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Abstract

In the present paper, a new method for partitioning a
circle in cells is presented. Cells have equal areas and
shapes, so the method is termed the Isocell method. Its
most interesting property is that cell centres are uni-
formly distributed inside the circle. Among possible
applications of the Isocell method, the calculation of
view factors by ray-tracing (image rendering, radiative
heat transfer modelling) is presented.
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1 Introduction

Partition of common geometrical shapes and surfaces
has always been a major concern in many differ-
ent fields such as geography, cartography, computer
graphics or scientific visualisation. Partition is often
linked with tessellation, subdivision or tiling methods.
Even though the purposes of these methods are dif-
ferent, the principle remains the same: decompose a
complex surface in basic elements, usually triangles
or quadrangles.

In the field of Digital Terrain Models, Bjørke et al.
[?] develop a global grid model based on quadrilateral
cells of almost constant area. They apply their model
to the case of a space corpse with an ellipsoid shape.
Chukkapalli et al. [?] present a scheme to generate un-
structured grids on the sphere. Their method is based
on a spiral going from one pole to the other. Stuhne
and Peltier [?] study the shallow water equations on
the sphere using an icosahedral grid-point discretisa-

Figure 1: Hexagonal cells in an equilateral triangle and
a circle [?].

tion. Leopardi [?] presents the partitions of the unit
sphere into regions of equal area and small diameter as
well as several applications (optimal packing of caps,
Voronoi tessellation ...). Cox [?] studies the problem
of deformable bubbles confined in an equilateral trian-
gle and a circle (Fig. 1). The shapes are filled with
hexagonal cells and their method is based on Voronoi
diagrams.

The starting point of this work was the need for an
efficient shooting method for ray-tracing, in order to
compute view factors more accurately. Deriving from
the famous Nusselt’s analogy [?], ray directions may
be set by uniformly sampling points within a circle
(each point defines the 3D direction of a ray, see sec-
tion 4). The most used technique is to distribute points
in a pure random way (Monte Carlo based methods,
[?]) but a large number of rays need to be cast in order
to obtain a good precision.

An interesting alternative is to uniformly divide the
circle in cells and shoot one ray within each cell. The
most common partition of the circle as well as the
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Figure 2: Partition of the circle and the sphere along
meridians and parallels.

sphere (Fig. 2) is the well-known division in meridians
and parallels (as the earth globe). The drawbacks of
this method are the non uniform cell shape and aspect
ratio and the poor distribution of vertices inside the
circle (concentration near the centre) or on the sphere
(concentration at the earth poles). In order to over-
come this issue, a new partition method was investi-
gated.

2 Circle partition

Following the previous discussion, a proper partition
of the circle should lead to cells of almost constant area
and shape. First, the circle of unit radius is divided into
n equally spaced rings having a radial height4r equal
to 1/n. The smallest ring is divided in N1 cells (Fig.
3).

Figure 3: Division of the first ring (N1 = 3).

Each of the N1 first cells has an area equal to

A1 =
π∆r2

N1
=

π

N1n2
(1)

The second ring (Fig. 4) has to be divided in such
a way that cell area is as close as possible to area A1.
Dividing the ring area by the area of the first ring cells
A1, the number of rings N2 is given by

N2 =
π4∆r2 − π∆r2

A1
= 3N1 (2)

A first interesting property is that an integer number
(3N1) of cells of area A1 fit in the second ring.

Figure 4: Division of the second ring (N1 = 3).

Following the same scheme, the third ring contains
a number of cells equal to

N3 =
π9∆r2 − π4∆r2

A1
= 5N1 (3)

This division leads to n rings each composed of
(2i − 1)N1 cells of area A1 as shown in Fig. 5. The
number of cells in the n rings is equal to the suite of
the first n odd numbers multiplied by the number of
divisions of the first ring N1.

Figure 5: Final division of the circle (N1 = 3).

