$;
 - $\varphi(\cdot; \mu, \Sigma)$ the probability density function (pdf) of the p-variate normal distribution with mean μ and covariance matrix Σ .

Clustering procedures based on trimming (1)

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameters

Breakdow

■ The trimmed k-means: k centers T_1, \ldots, T_k that minimize

$$\sum_{j=1}^k \sum_{i \in R_j} \|\mathbf{x}_i - T_j\|^2$$

(Cuesta-Albertos et al., 1997)

The trimmed determinant criterion: k centers T_1, \ldots, T_k and a $p \times p$ scatter matrix S that maximize

$$\sum_{j=1}^{k} \sum_{i \in R_j} \log \varphi \left(\mathbf{x}_i; \, T_j, \, \mathbf{S} \right)$$

(Gallegos and Ritter, 2005)

Clustering procedures based on trimming (2)

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameters

Breakdow

Heterogeneous clustering: k centers T_1, \ldots, T_k and k $p \times p$ scatter matrices S_1, \ldots, S_k that maximize

$$\sum_{j=1}^{k} \sum_{i \in R_j} \log \varphi \left(x_i; T_j, S_j \right)$$

under the constraint $det(S_1) = ... = det(S_k)$ (Gallegos, 2002)

TCLUST procedure $E_{c,k,\alpha}$ García-Escudero *et al.*, 2008

de Liège Garcia-Escudero et al., 200

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameters

Breakdow

■ k centers T_1, \ldots, T_k , k $p \times p$ scatter matrices S_1, \ldots, S_k and k weights $p_j \in [0, 1], j = 1, \ldots, k$ with $\sum_{j=1}^k p_j = 1$ that maximize

$$\sum_{j=1}^{k} \sum_{i \in R_j} \log \left(p_j \varphi \left(x_i; T_j, S_j \right) \right)$$

■ Eigenvalues-ratio restriction (ER):

$$\frac{M_n}{m_n} = \frac{\max_{j=1,\dots,k} \max_{l=1,\dots,p} \lambda_l(S_j)}{\min_{j=1,\dots,k} \min_{l=1,\dots,p} \lambda_l(S_j)} \le c$$

for a constant $c \ge 1$ and where $\lambda_l(S_j)$ are the eigenvalues of S_i , l = 1, ..., p and j = 1, ..., k.

An R package

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameters

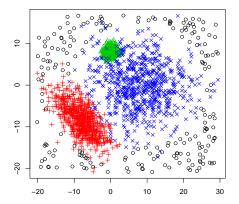
Breakdow

> library(tclust)
> tclust(data, k = 3 , alpha = 0.05,
restr = "eigen", restr.fact = 12,
equal.weights = FALSE)

- restr is the type of restriction to be applied: "eigen" (default), "deter" and "sigma"
- restr.fact is the constant c that constrains the allowed differences among group scatters
- equal.weights leads to a model without estimation of the weights

Example - Simulated dataset

The breakdown behavior of the TCLUST procedure


Ch. Ruwe

Definition

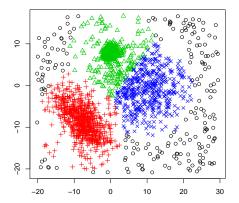
Parameters

A real

Breakdow

Example - Trimmed k-means

The breakdown behavior of the TCLUST procedure


Ch. Ruwe

Definition

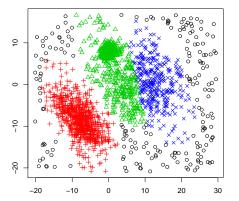
Parameter:

Prookdow

restr = "eigen", restr.fact = 1,
equal.weights = TRUE

Example - Trimmed determinant criterion

The breakdown behavior of the TCLUST procedure


Ch. Ruwe

Definition

Parameter

Breakdow

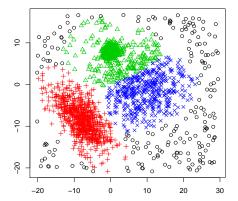
restr = "sigma", restr.fact = 1,
equal.weights = TRUE

Example - Heterogeneous clustering

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition


Parameter:

A real

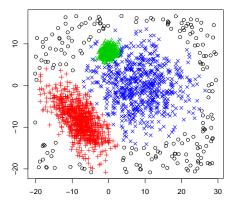
Breakdow

Conclusion:

restr = "deter", restr.fact = 1,
equal.weights = TRUE

Example - TCLUST

The breakdown behavior of the TCLUST procedure


Ch. Ruwe

Definition

Parameter

Prookdow

restr = "eigen", restr.fact = 50,
equal.weights = FALSE

Outline

The breakdown behavior of the TCLUST procedure

Ch. Ruw

Delinition

Parameters

A

Breakdow

Definition of the TCLUST procedure

- Choice of the different parameters
- A real example
- Breakdown behavior
- Conclusions

Choice of c

The breakdown behavior of the TCLUST procedure

Ch. Ruw

Definition

Parameters

Breakdowi

Dicaraowii

- The choice of c should depend on prior knowledge of type of clusters we are searching for;
- Large values of c lead to rather unrestricted solutions;
- Small values of c yield similarly structured clusters;
- This constant can be viewed as a "robustness" constant.

