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Abstract - This paper deals with day-ahead static secu-
rity assessment with respect to a postulated set of contingen-
cies while taking into account uncertainties about the next
day system conditions. We propose a heuristic approach to
check whether, given some assumptions regarding these un-
certainties, the worst case with respect to each contingency
is still controllable by appropriate combinations of preven-
tive and corrective actions. This approach relies on the so-
lution of successive optimal power flow (OPF) and security-
constrained optimal power flow (SCOPF) problems of a spe-
cial type. The interest of the approach is shown by illustra-
tive examples on the Nordic32 system.

Keywords - worst-case analysis, optimal power flow,
security-constrained optimal power flow, operation un-
der uncertainty, bi-level programming

1 Introduction

1.1 Motivation and related work

Increasing levels of uncertainties (e.g. wind power,
cross-border interchanges, load evolution, etc.) make the
traditional deterministic day-ahead operational planning
approaches targeting system security for a single fore-
casted system state in a given period of time of the next
day insufficient. To cope with uncertainties without re-
lying on probabilistic methods, a possible approach con-
sists in checking whether, given some assumptions re-
garding uncertainties (e.g. defined as intervals on bus
active/reactive power injections), the worst case with re-
spect to each contingency is still controllable by appropri-
ate combinations of preventive and corrective actions.

So far the worst-case operating conditions of a power
system under operational uncertainty have been tackled in
the literature mostly in the framework of security margins
[1, 2, 3, 4]. These approaches look for computing mini-
mum security margins under operational uncertainty with
respect to either thermal overload [2, 4] or voltage insta-
bility [1, 3, 4]. These approaches yield min-max optimiza-
tion problems since a security margin represents by defini-
tion the maximum value of a so-called loading parameter
for a given path of system evolution.

Several works have thus been devoted to determin-
ing the minimum distance to the boundary of a feasible
space. Ref. [1] uses a constrained optimization formula-
tion to compute the closest unfeasibility to a given oper-
ating point by defining the feasible region in the power
injection space as the set of all power injections for which

the load flow equations have a solution. Ref. [3] proposes
an iterative and a direct method to compute the locally
closest saddle-node bifurcation to the current operating
point in the load power parameter space, based on the eu-
clidian distance. Ref. [4] extracts information from un-
stable voltage trajectories, such as the left eigenvector to
the point of collapse, in order to iteratively “redirect” the
computation of a worst-case uncertainty pattern.

The case where the feasible region is bounded by in-
equality constraints defined by branch current limits is
considered in [2, 4]. Ref. [2] proposes a method to find
the thermal-constrained maximum transfer capability un-
der the worst scenario in generation-load space, by formu-
lating a min-max optimization problem whose constrains
are derived from the DC load flow equations, and by solv-
ing it with the branch and bound method. Ref. [4] com-
putes minimal thermal security margins by using a heuris-
tic enumerative approach which relies on the sensitivities
of branch currents with respect to uncertain parameters.

Ref. [5] sets-up a broader framework of the worst
case approach as a three-stage decision making process
including slow preventive controls (e.g. starting up a
power plant, postponing maintenance works), fast preven-
tive controls (e.g. generation rescheduling) and correc-
tive (or emergency) controls (e.g. generation reschedul-
ing, network switching, phase shifter actions, etc.). The
worst case with respect to a contingency is formulated as
a bi-level (min-max) optimization problem which, assum-
ing a DC load flow approximation and hence focusing on
thermal overload only, can be transformed into a MILP
problem for which suitable solvers are available.

1.2 Paper contributions and organization

The present paper builds upon the framework of [5].
Its main contributions are as follows:
• A new heuristic approach is proposed to compute

the worst-case. This approach focuses on identi-
fying the constraints that are violated by the worst
uncertainty pattern and relies on the solution of suc-
cessive OPF and SCOPF problems of a special type.
• The worst scenario is computed separately with re-

spect to overloads and undervoltages.
• The worst-case problem is considered in its nonlin-

ear form (i.e. using the AC network model).

Section 2 provides the general formulation of the deci-
sion making process. Section 3 presents the proposed ap-
proach. Illustrative examples to support this approach are
provided in Section 4. Section 5 concludes.



