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eProbléme de la préquantification : si M = T*M, L2(T*M)
est trop grand——réduction de H.

e Polarisation de (M, w) : distribution P C TM.

e P permet de réduire 7, on passe de H a HF.

el 'observable f est quantifiable si Q(f) préserve HF.
el 'ensemble des observables quantifiables : A.

eQuantification géométrique Q¢ : Qg = Q| 4.
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eCette prolongation est-elle unique ?

oEst-il possible de rétablir I'unicité ?
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Quantification équivariante
ell y a beaucoup d’extensions de la quantification
géométrique a S(M).

eldée pour rétablir I'unicité : ajouter une condition de
symétrie.

ela quantification géométrique est I'unique application
Q : S<1(M) — D(M) telle que LxQ = 0 pour tout
X € Vect(M).

ell n'y a pas de prolongation @ de la quantification
géométrique telle que Lx @ = 0 pour tout X € Vect(M).
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oQ(Lh*S) = Lp- Q(S) Vh e g.

eldée : prendre G assez petit pour avoir une quantification et
assez grand pour avoir |'unicité.

eCas projectif (P. Lecomte, V. Ovsienko) :
e PGL(m + 1,R) agit sur RP™.

oX € sl(m+1,R) — X* champ de vecteurs sur R™.
eJQ: LxQ(S) = Q(LxS) VX € sl(m+ 1,R).
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oX € so(p+1,g+1)+— X* champ de vecteurs sur R™.
o3Q : LxQ(S) = Q(LxS) VX € so(p +1,q + 1).

e Méthode de 'opérateur de Casimir : [ : Algébre de Lie
semi-simple pourvue d’'une forme de Killing non dégénérée K.

o (V,[3) : représentation de I.

e (uj :i < n):basedel; (u::i< n): base Killing-duale
(K(ui, u}) = dij)-
e Opérateur de Casimir (V, ) :

> B(u))B(w)-
i=1
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m Comme C(L(S)) = aL(S), C(Q(L(S))) = aQ(L(S));

m C(L(Q(5))) = £(C(Q(5))) = aL(Q(S)).
eGénéralisation (F. Boniver, P. Mathonet) : algébres IFFT
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P

QV)(S)(F) =7(V)(5)(F)
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eFibrés et connexions de Cartan
9] (ou [gl) (P — M)
V] (ou [gl) (w: TP 9)
wy : TyP — g bijection Yu € P
PCPM,p:P— PyC P'M
C®(Po, V)G 2 T —p*T €C®(P,V)y
avec H= Gy x G, h=go D@1
g=g-18bh, g1 =R"
w = V(&) = Ly-1(¢): & € 9-1
f Go-équivariant= V“f Gp-équivariant

f Gi-équivariant= V¥f Gi-équivariant
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Quantifcations ele cas des densités (P. Mathonet, R.) :

S p'S € C2(P, SHEM)N
f s p*f € C®°(P,ANR™))y
w—Div¥ =3, i(ei)Lw_1(e'.)

Condition : Ly« Q(p*S)(p*f) =0Vh e g;

(p*S, V?kp*ﬂ pas Gi-équivariant!

On ajoute des termes d’ordre inférieur en p*f...
On trouve alors :
Qu(V,S)(f) = p* (X kg Cus(Div' p*S, V"' p*f)),

avec Cy | = O gzt ) < k

Yok—1"""V2k—1 /

>,w21, Ceo=1
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eNon-unicité«>courbure de w (R.)
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eAutres opérateurs différentiels et cas conforme (P.
Mathonet, R.) : méthode des opérateurs de Casimir :

Fabian Radoux

eCas "plat" : Quantification affine Q4 : si

S=2 g fa®et Vo Vegm,

Qarr(S) =21 falt -+ .

oCas "courbe" : "Quantification affine" Q,, : si
S=fh® - h, QW(S) =fo wal(hl) s wal(hk).
eCas "plat" : Application ~ :

LxnQamr(S) = Qam((Lxn +(h))S).

eCas "courbe" : Application 7/ :

Ly Qu(S) = Qu((Lp- ++/(h))S), Vh € g1.
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eCas "plat" : Casimirs C et C :

C = —5p:(E) + 5pa€) + X p(A))pu(A)),
C=C—-2>;7(e")0,i.

oCas "courbe" : "Casimirs" C¥ et C¥ :

C¥ = —u(E) + 2pe(€F + X 02 (Ao (4,
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eCas "plat" : Casimirs C et C :
C = —5p:(E) + 5pa€) + X p(A))pu(A)),
C=C—-2>;7(e")0,i.

oCas "courbe" : "Casimirs" C¥ et C¥ :

€ = —1pu(€) + FpEF + 5 0u(A)pulA),

CY . =(C¥ -2 Zi Vl(el)Lw—l(e,-)-

eCas "plat" : Quantification de S t.q. C(S) =aS :
Qar(Q(S)), Q(S) t.q C(Q(S)) = aQ(S) et "téte" de
Q(S)=S.

eCas "courbe" : Quantification de S t.q. C¥(S) =a$ :
Qu(Q(S)). Q(S) t.q. C¥(Q(S)) = aQ(S) et "téte" de
Q(S)=S.
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oCas "plat" : LoQ=QolLcar [C,L]=0¢et[C,L]=0.

eCas "courbe" : (Lp +7/(h)) o @ = Qo Lps car
[Cw, Lh* —|—')’,(h)] =0et [Cw, Lh*] =0.

oOn a dans le cas courbe

Ly Qu(Q(S)) = Qu((Lp- +~'(h))Q(S)) = 0si Lp<S = 0.
oSi S est Gp-équivariant, Q(S) est Gp-équivariant et
Qu(Q(S)) préserve la Gp-équivariance.
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Remarque : cette méthode permet de trouver des
applications naturelles

Q : {réductions de P>M a H} — {quantifications sur M},

otl P2M est le fibré des repéres du deuxiéme ordre et ou H
est un groupe de Lie provenant d'une algébre IFFT

9=9-1Dgo D g
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eQuantification des espaces singuliers (N. Poncin, R. Wolak,
R.)

eEspace de configuration M posséde une symétrie—on
considére le quotient M/G ou G est un groupe de Lie

eSous certaines conditions, M/G : orbifold V
eDésingularisation : V =Espace des feuilles de (M, F)

eQuantification :

Vr, Sr—Z Qr(VF)(SF)

Vv, Sy —2= Qu(Vv)(Sv)
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eQuantification des supervariétés (T. Leuther, P. Mathonet,
R.)

eQuantification pgl(p + 1, q)-équivariante sur RPI9 (P,
Mathonet, R.)

eQuantification naturelle projectivement invariante sur les
supervariétés (T. Leuther, R.)