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameters

Breakdow

Canalysians

For fixed $c \ge 1$,

$$\mathcal{L}_{c}(\alpha, k) := \max_{\{R_{j}\}_{j=0}^{k}, \theta \in \Theta_{c}} \sum_{j=1}^{k} \sum_{i \in R_{j}} \log \left(p_{j} \varphi \left(\mathbf{x}_{i}; T_{j}, S_{j} \right) \right)$$

- $\Delta_c(\alpha, k) = \mathcal{L}_c(\alpha, k+1) \mathcal{L}_c(\alpha, k) \ge 0$ is the "gain" achieved by increasing the number of clusters from k to k+1
- k^* should be the smallest value of k such that $\Delta_c(\alpha, k) \approx 0$, except for small values of α
- $lpha^*$ should be the smallest value of α such that $\Delta_c(\alpha, k^*) \approx 0$ for all $\alpha \geq \alpha^*$

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameters

Breakdow

Conclusion

For fixed $c \ge 1$,

$$\mathcal{L}_{c}(\alpha, k) := \max_{\{R_{j}\}_{j=0}^{k}, \theta \in \Theta_{c}} \sum_{j=1}^{k} \sum_{i \in R_{j}} \log \left(p_{j} \varphi \left(\mathbf{x}_{i}; T_{j}, S_{j} \right) \right)$$

- $\Delta_c(\alpha, k) = \mathcal{L}_c(\alpha, k+1) \mathcal{L}_c(\alpha, k) \ge 0$ is the "gain" achieved by increasing the number of clusters from k to k+1
- k^* should be the smallest value of k such that $\Delta_c(\alpha, k) \approx 0$, except for small values of α
- α^* should be the smallest value of α such that $\Delta_c(\alpha, k^*) \approx 0$ for all $\alpha \ge \alpha^*$

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameters

. .

Breakdow

Conclusions

For fixed $c \geq 1$,

$$\mathcal{L}_{c}(\alpha, k) := \max_{\{R_{j}\}_{j=0}^{k}, \theta \in \Theta_{c}} \sum_{j=1}^{k} \sum_{i \in R_{j}} \log \left(p_{j} \varphi \left(\mathbf{x}_{i}; T_{j}, S_{j} \right) \right)$$

- $\Delta_c(\alpha, k) = \mathcal{L}_c(\alpha, k+1) \mathcal{L}_c(\alpha, k) \ge 0$ is the "gain" achieved by increasing the number of clusters from k to k+1
- k^* should be the smallest value of k such that $\Delta_c(\alpha, k) \approx 0$, except for small values of α
- α^* should be the smallest value of α such that $\Delta_c(\alpha, k^*) \approx 0$ for all $\alpha \geq \alpha^*$

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameters

Breakdow

For fixed $c \ge 1$,

$$\mathcal{L}_{c}(\alpha, k) := \max_{\{R_{j}\}_{j=0}^{k}, \theta \in \Theta_{c}} \sum_{j=1}^{k} \sum_{i \in R_{j}} \log \left(p_{j} \varphi \left(\mathbf{x}_{i}; T_{j}, S_{j} \right) \right)$$

- $\Delta_c(\alpha, k) = \mathcal{L}_c(\alpha, k+1) \mathcal{L}_c(\alpha, k) \ge 0$ is the "gain" achieved by increasing the number of clusters from k to k+1
- k^* should be the smallest value of k such that $\Delta_c(\alpha, k) \approx 0$, except for small values of α
- α^* should be the smallest value of α such that $\Delta_c(\alpha, k^*) \approx 0$ for all $\alpha \geq \alpha^*$

The R package

The breakdown behavior of the TCLUST procedure

Ch. Ruw

Definition

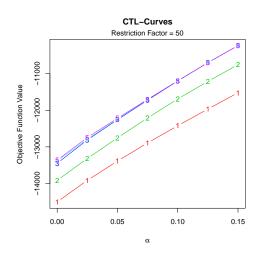
Parameters

i alameters

Dragledous

R > ctl <- ctlcurves (data, k = 1:4, alpha =
seq (0, 0.2, length = 6),restr.fact = 50)
R > plot(ctl)

