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Vi V;
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P

QIV)(S)(F) =7(V)(5)(F)
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equi\./aria_nt
quantizations 5 _ p*S 6 COO(P’ Sé((Rm))H
Fabian Radoux
f = p*f € C°(P, ANR™))y
w— Div¥ =3, i(ei)Lw_1(e'.)

Condition : Ly« Q(p*S)(p*f) =0Vh e g;

The case of the
densities

<p*5,V‘;’kp*f> not Gi-equivariant!

One adds terms of lower orders in p*f...

One finds then :

Qu(V,S)(F) = p* (X Ci(Dive'p*S, V& ' p*f)),

with i = W0 (4

Yok—1"""V2k—I /

),Wzl, Cro=1
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"Flat" case

Affine quantization Qas :

i
Application ~ :
LxnQar(S)(f) =
Qarr((Lxn +(h))S)(f)

Casimirs C and C
0;

oOther differential operators (P. Mathonet, R.) : method of

"Curved" case
"Affine" quantization Q,, :
Lom1(e)
Application ~ :
Ly Qu(S)(f) =
Qu((Lp +~(h))S)(f), h € &
"Casimirs” C% and C%

Lo-1(e)
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Quantization :

Qan(Q(S)), Q(S) such that  Q,(Q(S)), Q(S) such that

if C(S)=as$, then
C(Q(S)) = aQ(S) and
"head” of Q(S) =S

Then ;

LoQ=QolL

because

[C,L]=0and [C,L] =0

eConclusion : "Flat" case

0;

if C¥(S) = as$, then
C¥(Q(S)) = aQ(S) and
"head” of Q(S) =S

Then :
(L + () 0 Q= Qo Ly
because [C¥, Ly« +y(h)] =0
and [C¥, Lp] =0
"Curved" case
Li1(e)
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Application v/ : v "not symmetric"

Lp-QL(S)(F) = QL((Lp- +1/(h)S)(f), he g

"Casimirs” C¥'" =" C%¥ and C*’

Conformal case Quantization . QL(Q/(S)), QI(S) SuCh that |'F C’w(s) — 055,
then C¥(Q'(S)) = aQ'(S) and "head” of Q'(S) =S

Then : (Lp ++'(h)) o Q@ = Q" o Ly« because
[C¥, Lp= +~'(h)] = 0 and [C¥, Lp«] =0
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Remark : allows to find natural applications
Q : {reductions of P2M to H} — {quantizationson M},

where P2M is the second order frame bundle and where H is
a group linked to an AHS structure
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(— Vectr(M))

In adapted coordinates (x, y) :

X =>,X"(x,y)0 + E,-X’(y)ayi

Foliated vector field : [X] with X adapted and with
[ ]:TM — TM/TF (— Vect(M,F))

In adapted coordinates (x,y) : [X] = ZiXi(y)[ﬁy:]
Projection : 37, X/(x. )i + 3, X ()3, > 35, Xi(y) [0,
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Adapted symbols
Dyr(M)

: graded space Sr(M) associated to

Foliated symbols : graded space S(M, F) associated to
D(M, F)

Projection 7s : ms[D] = [mpD]
Conclusion : WD(Qad(vad)(Sad)) = Qfo/(ﬂ'vvad)(ﬂ'ssad)

Quantizations
and foliations



	Introduction
	Cartan fiber bundles and connections
	The case of the densities
	Other differential operators
	Conformal case
	Quantizations and foliations

