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m k the fixed number of clusters;
m « € [0, 1] the trimming size;
(PR) X ={X1,...,Xn} € RP a dataset that is not

concentrated on k points after removing a mass equal
10 «;

m Rg,Ry,...,Rk apartition of {1,...,n} with |Rg| = [na];

m ¢ (-; i, X) the probability density function (pdf) of the
p-variate normal distribution with mean p and
covariance matrix X.

Definition



Clustering procedures based on trimming (1)

breakdown

benavior of m The trimmed k-means: k centers Ty, ..., Ty that

the TCLUST
procedure minimize

k
2
Definition Z Z ”Xi o TJ ”
=1 iERj
(Cuesta-Albertos et al., 1997)
m The trimmed determinant criterion: k centers Ty, ..., Tk

and a p x p scatter matrix S that maximize

iZIoggo(xi;Tj,S)

=1 iERj

(Gallegos and Ritter, 2005)
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Clustering procedures based on trimming (2)
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m Heterogeneous clustering: k centers T, ..., T and k
Definition p x p scatter matrices Sy, ..., Sk that maximize

k

> loge (xi: T, S))

=1 iER]

under the constraint det(S;) = ... = det(Sk)
(Gallegos, 2002)



TCLUST procedure E¢ o

Garcia-Escudero et al., 2008

breakdown m k centers Tq,..., Tk, k p x p scatter matrices
behavior of

the_TCIaU_ST Si1,...,Sk and k weights pj € [0,1],j = 1,...,k with
: E}‘Zl p; = 1 that maximize

Definition

EK:Z'OQ (P (xi: T}, Sj))

=1 iERj
m Eigenvalues-ratio restriction (ER):

Mn _ maxj—y,.k MaXi=1,..p Ai(Sj)

My min—y _min—; __, Ai(S;)

for a constant ¢ > 1 and where X(S;) are the
eigenvalues of §;, 1 =1,...,pandj=1,..., k.

= 0c = {0 = ({p Moy {TiHLL (S ) : (BR)is OK )



An R package
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m> library(tclust)

> tclust(data, k = 3 , alpha = 0.05,
Definition restr = "eigen", restr.fact = 12,
equal . wei ghts = FALSE)

m restr is the type of restriction to be applied: "eigen”
(default), "deter" and "sigma"

m restr. fact isthe constant ¢ that constrains the
allowed differences among group scatters

m equal . wei ght s leads to a model without estimation
of the weights
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Example - Trimmed k-means

The restr = "eigen", restr.fact = 1,
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Example - Trimmed determinant criterion

restr = "sigm", restr.fact = 1,
equal . wei ghts = TRUE
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Example - Heterogeneous clustering

o restr = "deter", restr.fact = 1,
reakdown

behavior of equal wei ght s = TRUE
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Example - TCLUST

The restr = "eigen", restr.fact = 50,

breakdown .

behavior of =
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Choice of c
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m The choice of ¢ should depend on prior knowledge of
P type of clusters we are searching for;

m Large values of ¢ lead to rather unrestricted solutions;
m Small values of ¢ yield similarly structured clusters;

m This constant can be viewed as a "robustness"
constant.



L4 Classification trimmed likelihood function

Garcia-Escudero et al., 201x
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B Ac(a, k) = Le(a,k + 1) — Le(a, k) > 0 is the "gain”
achieved by increasing the number of clusters from k to
kK+1
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Garcia-Escudero et al., 201x

breakdown

behavior of FOI’ fixed C Z 1,
the TCLUST

procedure mFork>l1landae [O, 1[,

k
Le(ank):= max Y > log (pje (x: T}, S;))

Parameters {R j!(:O’eeec j=1i€eR;
- |

B Ac(a, k) = Le(a,k + 1) — Le(a, k) > 0 is the "gain”
achieved by increasing the number of clusters from k to
kK+1

m k* should be the smallest value of k such that
Ac(a, k) ~ 0, except for small values of «

m o should be the smallest value of a such that
Ac(a,k*) =0 forall a > o*
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The R package
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Parameters R > ctl <- ctlcurves (data, k = 1:4, alpha =
seq (0, 0.2, length = 6),restr.fact = 50)
R > plot(ctl)
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m Flury and Riedwyl, 1988
N m 6 variables (measurements on the bank notes)

example
i m 200 observations divided in 2 groups: 100 genuine and
100 forged old Swiss 1000-franc bank notes



Swiss bank notes data (2)

Uitz R > plot(ctlcurves(Swiss, k = 1:4 , al pha =

breakdown
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Swiss bank notes data (3)

Uitz R > plot(tclust(Swiss, k = 2 , alpha = 0. 15,

breakdown

behavior of restr. f act = 50)

the TCLUST
procedure

Classification
k=2,a=015

Areal
example

Second discriminant coord.

