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Abstract – A subproblem method with dual finite element magnetostatic and magnetodynamic formulations
is developed to correct the inaccuracies near edges and corners coming from thin shell models, that replace
thin volume regions by surfaces. The surface-to-volume correction problem is defined as one of the multiple
subproblems applied to a complete problem, considering successive additions of inductors and magnetic or
conducting regions, some of these being thin regions. Each subproblem is independently solved on its own
domain and mesh, which facilitates meshing and solving while controlling the importance and usefulness of
each correction. Parameterized analyses of thin regions are efficiently performed.

Introduction

The finite element (FE) subproblem method (SPM) provides advantages in repetitive analyses and helps
improving the solution accuracy [1-2]. Each SP considers the solution of previous SPs through surface
sources (SSs) and volume sources (VSs) instead of starting a new complete FE solution for any variation
of geometrical or physical data. Each SP is defined on its particular geometry and mesh.

The thin shell (TS) FE representation of thin regions in magnetic problems is herein placed at the
hearth of the SPM, to define both parameterized and correction schemes. The TS model is used to
avoid meshing the thin regions, and consequently lighten the mesh of their surrounds [3-4]. For that,
the volume thin regions are reduced to surfaces with interface conditions (ICs) linked to 1-D analytical
distributions (throughout the shell thickness) that however generally neglect end and curvature effects.
The SPM with dual finite element b- and h-formulations are herein applied to correct the inaccuracies of
the field distribution and losses proper to the TS FE representation of thin regions, mainly in the vicinity
of their edges and corners. Prior to such corrections, the SPM naturally allows parameterized analyses
of the thin region characteristics: permeability, conductivity and thickness.

A problem (SP q) with stranded inductors alone is first solved on a simplified mesh without any thin
regions. Its solution gives SSs for a TS problem (SP p) via ICs. The solution of SP p is then corrected by a
correction problem (SP k) through SSs and VSs, that suppress the TS representation and simultaneously
add the actual volume, in order to take the field distribution near edges and corners into account, which
are neglected by the TS approximation.

The developments are performed for both magnetic vector potential and magnetic field FE magne-
tostatic and magnetodynamic formulations, with attention to the proper discretization of the constraints
involved in each SP. The method is illustrated and validated on practical test problems.

Magnetic Subproblems of Various Natures

Series of Coupled Subproblems

A complete problem is split into a series of SPs that define a sequence of changes, with the complete
solution replaced the sum of the SP solutions. Each SP is defined in its particular domain. It is governed
by magnetostatic or magnetodynamic equations and constrained with VSs and SSs [1-2], of which some
components originate from previous problems. SSs express changes of ICs through surfaces from SP
q to SP p while VSs express changes, from SP p to SP k, of permeability and conductivity of volume
regions. Mesh-to-mesh projections are required to express these sources in each new SP [1-2].

The surface-to-volume correction SP consists in suppressing the TS model and simultaneously re-
placing it by a FE volume model in a domain reduced to the thin region and its surrounds. This is defined
via SSs that are the opposite of the so-known TS ICs [1], and simultaneously via VSs expressing the
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so-considered volume of the thin region that replaces the air region. The SSs have complementary strong
and weak natures depending on the b- or h-formulation used, that necessitate adequate discrete tools to
be accurately defined [2]. From a SP p solution with given permeability, conductivity and thickness, a
next SP k can consider changes of these parameters directly via SSs that suppress the previous model
simultaneously with new TS ICs. All these changes generally lead to local modifications of the solution,
which thus allows to reduce the calculation domain and its mesh in the surrounds of the thin regions.

Canonical magnetodynamic or static problem with VSs and SSs

A canonical magnetodynamic or static problem i, to be solved at step i of the SPM, is defined in a domain
Ωi, with boundary ∂Ωi = Γi = Γh,i∪Γb,i. The eddy current conducting part of Ωi is denoted Ωc,i and the
non-conducting region ΩC

c,i, with Ωi = Ωc,i ∪ ΩC
c,i. Stranded inductors belong to ΩC

c,i, whereas massive
inductors belong to Ωc,i. The equations, material relations and boundary conditions (BCs) of the SPs i =
q, p and k are:

curlhi = ji , div bi = 0 , curl ei = −∂tbi , (1a-b-c)

hi = µ−1
i bi + hs,i , bi = µihi + bs,i , (2a-b)

ji = σpei + js,i , ei = σ−1
i ji + es,i , (3a-b)

n× hi|Γh,i
= jsu,i , n · bi|Γb,i

= bsu,i , n× ei|Γe,i⊂Γb,i
= ksu,i , (4a-b-c)

where hi is the magnetic field, bi is the magnetic flux density, ei is the electric field, js,i is the electric
current density, µi is the magnetic permeability, σi is the electric conductivity and n is the unit normal
exterior to Ωi. In what follows the notation [·]γi = |γ+i − |γ−i expresses the discontinuity of a quantity

through an interface γi (with sides γ+
i and γ−i ) in Ωi, defining ICs. The fields hs,i, bs,i, js,i and es,i in