Example - Simulated dataset


The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameters

Prookdow

Outline

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameters

A real

example Breakdow

Dicalacti

- Definition of the TCLUST procedure
- Choice of the different parameters
- A real example
- Breakdown behavior
- Conclusions

Swiss bank notes data (1)

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

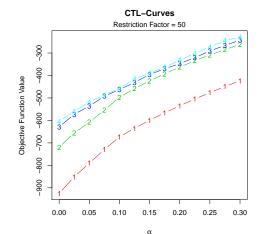
Definition

Parameters

A real example

Breakdown

- Flury and Riedwyl, 1988
- 6 variables (measurements on the bank notes)
- 200 observations divided in 2 groups: 100 genuine and 100 forged old Swiss 1000-franc bank notes


Swiss bank notes data (2)

The breakdown behavior of the TCLUST procedure

A real

example

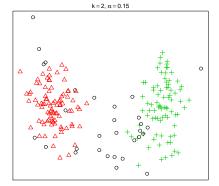
R > plot(ctlcurves(Swiss, k = 1:4, alpha = seq(0,0.3,by=0.025))

Swiss bank notes data (3)

Second discriminant coord.

The breakdown behavior of the TCLUST procedure

Ch. Ruwet


Definition

Parameters
A real

example

R > plot(tclust(Swiss, k = 2 , alpha = 0.15, restr.fact = 50)

Classification

First discriminant coord

Outline

The breakdown behavior of the TCLUST procedure

Ch. Ruw

Definition

Parameters

A real

Breakdown

. . .

- Definition of the TCLUST procedure
- Choice of the different parameters
- A real example
- Breakdown behavior
- Conclusions

Intuition about Breakdown

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameters

champic

Breakdown

- Breakdown point (BDP): the fraction of outliers needed to bring the estimator to its bounds
 - Replacement BDP (RBDP): observations are replaced by outliers
 - Addition BDP (ABDP): outliers are added
- Explosion of the centers
- $\hat{p}_i = 0$ (sign of a badly chosen k)
- Implosion or explosion of the scatter matrices
 - Some of them : impossible due to (ER)
 - All of them: impossible due to existence under (PR) (García-Escudero et al., 2008)

Replacement breakdown point

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definitior

Parameters

Breakdown

Proposition

The replacement breakdown point of the TCLUST procedure satisfies the optimistic relation

$$RBDP \leq \min \left\{ \frac{\lfloor n\alpha \rfloor + 1}{n}, \min_{j=1,\ldots,k} \frac{|C_j|}{n} \right\}.$$

- Data dependent
- Same upper bound as the trimmed k-means (García-Escudero and Gordaliza, 1999) even if we expect a smaller RBDP for the TCLUST (estimation of weights and scatters)

Ideal model of "well-clustered" data sets Hennig, 2004

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameters

Breakdown

Conclusions

■ $n_1 < ... < n_k$ and $A_m^j = \{x_{(n_{j-1}+1),m},...,x_{n_j,m}\},$ j = 1,...,k;

- $X_m = \bigcup_{j=1}^k A_m^j$ is said to be "well k-clustered" if $\exists b < \infty$ s.t., $\forall m \in \mathbb{N}$,
 - (1) $\max_{1 \leq j \leq k} \max_{x_{i,m}, x_{l,m} \in A_m^j} \|x_{i,m} x_{l,m}\| < b$
 - (2) $\lim_{m\to\infty} \min_{x_{i,m}\in A_m^i, x_{l,m}\in A_m^i, i\neq h} \|x_{i,m}-x_{l,m}\| = \infty;$
- Addition of r outliers $y_{1,m}, \ldots, y_{r,m}$:
 - (3) $\lim_{m\to\infty} \min \|y_{i,m} x_{i,m}\| = \infty$
 - $\lim_{m\to\infty} \min_{i\neq l} \|y_{i,m} y_{l,m}\| = \infty.$

Addition breakdown point

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameter

. .

Breakdown

Proposition

Let $X_m, m \in \mathbb{N}$, be an ideal sequence of data sets in \mathbb{R}^p that are "well k-clustered" in clusters A_m^1, \ldots, A_m^k verifying conditions (1) and (2). The addition of $r \leq \lfloor n\alpha \rfloor$ outliers verifying conditions (3) and (4) does not break down the TCLUST procedure with trimming size α :

$$ABDP \ge \frac{\lfloor n\alpha \rfloor}{n + \lfloor n\alpha \rfloor}.$$

Better than fitting mixtures of *t* distributions or adding a noise component in normal mixtures (Hennig, 2004).