2 Formulation of the problem

The problem described in [5] aims to determine strate-
gic/slow day-ahead decisionsup such that for each sce-
narios that may show up the next day there exists a com-
bination of preventive controlsu0(s) and of corrective
(post-contingency) controlsuc(s, c) leading to secure per-
formance for any contingencyc ∈ K. We reduce this
problem to (and iteration over) the following two steps:
• In day-ahead operation planning, determine for

each contingencyc ∈ K the worst-case operat-
ing scenario, considering optimal use of preven-
tive/corrective actions in the next day.
• Determine a strategic decisionup to relieve all the

constraints violated for all the worst-case scenarios
for which no effective combination of next-day pre-
ventive and corrective actions was found.

2.1 Computing a worst-case scenario for a contingency

The determination of the worst-case operating sce-
nario for a contingency requires defining a “severity” mea-
sure to quantify operating conditions. A natural choice
is to express this severity in terms of the maximum total
amount of post-contingency constraints violation (e.g.L1

norm of branch overloads, or undervoltages), although the
formulation can be easily adapted to any other norm (e.g.
L2 or L∞) if this is deemed more appropriate in a partic-
ular context (e.g. using aL∞ norm leads to focus on net-
work weak points since it considers the worst-case by fo-
cusing on the most strongly violated constraint). However,
the worst-case relative to overloads and voltage violations
should be computed separately, so as to avoid mixing up
quantities with different meanings.

We define the worst-case operating scenario for a
given contingencyc as the scenario leading to the largest
total violation of post-contingency constraints (either
overloads, or voltage limit violations) in the presence of
the best possible combination of preventive and corrective
actions. Its computation can be done by solving the fol-
lowing bi-leveloptimization problem:

max
s,δ

1T
δ (1)

s.t. smin ≤ s ≤ smax (2)

δ ≤ δ
⋆
c (3)

1T
δ
⋆
c = min

u0,uc,δc

1T
δc (4)

s.t. g0(x0,u0, s) = 0 (5)

h0(x0,u0, s) ≤ 0 (6)

gc(xc,u0,uc, s) = 0 (7)

hc(xc,u0,uc, s) ≤ δc (8)

|u0 − ū0| ≤ ∆u0 (9)

|uc − u0| ≤ ∆uc (10)

δc ≥ 0, (11)

wheres is a vector of uncertain bus active/reactive power
injections which may vary between the limitssmin and
smax, vectorδ monitors the worst violations of the post-

contingency inequality constraints, subscript0 (resp. c)
refers to the base case or pre-contingency (resp. post-
contingency) state,x0 (resp. xc) is the vector of state
variables (i.e. magnitude and angle of voltages) in the
pre-contingency (resp. post-contingency) state,u0 is the
vector of preventive actions (e.g. generators active power,
phase shifter angle, shunt reactive power injection, trans-
former ratio, etc.),̄u0 is the vector of planned optimal
settings of base case controls (e.g. obtained previously
by a SCOPF which satisfies all contingency constraints
relative to the most likely operating scenario forecasted
for the considered period of time of the next day),∆u0

(resp.∆uc) are the maximal allowed variation of preven-
tive (resp. corrective) actions,uc is the vector of correc-
tive actions (e.g. generators active power, phase shifter
angle, network switching, etc.),δc is a vector of positive
relaxation terms of the post-contingency inequality con-
straints, functiong denotes mainly the power flow equa-
tions in a given state, functionh denotes the operating lim-
its (e.g. maximal branch currents, or voltage limits) in a
given state, constraints (9) and (10) aim to avoid unrealis-
tic preventive and corrective actions, constraints (10) ap-
plying only to controls that are common in both pre- and
post-contingency states. In this formulation, the strategic
control actionsup have not been made explicit because
they are frozen at this optimization stage.

The solution of this bi-level problem can be interpreted
as follows. For each possible value of the operating un-
certainty vectors lying in the domain defined by con-
straints (2), the slave SCOPF problem (4)-(11) which in-
cludes only one contingency, called hereafter SCOPF-1C,
is solved. Let1Tδ

⋆
c be its optimal solution, i.e. the min-

imum overall violation of constraints (8). If this value is
equal to zero, it means that the uncertainty pattern does
not lead to any constraint violation provided that adequate
preventive and/or corrective actions are available. After
considering all the values ofs satisfying (2), the worst-
case scenario, which we denote withs⋆c , is that leading
to the largest overall violation of post-contingency con-
straints.

Observe that this formulation looks only for theexis-
tence of a feasible set of preventive and corrective actions
for each scenario and contingencyrather than for their op-
timal values. Thus, if the optimal value of this problem is
strictly positive it means that strategic actionsup would
be required to cover the considered contingencyc. Other-
wise, the considered contingency is not problematic by it-
self. We note also that the worst-case scenario may change
according to the considered contingencyc, and with the
range of preventive/corrective control actions that are al-
lowed, which in turn will depend on the choice ofup.