(2a)-(2b) and (3a)-(3b) respectively are VSs which can be used for expressing changes of permeability
or conductivity in each SP.

The fields jsu,i, bsu,i and ksu,i in (4a-b-c) are SSs and generally equal zero with classical homo-
geneous BCs. Their discontinuities via ICs are also equal to zero, for common continuous field traces
n × hi,n × ei and n · bi. If nonzero, they define possible SSs that account for particular phenomena
occuring in the idealized thin region between γ+

i and γ−i [5], [6]. This is the case when some field traces
in SP p are forced to be discontinuous, whereas their continuity must be recovered via a SP k. The SSs
in SP q and SP k are to be fixed as the opposite of the trace solution of SP p.

From SP q to SP p - inductor alone to TS model

The constraint for SPs q, p and k are respectively expressed via SSs and VSs. SSs are defined via the
BCs and ICs of impedance-type boundary conditions (IBC) combined with contributions from SP q. The
TS model [4] for both bi- and hi-formulations requires the unknown discontinuities of ad,t,i and hd,t,i
of the tangential components at,i = (n× ai)×n and ht,i = (n× hi)×n of ai and hi through TS, i.e.

[at,i]Γt,i = ad,t,i or [n× at,i]Γt,i = n× at,i , (5)

[ht,i]Γts,i = hd,t,i or [n× ht,i]Γt,i = n× ht,i , (6)

where ad,i and hd,i are respectively the discontinuous components of the fields ai and hi and defined
as equal to zero along the border of the TS, which neglects the magnetic flux entering there. In order to
express this discontinuity, based on [4], one has

ai|γ+t,i = ac,i + ad,i , ai|γ−t,i = ac,i , (7)

hi|γ+t,i = hc,i + hd,i , hi|γ−t,i = hc,i , (8)

with ac,i and hc,i are the continuous components and are also applied on γt,i for the tangential compo-
nents (at,i, ac,t,i); (ht,i, hc,t,i) and (ad,t,i, hd,t,i).

Let us analyse the contraints between SP q and SP p in both b- and h-formulations as follows:



Constraint between SP q and SP p for b- formulation

Although there is no thin region in SP q, in order to have a relative constraint between SP q and SP p via
the corresponding ICs with γt = γ±t = γ±q = γ±p and nt = −n for the TS, one has to imagine that a
thin region appears in SP q. One gets for SP q and SP p [4],

[n× hq]γq = n× hq|γ+q −n× hq|γ−q = 0, (9)

[n× h]γp = [n× hq]γp + [n× hp]γp = −σβ ∂t(2ac + ad), (10)

n× hp|γ+p =
1

2

[
σβ ∂t(2ac + ad) +

1

µβ
ad
]
− n× hq|γ+p , (11)

β = γ−1
i tanh(

diγi
2

), γi =
1 + j

δi
, δi =

√
2

ωσiµi
, (12)

where di is the local TS thickness, δi is the skin depth in the TS, ω = 2πf with f is the frequency, j is
the imaginary unit and ∂t ≡ jω. For δi � di, one has β ≈ di/2. In statics, (10) is equal to zero. The
discontinuity [n× hq]γp in (10) does not need any correction because solution SP q presents no such
discontinuitiy, i.e. [n× hq]γq = [n× hq]γp = 0.

Constraint between SP q and SP p for h- formulation

One has for SP q and SP p [4],

[n× eq]γq = n× eq|γ+q −n× eq|γ−q = 0, (13)

[n× e]γp = [n× eq]γp + [n× ep]γp = −σβ ∂t(2hc + hd), (14)

n× ep|γ+p =
1

2

[
σβ ∂t(2hc + hd) +

1

µβ
hd
]
− n× eq|γ+p . (15)

Analogously, for b- formulation in statics, (14) is zero. The discontinuity [n× eq]γp in (14) also does
not need any correction because solution SP q verifies [n× eq]γq = [n× eq]γp = 0.