First discriminant coord.
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AE3EHIE m Breakdown point (BDP): the fraction of outliers needed
to bring the estimator to its bounds

m Replacement BDP (RBDP): observations are replaced
by outliers
m Addition BDP (ABDP): outliers are added

m Explosion of the centers
m p; = 0 (sign of a badly chosen k)
m Implosion or explosion of the scatter matrices

m Some of them : impossible due to (ER)
m All of them : impossible due to existence under (PR)
(Garcia-Escudero et al., 2008)

Breakdown
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The replacement breakdown point of the TCLUST
procedure satisfies the optimistic relation
naJ +1 . |Cj| }

RBDP < min{L—, min ——
n j=1,..k n

Breakdown

m Data dependent

m Same upper bound as the trimmed k-means
(Garcia-Escudero and Gordaliza, 1999) even if we
expect a smaller RBDP for the TCLUST (estimation of
weights and scatters)



Ideal model of "well-clustered" data sets
Hennig, 2004

breakdown
behavior of
the TCLUST

procedure BN <...<ng and Ajm = {X(nj—l"‘l)’m’ ce ,an,m}a
i=1,...,k;
= Xm = U Al is said to be "well k-clustered" if b < oo
sit,VmeN,

(1) max max |[Xim —Xim| <b
1< <Ky m AL

(2) lim min_ [Xim — Ximl| = o0}
maooxi,meAR‘nxl,meAlmvj7£h

m Addition of r outliers y1 m,...,Yrm:
(3) _lim_min lyim — X m|| = oo
(4) lim min|lyim — Yim| = oco.
m—oo i#l

Breakdown



Addition breakdown point
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Let Xm, m € N, be an ideal sequence of data sets in RP that
are "well k-clustered" in clusters A}, ..., AX verifying
conditions (1) and (2). The addition of r < [n«| outliers
verifying conditions (3) and (4) does not break down the
PO TCLUST procedure with trimming size «a:

ABDP > M.
n+ [naj

Better than fitting mixtures of t distributions or adding a
noise component in normal mixtures (Hennig, 2004).



Dissolution point
Hennig, 2008
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procedure m E¢ i o(Xn) the TCLUST clustering of Xy;

m Ely ,(Xnig) the clustering of X, induced by
EC,k,a(Xn-i-g);
m P a partition of Xp;
|C ND|
reakdown For C dD , C7D =T~
Breakd m ForC € Py and D € Py, «( ) CUD|

m A cluster C € P; is dissolved in P; if

1
max~v(C,D) < —.
Depﬂ( , )_2
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Dissolution point
Hennig, 2008

breakdown

behavior of
the TCLUST

procedure

For C € E¢ k o(Xn), the dissolution point of C is given by

A(Ec,k,m Xm C) - rr:]in { . 3Xn+1, e ,Xn+g :

9
ICl+9
Breakdown

max C,D)<1/2;.
DeEgyk’a(xwg)PY( ) /}



Intuition about the dissolution point theorem
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m g < [na

m X, a dataset for which there is no high concentration in
Xn+g Whatever the g added outliers

m C e Eco(Xn)with |C|>g

If there are g points among the trimmed observations that

are fitted well enough by the TCLUST clustering, then the
cluster C can not be dissolved by the addition of g outliers.

Breakdown



Isolation robustness
Hennig, 2008
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A clustering procedure is said to be isolation robust if for
any dataset X,, and for any "well-isolated” cluster C of the
partition,
m C is be stable under the addition of points, i.e. for all g,
any cluster of the partition of Xn,4 should not join
Sreakdoun observations of C and X,\C

and

m there is at least one cluster in the new patrtition
containing some observations of C.
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The "2-steps" procedure E; is isolation robust !
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m A flexible clustering procedure;
m A complete R package;
m A graphical tool to chose the parameters;

m Good breakdown behavior under the ideal model of
"well-clustered" dataset;

m Isolation robustness of the "2-steps” procedure.

Conclusions

Moreover, the influence functions (not presented here) are
bounded.
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