2.2 Computation of a common strategic decisionup

If, for one or for several contingencies, the optimiza-
tion problem formulated in the previous section leads to
a strictly positive objective, it means that system security
can not be guaranteed by the sole combination of preven-
tive and corrective controls applied during the next day.



In this case, it will be necessary to determine an appro-
priate strategic decisionup, so as to enhance the system
controllability during the next day. While we do not han-
dle this higher level problem in this paper, we formulate
below an optimization problem that could help to choose
such strategic decisions, for the sake of clarity.

Let us denote withC ⊂ K the subset of contingencies
which require strategic preventive actions, identified in the
previous step by solving the optimization problem (1)-(11)
for each contingency inK. An optimal strategic decision
up could then be computed by solving the following op-
timization problem, focusing on the set of worst-case sce-
narios{s⋆c | c ∈ C} identified at the previous step:

min
up,u

c
0
,uc

k

f(up) (12)

s.t. gc
0
(xc

0
,up,u

c
0
, s⋆c) = 0 c ∈ C (13)

hc
0(x

c
0,up,u

c
0, s

⋆
c) ≤ 0 c ∈ C (14)

gc
k(x

c
k,up,u

c
0
,uc

k, s
⋆
c) = 0 c ∈ C, k ∈ K (15)

hc
k(x

c
k,up,u

c
0
,uc

k, s
⋆
c) ≤ 0 c ∈ C, k ∈ K (16)

up ∈ Up (17)

|uc
0
− ū0| ≤ ∆u0 c ∈ C (18)

|uc
k − uc

0| ≤ ∆uk c ∈ C, k ∈ K (19)

wheref(up) is a cost function of strategic preventive ac-
tions, Up is the set of strategic preventive actions,s⋆c is
the worst uncertainty pattern of contingencyc, uc

0 is the
vector of preventive actions corresponding to the worst
case of contingencyc, xc

0 is the vector of state variables
corresponding to the worst case of contingencyc, uc

k is
the vector of corrective actions in post-contingency statek
corresponding to the worst case of contingencyc, andxc

k

is the vector of state variables in post-contingency statek
corresponding to the worst case of contingencyc.

Notice that to simplify the problem formulation the
constraints relative to the most likely state (i.e. obtained
by usings⋆c = 0 in the above formulation) have not been
explicitly highlighted. Observe also that for each contin-
gencyc the preventive actionsuc

0
must not only satisfy the

constraints relative to the worst case relative to this con-
tingency but for all postulated contingenciesk ∈ K, given
the available corrective actionsuc

k, k ∈ K.
The size of this SCOPF-like problem might be very

large, i.e. |C| times larger than the size of a classical
SCOPF. Appropriate techniques aiming to decompose the
problem (e.g. by identifying the binding constraints at
the optimum) would thus be required in practical condi-
tions in order to reduce the problem size [6]. Furthermore,
once common strategic actionsup have been computed,
the worst-cases with respect to the new system state must
be re-computed by solving again the problem (1)-(11) for
each contingencyk ∈ K. If, subsequently to this computa-
tion some worst-cases are found that still require strategic
actions, their constraints must be added to above optimiza-
tion problem and new iterations must be performed.

Clearly, due to the infinite number of possible uncer-
tainty patternss, this approach can not guarantee that com-
mon strategic actions will be found after a finite number of

iterations. Nevertheless, at each iteration the strategiccon-
trol actions determined lead to a more secure strategy than
at the previous iteration (e.g. starting up a power plant
generally enhances security by providing an additional de-
gree of freedom), thus yielding an anytime optimization
framework for day-ahead risk management.

3 The proposed approach for computing the worst
uncertainty pattern for a single contingency

3.1 Principle and assumptions

Nowadays there is no theoretically or practically
sound algorithm able to solve in a generic way the bi-
level programming problem (1)-(11), given its features:
non-convex, non-linear, and large scale [7]. Consequently,
in the power systems area, only linear approximations of
nonlinear bi-level optimization problems have been re-
ported [2, 5, 8]. Furthermore, although the formulation
(1)-(11) fits into a Monte-Carlo simulation framework (i.e.
that solves the classical SCOPF (4)-(11) for any uncertain
scenario), such approach is computationally intractable
unless one considers only a limited number of uncertain
scenarioss which strongly limits the aim of our approach.

In this paper we propose a practical heuristic approach
aiming to provide an acceptable solution of the original
bi-level programming problem by decomposing it into a
number of OPF- or SCOPF-like problems.