From SP p to SP k - TS to volume model

Once obtained, the TS solution of SP p is then corrected by SP k that overcomes the TS assumptions [4].
SPM offers the tools to implement such as refinement, thanks to simultaneous SSs and VSs. It has to
suppress the TS representation via SSs opposed to TS ICs, in parallel to VSs in added the volumic shell
via VSs that account for volumic change of µk and σk in SP k that characterized the ambient region (with
µp = µ0, µk = µvolume, σp = 0 and σk = σvolume). This correction will be shown to be limited to the
neighborhood of the shell, which permits to benefit from a reduction of the extension of the associated
mesh [1]. Indeed, for changes in a region, from µp and σp in SP p to µk and σk in SP k, one has the
associated VSs,

hs,k = (µ−1
k − µ

−1
p )bp , bs,k = (µk − µp)hp , (16a-b)

js,k = (σk − σp)ep , es,k = (σ−1
k − σ

−1
p )jp . (17a-b)

Finite element weak formulations

b- formulation - Magnetic Vector Potential Formulation

The weak bi-formulation is obtained from the weak form of the Ampere’s law (1a), i.e. [5]-[6]. For SPs
q and p, they have

(µ−1
q curlaq, curla′q)Ωq + (σq∂taq,a

′
q)Ωq + (σqgrad vq,a′q)Ωq + 〈n× hq,a

′
q〉Γh,q

+ 〈n× hq,a
′
q〉Γb,q

+〈[n× hq]γq ,a
′
q〉γq = (js,q,a

′
q)Ωq , ∀a′q ∈ F 1

q (Ωq) , (18)



(µ−1
p curlap, curla′p)Ωp + (σp∂tap,a

′
p)Ωp + (σpgrad vp,a′p)Ωp + 〈n× hp,a

′
p〉Γh,p

+ 〈n× hp,a
′
p〉Γb,p

+〈[n× hp]γp ,a
′
c〉γp , ∀a′p ∈ F 1

p (Ωp) , (19)

where F 1
i (Ωi) in (18) and (19) is a gauged curl-conform function space defined on Ωi, gauged in ΩC

c,i,
and containing the basis functions for ai as well as for the test function a′i (at the discrete level, this
space is defined by edge FEs; the gauge is based on the tree-cotree technique); (· , ·)Ωi and < · , · >Γi

respectively denote a volume intergal in Ωi and a surface intergal on Γi of the product of their vector
field arguments. The surface integral term on Γh,i accounts for natural BCs of type (3a), usually zero.
The unknown term on the surface Γb,i with essential BCs on n.bi is often omitted because it does not
locally contribute to (18). It will be shown to be the key for the post-processing a solution, a part of
which n× hi|Γb,i

having to act further as a SS [5], [6]. The term 〈[n× hp]γp ,a
′
p〉γp in (19) is rewritten

as:

〈[n× hp]γp ,a
′
p〉γp = 〈[n× hp]γp ,a

′
c + a′d〉γp = 〈[n× hp]γp ,a

′
c〉γp + 〈[n× hp]γp ,a

′
d〉γp , (20)

where a′d and a′c are the test functions; a′d is defined as equal to zero on the negative side Γ−t,p = γ−t,p of
the TS [4]. In order to explicitly present the field discontinuities, the equation (20) can be also rewritten
as

〈[n× hp]γp ,a
′
p〉γp = 〈[n× hp]γp ,a

′
c〉γp + 〈n× hp|γ+p ,a

′
d〉γp+ . (21)

The hi trace discontinuity 〈[n× hp]γp ,a
′
c〉γp in (21) is given by (10), i.e.

〈[n× h]γp ,a
′
c〉γp = 〈[n× hp]γp ,a

′
c〉γp = 〈σβ ∂t(2ac + ad),a

′
c〉γp . (22)

The term 〈n× hp|γ+p ,a
′
d〉γp+ in (21) related to the positive side of the TS is given by (11), suppressing

n× hq|γ+p of SP q and adding the actual TS BC. For that, the resulting surface integral term 〈n ×
hq|γ+p ,a

′
d〉γp+ is a SS that can be correctly expressed via the weak formulation of SP q in (18), ie.