Dissolution point Hennig, 2008

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameters

Breakdown

Conclusions

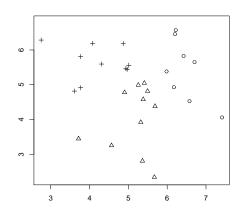
■ $E_{c,k,\alpha}(X_n)$ the TCLUST clustering of X_n ;

- $E_{c,k,\alpha}^*(X_{n+g})$ the clustering of X_n induced by $E_{c,k,\alpha}(X_{n+g})$;
- \blacksquare \mathcal{P} a partition of X_n ;
- For $C \in \mathcal{P}_1$ and $D \in \mathcal{P}_2$, $\gamma(C, D) = \frac{|C \cap D|}{|C \cup D|}$;
- A cluster $C \in \mathcal{P}_1$ is dissolved in \mathcal{P}_2 if

$$\max_{D \in \mathcal{P}_2} \gamma(C, D) \leq \frac{1}{2}.$$

Example (1)

The breakdown behavior of the TCLUST procedure


Ch. Ruwe

Definition

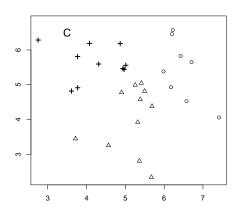
Parameters

A real

Breakdown

Example (2)

The breakdown behavior of the TCLUST procedure


Ch. Ruwe

Definition

Parameters

A real

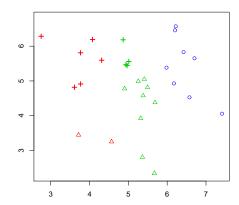
Breakdown

Example (3)

The breakdown behavior of the TCLUST procedure

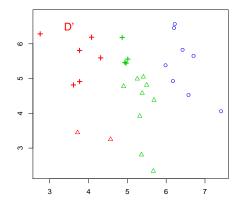
Ch. Ruwe

Definition


Parameters

A real

Breakdown


Conclusions

)

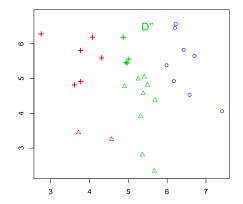
Breakdown

$$|C \cap D'| = 6$$
 and $|C \cup D'| = 10 + 8$

Example (5)

The breakdown behavior of the TCLUST procedure

Ch. Ruw


Definition

Parameters

A real

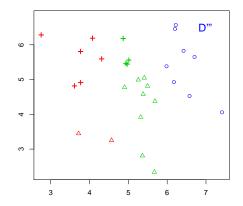
Breakdown

$$|\textit{\textbf{C}} \cap \textit{\textbf{D}}''| = 4$$
 and $|\textit{\textbf{C}} \cup \textit{\textbf{D}}''| = 10 + 13$

Example (6)

The breakdown behavior of the TCLUST procedure

Ch. Ruw


Definition

Parameters

. .

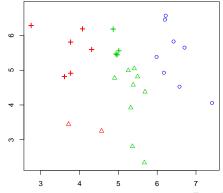
Breakdown

$$|\textit{\textbf{C}} \cap \textit{\textbf{D}}'''| = 0$$
 and $|\textit{\textbf{C}} \cup \textit{\textbf{D}}'''| = 10 + 8$

Example (7)

The breakdown behavior of the TCLUST procedure

Ch. Ruwe


Definition

Parameters

Breakdown

Conclusions

 $\max_{D\in\mathcal{P}} \gamma(\textit{C},\textit{D}) = 1/3 < 1/2 \ \rightarrow \ \textit{C} \text{ is dissolved in } \mathcal{P}$

Dissolution point Hennig, 2008

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameters

Breakdown

Conclusion

For $C \in E_{c,k,\alpha}(X_n)$, the dissolution point of C is given by

$$\Delta(E_{c,k,\alpha},X_n,C) = \min_{g} \left\{ \frac{g}{|C|+g} : \exists x_{n+1},\ldots,x_{n+g} : \\ \max_{D \in E_{c,k,\alpha}^*(X_{n+g})} \gamma(C,D) \le 1/2 \right\}.$$

Intuition about the dissolution point theorem

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definitio

Parameter

example

Breakdown

Conclusi

 $g \leq \lfloor n\alpha \rfloor$

- X_n a dataset for which there is no high concentration in X_{n+g} whatever the g added outliers
- lacksquare $C \in E_{c,k,\alpha}(X_n)$ with |C| > g

If there are g points among the trimmed observations that are fitted well enough by the TCLUST clustering, then the cluster C can not be dissolved by the addition of g outliers.