Furthermore, in order to provide useful information
for the TSO, our approach distinguishes between four
classes of contingencies, according to the type of control
actions required by a contingency to meet the worst-case
constraints:
• contingencies that do not require any control action;
• contingencies that require only corrective actions

(uc);
• contingencies that require both preventive and cor-

rective actions (u0,uc);
• contingencies that require strategic, preventive, and

corrective actions (up,u0,uc).
To ease the approach comprehension let us assume

that neither preventive nor corrective actions are allowed
to satisfy post-contingency constraints. In this particular
case the general bi-level problem (1)-(11) becomes:

max
s,δ

1T
δ (20)

s.t. smin ≤ s ≤ smax (21)

δ ≤ δ
⋆
c (22)

1T
δ
⋆
c = min

δc

1T
δc (23)

s.t.g0(x0, s) = 0 (24)

h0(x0, s) ≤ 0 (25)

gc(xc, s) = 0 (26)

hc(xc, s) ≤ δc (27)

δc ≥ 0. (28)

We denote withVC the set of constraints that have been
relaxed at the solution of the optimization problem (20)-



(28), and hence for whichδ⋆c > 0, or equivalently the set
of original constraintshc(xc, s) ≤ 0 violated by the worst
uncertainty pattern.

The proposed approach relies on the observation that
if the setVC was knownbeforehand, then the worst un-
certainty pattern and its corresponding maximum degree
of constraints violation could be computed by solving the
following SCOPF-1C problem (a detailed formulation of
this problem is provided in the Appendix):

s⋆c = argmax
s

∑

j∈VC

hcj(xc, s) (29)

s.t. smin ≤ s ≤ smax (30)

g0(x0, s) = 0 (31)

h0(x0, s) ≤ 0 (32)

gc(xc, s) = 0, (33)

wherehcj(xc, s) is the value ofj-th component of the vec-
tor hc(xc, s). For instance when focusing on the worst
case with respect to overloads, the constrainthcj(xc, s) ≤
0 corresponds to a branch thermal limit of typeIcj −
Imax

cj ≤ 0. Here, the inequality constraints which do not
belong to the setVC have been removed beforehand from
the SCOPF-1C problem because they are supposed to be
known a priori as being anyway satisfied (by definition of
the setVC, i.e.hcj(xc, s) ≤ 0, ∀j /∈ VC).

The aim of the proposed approach is therefore to com-
pute the worst uncertainty pattern by identifying in acom-
binatorial fashionthe setVC. To this end we identify the
setAPC of all possible sets of problematic constraints,
where a setPC of problematic constraintscomprises post-
contingency constraints for which there exists an uncer-
tainty pattern leading to theirsimultaneous violationin the
absenceof any preventive/corrective action. Each setPC
has associated a worst uncertainty pattern, i.e. a pattern
that leads to the largest total violation of all the constraints
of this set, which we callproblematic pattern. We denote
with PP the set of problematic patterns corresponding to
all possible sets of problematic constraintsAPC .

The proposed approach comprises three main steps
that are described hereafter in sections 3.2, 3.3, and 3.4.

3.2 Determination of the set of problematic patterns
without any preventive/corrective action

The proposed algorithm is as follows:

0. Initialization:APC = ∅, andPP = ∅.

1. For each inequality constraintj = 1, . . . , nh, where
nh is the size of vectorhc, compute its correspond-
ing worst uncertainty pattern (i.e. that maximizes
the violation of post-contingency constraintj) by
solving the following SCOPF-1C problem:

s⋆cj = argmax
s

hcj(xc, s) (34)

s.t. smin ≤ s ≤ smax (35)

g0(x0, s) = 0 (36)

h0(x0, s) ≤ 0 (37)

gc(xc, s) = 0. (38)

If the objective of this optimization problem is less
or equal to zero, it means that, whatever the uncer-
tainty pattern, the constraintj is always satisfied.
Consequently this constraint may beomittedin the
subsequent steps of the algorithm.

Because for the computation of the maximum vi-
olation of constraintj the other post-contingency
inequality constraintshci(xc, s) ≤ 0, i 6= j have
been removed from the optimization problem some
of them may be violated at the optimum.

If only constraintj is violated at this SCOPF-1C so-
lution, we augment the set of problematic patterns
PP ← PP ∪ {s⋆cj}. Otherwise, augment the set
APC ← APC ∪PCj , where the set of problematic
constraintsPCj is composed by all violated con-
straints at the SCOPF-1C (34)-(38) solution.