−〈n× hq|γ+p ,a
′
d〉γ+p = (µ−1

q curlaq, curla′d)Ωq=p + (σq∂taq,a
′
d)Ωq=p + (σqgrad vq,a′d)Ωq=p , (23)

where vq is an electric scalar potential defined in added conducting regions in [6]. The contributions
in the volume integrals in (23) are limited to a single layer of FEs on the posittive side of Ω+

p = Ω+
q

touching γ+
p = γ+

q , because it involves only the traces n × a′d|γ+p . One should note that σq = 0 for SP
q (inductors alone). At the discrete level, the source aq, initially in mesh of SP q, has to be projected in
mesh of SP p [1], [8]. The obtained solution of TS SP p in (19) is then corrected by SP k via the VSs by
(16a) and (17a). Moreover, fields have to be also transferred from the mesh of SP p to the mesh of SP k.
The weak form for SP k is then

(µ−1
k curlak, curla′k)Ωk

+ (σk ∂tak,a
′
k)Ωck

+ (σk grad vk,a′k)Ωck
+ (hs,k, curla′k)Ωk

+(js,k,a
′
k)Ωc,k

+ 〈n× hk,a
′
k〉Γh,k

+ 〈n× hk,a
′
k〉Γb,k

= 0,∀a′k ∈ F 1
k (Ωk) . (24)

h- formulation - Magnetic Field Formulation

The weak hi-formulation is written as the weak form of the Faraday’s law (1c) [5], [6]. The field hi is
decomposed into two parts, hi = hs,i + hr,i, where hs,i is the source field defined through curlhs,i =
js,i, and hr,i is the reaction magnetic field. The weak forms for SPs q and p are

∂t(µqhq,h
′
q)Ωq + ∂t(µqhs,q,h

′
q)Ωq + 〈n× eq,h

′
q〉Γe,q + 〈[n× eq]γq ,h

′
q〉γq = 0 ,

∀h′q ∈ F 1
q (Ωq) , (25)

∂t(µphp,h
′
p)Ωp + (σ−1

p curlhp, curlh′p)Ωp + 〈n× ep,h
′
p〉Γe,p + 〈[n× ep]γp ,h

′
p〉γp = 0 ,

∀h′p ∈ F 1
p (Ωp) , (26)



where F 1
i (Ωi) is the curl-conform function space defined on Ωi and containing the basis functions for

hi as well as for the test function h′i. The surface integral terms on Γe,i account for natural BCs of type
(4c), usually zero. The term 〈[n× ep]γp ,h

′
p〉γp in (26) reads as

〈[n× ep]γp ,h
′
p〉γp = 〈[n× ep]γp ,h

′
c + h′d〉γp = 〈[n× ep]γp ,h

′
c〉γp + 〈[n× ep]γp ,h

′
d〉γp , (27)

where h′d and h′c are the test functions; h′d is also zero on the negative side of TS γ−p [4]. The field
discontinuity term in (27) becomes

〈[n× ep]γp ,h
′
p〉γp = 〈[n× ep]γp ,h

′
c〉γp + 〈n× ep|γp+ ,h

′
d〉γp+ . (28)

The ei trace discontinuity 〈[n× ep]γp ,h
′
c〉γp in (28) is given by (14), i.e.

〈[n× ep]γp ,h
′
c〉γp = 〈[n× e]γp ,h

′
c〉γp = 〈σβ ∂t(2hc + hd),h

′
c〉γp . (29)

The other term 〈n × ep|γp+ ,h
′
d〉γp+ in (28) is given by (15), suppressing n× eq|γp+ of SP q and in

the same time adding the actual TS BC. For that, the term 〈n × ep|γp+ ,h
′
d〉γp+ is a SS that is naturally

expressed via the weak formulation of SP q in (25), i.e.

−〈n× eq|γ+p ,h
′
d〉γ+p = (µq∂ths,q,h

′
d)Ωp=Ωq + (µq∂thq,h

′
d)Ωp=Ωq . (30)

The volume integrals in (30) are also limited to a single layer of FEs touching γ+
p = γ+

q , because they
involve only the traces n × h′d|γ+p . At the discrete level, the source hq, initially in mesh of SP q, has
to be projected in mesh of SP p [1], [8]. Then the actual volume SP k corrects the inaccurate TS SP p
solution via the VSs in (16b) and (17b). The weak form of SP k is

∂t(µkhk,h
′
k)Ωk

+ (σ−1
k curlhk, curlh′k)Ωk

+ ∂t(bs,k,h
′
k)Ωk

+ (es,k, curlh′k)Ωk

+〈n× ek,h
′
k〉Γe,k

= 0, ∀h′k ∈ F 1
k (Ωk) . (31)