Isolation robustness Hennig, 2008

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Definition

Parameter

Breakdown

A clustering procedure is said to be isolation robust if for any dataset X_n and for any "well-isolated" cluster C of the partition,

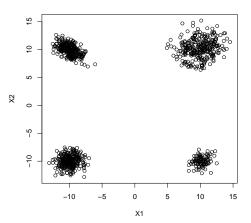
■ C is be stable under the addition of points, i.e. for all g, any cluster of the partition of X_{n+g} should not join observations of C and $X_n \setminus C$

and

there is at least one cluster in the new partition containing some observations of C.

Example

The breakdown behavior of the TCLUST procedure


Ch. Ruwe

Definition

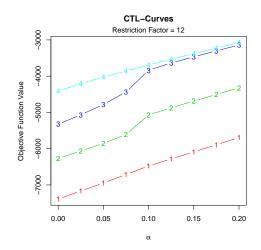
Parameters

example

Breakdown

Choice of k and α

The breakdown behavior of the TCLUST procedure


Ch. Ruwe

Definition

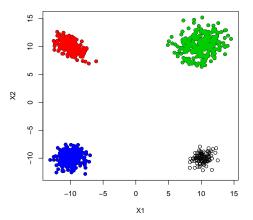
Parameters

A real

Breakdown

$$k = 3, \alpha = 0.1, c = 12$$

The breakdown behavior of the TCLUST procedure


Ch. Ruwe

Definition

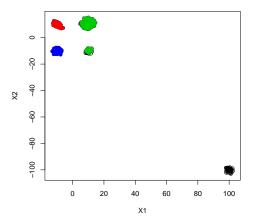
Parameters

example

Breakdown

The TCLUST $E_{c,k,\alpha}$ is not isolation robust

The breakdown behavior of the TCLUST procedure


Ch. Ruwe

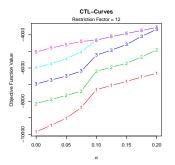
Definition

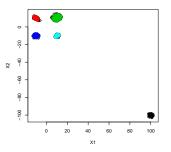
Parameters

Breakdown

The "2-steps" procedure E_c is isolation robust!

The breakdown behavior of the TCLUST procedure


Ch. Ruwe


Definition

Parameters

example

Breakdown

Outline

The breakdown behavior of the TCLUST procedure

Ch. Ruw

Definition

Parameters

A real

Breakdow

- Definition of the TCLUST procedure
- Choice of the different parameters
- A real example
- Breakdown behavior
- Conclusions

Conclusions

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Delinition

Parameters

breakdowi

Conclusions

- A flexible clustering procedure;
- A complete R package;
- A graphical tool to chose the parameters;
- Good breakdown behavior under the ideal model of "well-clustered" dataset;
- Isolation robustness of the "2-steps" procedure.

Moreover, the influence functions (not presented here) are bounded.

References (1)

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Parameters

raiailleteis

Breakdowi

- Cuesta-Albertos J.A., Gordaliza A. and Matrán C. (1997)
 Trimmed k-means: an attempt to robustify quantizers. Ann. Statist., 25(2):553-576
- Gallegos M.T. (2002) Maximum likelihood clustering with outliers. Classification, clustering, and data analysis (Cracow, 2002), Stud. Classification Data Anal. Knowledge Organ., pages 247-255
- Gallegos M.T. and Ritter G. (2005) A robust method for cluster analysis. Ann. Statist., 33(1):347-380
- García-Escudero L.A. and Gordaliza A. (1999) Robustness properties of *k*-means and trimmed *k*-means. *J. Amer. Statist. Assoc.*, 94(447):956-969
- García-Escudero L.A., Gordaliza A., Matrán C. and Mayo-Iscar A. (2008) A general trimming approach to robust cluster analysis. *Ann. Statist.*, 36(3):1324-1345

References (2)

The breakdown behavior of the TCLUST procedure

Ch. Ruwe

Parameters

Parameters

Breakdow

Conclusions

 García-Escudero L.A., Gordaliza A., Matrán C. and Mayo-Iscar A. (201x) Exploring the number of groups in robust model-based clustering. Stat Comput

- Flury B. and Riedwyl H. (1988) Multivariate Statistics. A practical approach. Chapman and Hall, London
- Hennig C. (2004) Breakdown points for maximum likelihood estimators of location-scale mixtures. *Ann. Statist.*, 32(4):1313-1340
- Hennig C. (2008) Dissolution point and isolation robustness: robustness criteria for general cluster analysis methods. *J. Multivariate Anal.*, 99(6):1154-1176
- R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.