2. Compute the worst uncertainty pattern of each set
of problematic constraintsPCj ∈ APC by solving
the SCOPF-1C (29)-(33), with setPCj replacing
setVC. Let s⋆cPCj

denote the worst uncertainty pat-
tern derived from this problem (note that this step is
skipped for setsPCj that contain a single constraint,
since this computation has been already performed
in the previous step). Augment the set of problem-
atic uncertainty patternsPP ← PP ∪ {s⋆cPCj

}.

3. Notice that if, for each and every constraintj =
1, . . . , nh, the objective of the SCOPF-1C (34)-(38)
is less or equal to zero, then the worst uncertainty
pattern for the contingencyc does not lead to any
post-contingency constraint violation and the over-
all computation terminates.

3.3 Checking whether corrective actions alone suffice to
face the identified problematic patterns

For each problematic scenarios ∈ PP indentified
in the previous step, we check whether corrective actions
alone would suffice to remove the violated constraints, by
solving the following OPF problem:

min
uc,δc

1T
δc (39)

s.t.gc(xc,uc, s) = 0 (40)

hc(xc,uc, s) ≤ δc (41)

|uc − ū0| ≤ ∆uc (42)

δc ≥ 0, (43)

whereū0 are the optimal settings of base case controls
computed by the classical SCOPF for the most likely op-
eration state.

Observe that this problem does not include base case
constraints of type (36)-(37) since any stress patterns

computed from the SCOPF-1C (34)-(38) must indeed sat-
isfy these constraints.

If the objective (39) is equal to zero the TSO may want
to compute what is the minimum amount of corrective ac-
tions to remove constraint violations. This can then be
achieved by usingmin |uc − ū0| as objective function to-
gether withδc = 0 in constraints (41).



3.4 Checking whether both preventive/corrective actions
suffice to face the identified problematic patterns

For each problematic scenarios ∈ PP for which
corrective actions alone do not suffice to solve the prob-
lem, we check whether a suitable combination of preven-
tive and corrective actions would be able to meet post-
contingency constraints, by solving the following SCOPF-
1C problem:

min
u0,uc,δc

1T
δc (44)

s.t. g0(x0,u0, s) = 0 (45)

h0(x0,u0, s) ≤ 0 (46)

gc(xc,u0,uc, s) = 0 (47)

hc(xc,u0,uc, s) ≤ δc (48)

|u0 − ū0| ≤ ∆u0 (49)

|uc − u0| ≤ ∆uc (50)

δc ≥ 0. (51)

The worst uncertainty pattern identified for the contin-
gencyc thus corresponds to the problematic pattern lead-
ing to the largest value of the objective (44). As in the
previous case, if the objective (44) is zero the TSO may
want to compute what is the minimum cost or amount of
preventive actions (e.g.min cT |u0 − ū0|) while using
δc = 0 in constraints (48).

Otherwise, if for at least one uncertainty pattern inPP
the objective (44) is positive then the best combination of
preventive and corrective actions is not able to meet post-
contingency constraints and hence strategic preventive ac-
tions will be required.

3.5 Remarks

A drawback of the proposed algorithm is that, since
the worst uncertainty pattern computed depends on the
type of control actions allowed (e.g. ranging from no
action allowed to both preventive and corrective actions
allowed), the algorithm may not provide the same solu-
tion as the original bi-level optimization problem (4)-(11).
Nevertheless, the way of problem decomposition makes
sense from an engineering point of view.

On the other hand, since all constraints are enumerated
in step 1, the algorithm can identify tricky situations where
patterns leading to smaller constraint violations than the
worst pattern turn out to be more dangerous than the worst
pattern because no efficient control actions are available.

3.6 Computational issues

The proposed algorithm is computationally intensive
and depends on the total number of inequality constraints
nh, the size of the setPP , and the number of postulated
contingencies (the size of setK). To reduce its computa-
tional time three solutions can be envisaged:
• use parallel computations for the various SCOPF-

1C problems;
• the solution of OPF (39)-(43) can be skipped, since

it is performed for the sake of distinguishing be-
tween cases where corrective actions alone suffice

or not to satisfy worst-case constraints, and replaced
with the solution of SCOPF (44)-(51);
• not all inequalitieshc(xc, s) ≤ 0 should be treated

but only those that are closer to their limits and
hence prone to be violated (i.e. the weak-points).
TSO expertise can be very useful to filter-out harm-
less constraints and reduce the set of postulated con-
tingenciesK.