TS Correction-VSs in the Actual Volumic Shell and SSs for Suppressing the TS Representation

Changes of material properties from µp and σp in SP p to µk and σk in SP k, that occur in the volumic
shell, are taken into account in (24) and (31) via the volume integrals (hs,k, curla′k)Ωk

, (js,k,a
′
k)Ωc,k

and (es,k, curlh′k)Ωk
, ∂t(bs,k,h′k)Ωk

. The VS bs,k and hs,k are respectively given by (16a) and (16b),
with bi = curlai. The VS js,k is given by (17a), generally reduced to js,k = σkep = σk(−∂tap −
grad vp). Potential vp can be usually fixed to zezo. The VS es,k in (17b) is to be obtained from the still
undetermined electric field ep, with es,k = (σp/σk-1)ep. Therefore, the field ep is unknown in any ΩC

c,p.
Thus the determination of ep requires to solve an electric problem defined by the Faraday and electric
conservation equations [6].

Simultaneously to the VSs, SSs have to suppress the TS discontinuities. They can be defined via ICs
as

[n× hk]γt,k = −[n× hp]γt,k , [n× ak]γt,k = −n× ap|γt,k , (32a-b)
[n× ek]γt,k = −[n× ep]γt,k , [n× hk]γt,k = −n× hp|γt,k , (33a-b)

respectively for b- and h-formulations. ICs (32b) and (33b) strongly fixe ad,t,k = −ad,t,p and hd,t,k =
−hd,t,p. IC (32a) and (33a) are weakly expressed through the last integrals in (24) and (31), with γt,k =
γt,p. The involved traces [n× hp]γt,k and [n× ep]γt,k are naturally expressed via the other volume
integrals in (19) and (26), i.e.

〈[n× hk]γt,k ,a
′
k〉γt,k = −〈[n× hp]γt,k ,a

′
k〉γt,p , (34)

〈[n× ek]γt,k ,h
′
k〉γt,k = −〈[n× hp]γt,k ,h

′
k〉γt,p . (35)

The surface integrals in (34) and (35) are used at step i. At the discrete level, these are limited to the
layers of FEs on both sides γt,k of TS, because they involve only the associated traces n × a′k|γt,k and
n× h′k|γt,k . For the sources ap and hp containing their discontinuities ad,p and hd,p, are initially given
in mesh of SP p, have to be projected in mesh of SP k [1],[8].



Application Example

The test problem is based on TEAM problem 21 (model B), with two inductors and a thin plate (Fig. 1(a)).
An example of magnetodynamic SP scheme is tested in both 2-D and 3-D cases.

The first test of a 2-D model considers three SPs: a first SP q with the inductors alone solved on
a simplified mesh without any thin regions (Fig. 2(a1), top left); a TS FE SP p (Fig. 2(a2), top right)
that does not include the inductors anymore; a correction SP k replacing the TS FEs with the actual
volume FEs covering the actual plates with an adequate refined mesh (Fig. 2(a3), bottom middle). The
projection of SP q solution in the TS SP p and of the TS SP p in the SP k are respectively illustrated
(Fig. 2(aproj ,SS), top middle) and (Fig. 2(aproj ,VS), bottom left). The complete solution is finally shown
as well (Fig. 2(a = a1 +a2 +a3), bottom right). The errors on the power loss density of TS SP p along
the plate are pointed out by the correction SP k (Figs. 3(a), 3(b)) for different parameters. They reach
40% for both b- and h-formulations (δ = 1.977mm, d = 7.5mm). Significant error decreases with a
thinner thickness, being lower than 5% (d = 1.5mm).

The second test of a 2-D model considers two SPs: a SP q with the inductors and a thin plate; a
surface-to-volume correction SP k. The relative corrections of the power loss density and the longitudinal
magnetic flux along the plate are shown in Fig. 4. They reach several tens of percents in the TS, such
as 70% (Fig. 4(a)) and 75% (Fig. 4(b)) near the plate ends, with δ = 1.977mm and d = 7.5mm in both
cases. For the smaller thicknesses, the errors are lower than 30% (d = 3mm) (Fig. 4(a)) and 20% (d =
1.5mm) (Fig. 4(a), 4(b)). For the case of non-magnetic material, the error is also up to 42.5% (Fig. 4(b)).

Finally, a 3-D model considers three SPs q, p and k (Figs. 5, 6 and 7). The inccuracies on the
eddy current densities of TS SP p are pointed out by the importance of the correction SP k (Figs. 5(a),
5(b)). The error on TS SP p solution along the horizontal half inner (y-direction) reaches 64% in the
end regions of the plate (Fig. 5(a)), or 50% along the vertical half edge (z-direction) (Fig. 5(b)), with
δ = 2.1mm and d = 7.5mm in both cases. Significant errors on the power loss density reach 85% along
the y-direction (Fig. 6(a)), or being 68% along the z-direction (Fig. 6(b)) (δ = 2.1mm, d = 7.5mm) as
well. The errors particularly decrease with a smaller thickness (d = 1.5mm), being lower than 20% in
both Figs. 5(a), 5(b) and Figs. 6(a), 6(b). For the non-magnetic material, the error is 37.5% (d = 10mm),
or lower than 5% (d = 1.5mm) (Fig. 7(b)), with δ = 1.31mm in both cases. The relative correction on the
power loss density is also pointed out in Fig. 7(a) with several parameters, up to 85% in the end regions
of the plate (δ = 1.977mm, d = 7.5mm). Distributions of eddy current densities on the TS SP p and SP
k for d = 7.5mm are shown in Fig. 1(b), 1(c). Some TS inaccuracies are illustrated in Fig. 1(d), 1(e),
showing errors near the plate ends, that grow with the plate thickness.

Conclusions
All the steps of the method for TS FE have been presented and validated by coupling subproblems via
SPM in both b- and h- formumations. A general SP scheme with inductors alone, TS regions added, TS
parameter changes and corresponding surface-to-volume corrections is applied and validated for both 2-
D and 3-D models, allowing to point out its efficiency and accuracy in parameterized analyses. Accurate
magnetic flux distributions, eddy current and power loss density are successfully obtained at the edges
and corners of the thin regions.
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Fig. 1. Geometry of TEAM problem 21 (a); eddy current density for the TS SP p (b) and correction SP k solution (c), with
error reaching 78.4% (d =7.5mm); colored map pointing out the regions with a relative correction higher than 1% (in the plates
and the vicinity of their ends), with d = 1.5mm (d) and d = 7.5mm (e) (µplate = 200, σplate = 6.484MS/m, f = 50 Hz).
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Fig. 2. Flux lines for the magnetodynamic stranded inductor model SP q (a1), TS SP p added (a2), correction solution SP
k (a3) and the complete solution (SP q + SP p + SP k = a = a1 + a2 + a3) with the different meshes used (f = 50Hz,
µplate = 200, σplate = 6.484MS/m). Projection of SP q solution (aproj ,SS) in the SP p, and of SP p (aproj ,VS) in the SP k.
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Fig. 3. Power loss density between TS and VS solution along the plate for b-formulation (a) and h-formulation (b), with effects
of d, µr and f for 2-D model (σplate = 6.484MS/m).
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Fig. 4. Relative correction of the power loss density (a) and of the longitudinal magnetic flux (b) along the plate, with effects
of d, µr , and f for 2-D model (σplate = 6.484MS/m).
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Fig. 5. Eddy current density between TS and VS solution along horizontal half inner width (y-direction) (a) and vertical half
edge (z-direction) (b), with effects of d for 3-D model (µplate = 200, σplate = 6.484MS/m, f = 50 Hz).
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Fig. 6. Power loss density between TS and VS solution along horizontal half inner width (y-direction) (a) and vertical half
edge (z-direction) (b), with effects of d for 3-D model (µplate = 200, σplate = 6.484MS/m, f = 50 Hz).
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Fig. 7. Relative correction of the power loss density (a) along the plate; power loss density between thin shell and correction
solution along vertical half edge (z-direction) (b), with 3-D model (µ1 = 1, µ2 = 200, σ1 = 59 MS/m, σ2 = 6.484 MS/m, f1 =
250 Hz, f2 = 50 Hz).

References
[1] P. Dular, Vuong Q. Dang, R. V. Sabariego, L. Krähenbühl and C. Geuzaine, “Correction of thin shell finite element

magnetic models via a subproblem method,” IEEE Trans. Magn., vol. 47, no. 5, pp. 158 –1161, 2011.
[2] P. Dular, R. V. Sabariego, C. Geuzaine, M. V. Ferreira da Luz, P. Kuo-Peng and L. Krähenbühl, “Finite Element Magnetic
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