4 Numerical results

4.1 Description of the test system

We consider a variant of the “Nordic 32” system [9],
shown in Fig. 1. The system contains 60 buses, 23 gener-
ators, 57 lines, 22 loads, 14 shunts, 27 transformers with
fix rations, and 4 transformers with variable ratio.
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Figure 1: The modified Nordic32 test system.

4.2 Simulation assumptions

Uncertainty consists in variable active and reactive
power injections at any load bus, modeled by constraints
(54)-(55), in the range of -5% to +5% of the nominal ac-
tive/reactive load. Furthermore, the total variation of un-
certain active (resp. reactive) power injections, modeled
by constraints (56)-(57), is trimmed to the range +/- 100
MW (resp. MVar).

We consider a list of 33 N-1 contingencies.
The following simulation cases are considered:
• case 0: the contingency is simulated at the classical

SCOPF solution by a power flow program (hence
without considering any corrective action);
• case WP: the worst uncertainty pattern (WP) corre-

sponding to the contingency, computed by solving
the SCOPF-1C (29)-(33);



• case WP+CA: the worst uncertainty pattern corre-
sponding to the contingency considering corrective
actions (CA), computed by solving the OPF (39)-
(43);
• case WP+PA+CA: the worst uncertainty pattern

corresponding to the contingency considering both
preventive actions (PA) and corrective actions, com-
puted by solving the SCOPF-1C (44)-(51).

We consider separately the problems of thermal overload
constraints and voltage magnitude constraints.

4.3 Worst-case with respect to thermal overload

4.3.1 Type of allowed preventive/corrective actions

To satisfy worst cases constraints we consider that
both preventive and corrective actions are only of type
generation rescheduling. Table 1 shows the range of al-
lowed preventive actions (PA), as up/down deviations with
respect to the classical SCOPF settings, and corrective ac-
tions (CA), as up/down deviations with respect to the pre-
contingency state. The overall amount of preventive (resp.
corrective) actions is of 584.6 (resp. 120) MW.
Table 1: Range of generation rescheduling (MW) as preventive and cor-
rective actions
generator g1 g2 g3 g4 g5 g6

PA 21.6 16.2 18.9 16.2 14.2 16.8
CA 20 10

generator g7 g8 g9 g10 g11 g12
PA 11.4 28.9 27.0 21.6 17.1 17.2
CA 10

generator g13 g14 g15 g16 g17 g17b
PA 18.9 84 16.2 18.9 18.9
CA 40 10

generator g18 g19 g20 g21 g22
PA 16.2 16.2 16.2 16.8 135
CA 10 20

4.3.2 Computation of the worst uncertainty pattern for a
contingency

We first compute a reference schedule for the nominal
scenario by minimizing generation cost with a SCOPF for-
mulation [6] including the 33 contingencies and relying on
the preventive/corrective actions provided in Table 1. At
this SCOPF optimum we compute the worst uncertainty
pattern for each contingency.

We illustrate the search procedure of the worst uncer-
tainty pattern, described in sections 3.2, 3.3, and 3.4, for
the loss of line 4011-4021.

At step 1 of the algorithm we notice that, only for 3
lines (4031-4032, 4012-4022, and 4022-4031) considered
separately, there exists uncertain patterns leading to over-
load. In particular the worst pattern with respect to any
of these 3 lines also overloads the two other lines (see Ta-
ble 2). Then we build up all sets of problematic constraints
as all possible combinations among these 3 lines.

At step 2 we compute the worst pattern for each set of
problematic constraints. Table 2 provides the lines over-
loaded for the 6 sets of problematic constraintsPC. Due

to the simplicity of the test network and the small num-
ber of lines overloaded, only two problematic patterns (set
PP) have been found. For instance the worst pattern for
the overload of line 4031-4032 coincides with the worst
pattern for any set of problematic constraintsPC which
includes line 4031-4032. Also, the worst patterns for the
overload of lines 4012-4022 and 4022-4031 coincide, as
expected, given the location of these lines (see Fig. 1).
Table 2: Lines overloaded (%) and overall overload (%) for all sets of
problematic constraintsPC

all sets lines overloaded overall
PC 4031-40324012-40224022-4031overload

4031-4032 19.7 7.0 2.5 29.2
4012-4022 13.3 7.2 2.7 23.2
4022-4031 13.3 7.2 2.7 23.2
4031-4032,
4012-4022 19.7 7.0 2.5 29.2
4031-4032,
4022-4031 19.7 7.0 2.5 29.2
4012-4022,
4022-4031 13.3 7.2 2.7 23.2
4031-4032,
4012-4022,
4022-4031 19.7 7.0 2.5 29.2

Next we check for the two problematic patterns
whether the preventive/corrective actions suffice, and pro-
vide in Table 3 the loading of critical lines in various cases.
Table 3: Loading (%) of critical lines in various cases for the two prob-
lematic patterns

line 0 WP WP+CA WP+CA+PA
first problematic pattern

4031-4032 102.4 119.7 116.3 109.3
4012-4022 95.3 107.0 103.7 99.9
4022-4031 90.1 102.5 99.4 91.1

second problematic pattern
4031-4032 102.4 113.3 107.2 100.5
4012-4022 95.3 107.2 103.9 100.0
4022-4031 90.1 102.7 99.8 92.0

We conclude that the first problematic pattern is the
worst pattern for this contingency as it leads to the largest
overall overload in the case WP+CA+PA.

4.3.3 Contingencies not requiring any control action

The loss of line 4011-4012 belongs to this class be-
cause in the case WP the most loaded line is 4012-4022
with a loading of 77.4% but no line is overloaded. Con-
sequently, for this contingency no branch is overloaded
whatever the uncertainty pattern in the assumed range.

4.3.4 Contingencies requiring only corrective actions

We have not identified any contingency in this class
because, on the one hand, the range of corrective actions is
much smaller than the assumed uncertain injections and,
on the other hand, no contingency that satisfies all con-
straints in case 0 violates any constraint in case WP (due
to most loaded lines are significantly below their limit).



4.3.5 Contingencies requiring both preventive and cor-
rective actions

The loss of line 4042-4044 belongs to this class. Table
4 provides the loading of line 4042-4043 in various cases.
Table 4: Loading of line 4042-4043 (%) in various cases

line 0 WP WP+CA WP+CA+PA
4042-4043 100.6 113.3 111.1 100.0

4.3.6 Contingencies requiring strategic decisions

Table 3 shows that both preventive and corrective ac-
tions do not suffice to remove the overload for the worst
case of contingency 4011-4021 and therefore strategic
preventive actions are required.

4.3.7 Comparison with the DC approximation

We compute the worst uncertainty pattern (case WP)
by the proposed approach and by the approach of [5] for
the contingency 4042-4044 (see section 4.3.5). To enable
a fair comparison we consider that the overall variation
of uncertain active/reactive power injections, modeled by
constraints (56)-(57), is zero. In this case both approaches
provide the same worst pattern (although obviously dif-
ferent overloads e.g. 115.7% vs. 125.3%). This result is
due to: the normal load level of this operating point, the
low impact of reactive power injections (indeed from the
overload of 113.3-100.6=12.7%, see Table 4, uncertain
reactive injections count for only 0.4% of the overload
while active powers count for the remaining 12.3%), the
rather small number and range of uncertain injections.

4.4 Worst-case with respect to undervoltage limits

We first perform a classical corrective SCOPF which
minimizes the active power losses and considers the 33
postulated contingencies [6]. Preventive and corrective ac-
tions are shunt reactive power and transformer ratio with
the ranges provided in Table 5. Voltage limits are chosen
as 0.95 pu (resp. 0.92 pu) and 1.05 pu in base case (resp.
contingency) state.

4.4.1 Range and type of preventive/corrective actions

Table 5 provides the range and type of preven-
tive/corrective actions as up/down deviations with respect
to the classical SCOPF settings.
Table 5: Range and type of preventive and corrective actions

shunts all transformers all
(MVar) ratio (pu)

PA +/- 80 PA +/- 0.05
CA +/- 40 CA +/- 0.02

4.4.2 Contingencies not requiring any control action

For the loss of line 4041-4061 no voltage limit is vi-
olated in case 0, the lowest voltage being of 0.943 pu (it
drops with 0.071 pu due to the contingency) at bus 4061.
In the case WP the lowest voltage is again at bus 4061 with
a value of 0.921 pu but still slightly above the limit. Con-
sequently, for this contingency no voltage limit is violated
whatever the uncertainty pattern in the assumed range.

4.4.3 Contingencies requiring only corrective actions

Table 6 yields the voltage at the most affected buses in
various cases for the loss of line 4043-4047. Observe that
in the WP case two voltages violate the minimum post-
contingency voltage limit of 0.92 pu. However, both volt-
ages are brought back within their limits thanks to correc-
tive actions only.
Table 6: Voltage (pu) for most affected buses in various cases

bus 0 WP WP+CA
4046 0.935 0.884 > 0.92
4047 0.949 0.915 > 0.92

4.4.4 Contingencies requiring strategic decisions

Table 7 provides the voltage at the most affected bus in
various cases for the loss of line 4061-4062. Observe that
the voltage at bus 4061 drops severly under the minimal
limit due to contingency (case 0) and further falls signif-
icantly for the worst uncertainty pattern (case WP). Since
for the best combination of preventive/corrective actions
(case WP+CA+PA) this voltage is still lower than the min-
imal limit strategic preventive actions are required. Note
that despite the reasonably large amount of preventive ac-
tions their full use is limited by the risk of over-voltages
in the base case.
Table 7: Voltage (pu) for most affected bus in various cases

bus 0 WP WP+CA WP+CA+PA
4061 0.875 0.823 0.871 0.895

5 Conclusion and future works

This paper has proposed a heuristic approach to com-
pute the worst-case under operation uncertainty for a con-
tingency with respect to static constraints (e.g. overloads
and under-voltages), and to check whether there exists ap-
propriate combinations of preventive and corrective ac-
tions to face this worst-case.

The untractable benchmark bi-level worst-case opti-
mization problem is decomposed into more tractable OPF-
like and SCOPF-like optimization problems which are
solved sequentially. However, although its assumptions
make engineering sense, this heuristic approach does not
guarantee to provide the same solution as the benchmark
worst-case problem. Unfortunately, no method exists yet
to check this assumption.

Future research will be devoted to the problem of find-
ing strategic decisions when the best combination of pre-
ventive/corrective actions do not suffice to satisfy the con-
straints relative to the worst-case of a contingency. An-
other extension of this work concerns the handling of chal-
lenging discrete corrective actions (e.g. topology changes)
which increases considerably the difficulty of the worst-
case problem.
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6 Appendix

The compact SCOPF-1C formulation (29)-(33) can be
detailed as follows:

max
Pu,Qu

∑

ij∈VC

Icij(V
c
i , V

c
j , θ

c
i , θ

c
j) or (52)

min
Pu,Qu

∑

i∈VC

V c
i (53)

s.t. Pmin

ui ≤ Pui ≤ Pmax

ui , ∀i ∈ N (54)

Qmin

ui ≤ Qui ≤ Qmax

ui , ∀i ∈ N (55)

Pmin

u ≤
∑

i∈N

cPiPui ≤ Pmax

u (56)

Qmin

u ≤
∑

i∈N

cQiQui ≤ Qmax

u (57)

P 0
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−
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i

P 0

ij(V
0
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0
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0

i , θ
0

j ) = 0, ∀i ∈ N (58)

Q0

gi −Qli + cQiQui

−
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i

Q0

ij(V
0

i , V
0

j , θ
0

i , θ
0
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(59)

Qmin

gi ≤ Q0

gi ≤ Qmax

gi , ∀i ∈ G (60)

I0ij(V
0

i , V
0

j , θ
0

i , θ
0

j ) ≤ Imax0

ij , ∀i, j ∈ N (61)

V min 0

i ≤ V 0

i ≤ V max 0

i , ∀i ∈ N (62)

P c
gi − Pli + cPiPui

−
∑

j∈Bc
i

P c
ij(V

c
i , V

c
j , θ

c
i , θ

c
j) = 0, ∀i ∈ N (63)

Qc
gi −Qli + cQiQui

−
∑

j∈Bc
i

Qc
ij(V

c
i , V

c
j , θ

c
i , θ

c
j) = 0, ∀i ∈ N (64)

Qmin

gi ≤ Qc
gi ≤ Qmax

gi , ∀i ∈ G (65)

where, superscript 0 (resp.c) refers to the base case (resp.
contingencyc state), objectives (52) and (53) refer respec-
tively to overloads and undervoltages,Pui (resp.Qui) de-
notes uncertain active (resp. reactive) power injection at
busi, cPi, cQi ∈ {0, 1} are coefficients indicating buses
where power injections are uncertain (i.e.cPi = 1 or
cQi = 1), N is the set of buses,G is the set of genera-
tors,Bi is the set of branches connected to busi, the other

notations being self-explanatory. A slack generator, not
shown explicitly in this formulation, is chosen to clear the
mismatch due to uncertain injections. Uncertain injections
are limited at each individual bus by constraints (54) and
(55) as well as overall by constraints (56) and (57).

Note that since the base case constraints (58)-(62)
are generally less restrictive than contingency constraints,
they are also satisfied for the worst contingency pattern,
which allows further simplification of this formulation.
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