Finally the circle is divided into a number of cells
equal to



Ntot = N1

n∑
i=1

(2i− 1) = N1n
2 (4)

Fig. 6 shows the partitions obtained with different
numbers of initial divisions (N1) and different total
numbers of cells.

Figure 6: Circle partition with N1 = 5 and 125 cells
(a), N1 = 4 and 256 cells (b) and N1 = 3 and 507
cells (c).

Provided a required number of cellsNtarget, the real
number of rings n∗ is given by

n∗ =

√
Ntarget

N1
(5)

and the actual number of rings n is the integer value
strictly greater than n∗. Then the total number of cells
is given by Eq. 4.

3 Cell properties

By construction, each cell has a unique area A1 and
a quadrangle-shape with two circular arcs, except the
N1 inner cells that degenerate into curved triangles.

Figure 7: Cell height and width.

For the ith ring, the aspect ratio λi of a cell, defined
as the ratio between the radial height ∆r and the circu-

lar width ∆c at the middle of the cell (Fig. 7), is given
by

λi =
∆r

∆c
=
N1

π
(6)

The aspect ratio of the cells is thus a constant de-
pending on the number of division of the first ring N1.
The most compact shapes correspond to an aspect ra-
tio as close as possible to one. Thus the best number
N1 of initial divisions is 3 (the real optimum being π).

The perimeter ρi of the cells of the ith ring is given
by

ρi = 2∆r + ∆cint + ∆cext = 2∆r

(
1 +

π

N1

)
= ρ

(7)
The division of the circle leads to cells of constant

area A1 and constant perimeter ρ. Thus, the shape co-
efficient β, defined as the ratio between the square of
the cell perimeter and the cell area, is also constant and
equal to

β =
ρ2

A1
=

4 (N1 + π)2

πN1
(8)

The plot of coefficient β against the number of ini-
tial divisionsN1 is given in Fig. 8. Values of the shape
coefficient for the circle (4π) and for the square (16)
are added in the figure. In order to obtain the most
compact cells, coefficient β must be as small as pos-
sible, i.e. achieving the smallest perimeter for a given
area.

Figure 8: Shape coefficient for different values of the
initial division N1.

The first derivative of coefficient β



dβ

dN1
=

4

π

N2
1 − π2

N2
1

(9)

is equal to zero when N1 is equal to π while its sec-
ond derivative,

d2β

dN2
1

=
8π

N3
1

(10)

is always positive. Thus the optimal value of N1 is
π for which the shape coefficient β is equal to 16. The
integer closest to π is 3, for which cells are almost as
good as squares (β = 16.0085).

4 Ray-tracing

Figure 9: A ray emitted by facet i and reaching facet
j.

In heat transfer problems, radiative exchange sim-
ulation requires the computation of the view factors
between facets of 3D finite element models [?]. For
strictly diffuse radiation, the definition of the view
factor Fi→j between facet i and facet j (Fig. 9) is
the amount of diffuse energy emitted by facet i that
reaches facet j divided by the total amount of energy
emitted by facet i. Nusselt [?] demonstrated that the
point wise view factor from a point P on a facet i to
a facet j is equal to the area of its orthographic pro-
jection divided by π. The orthographic projection is
composed of a projection on the unit sphere centred on
point P and an orthogonal projection onto the plane of
facet i (Fig. 10). This is known as Nusselt’s analogy.

Several methods were derived from Nusselt’s anal-
ogy. Ray-tracing based methods are the most general
and efficient ones. Malley [?] developed a method for
which the view factor is computed by uniformly sam-
pling the unit disc (i.e. the orthogonal projection of

Figure 10: Orthographic projection.

the unit sphere). Each point on the unit disc defines
the direction of a ray in the space (Fig. 11).

Figure 11: A point P on the unit disc defines the ray
direction.

Ray-tracing consists in shooting from each facet a
set of rays in the half-space surrounding it. The view
factor Fi→j is equal to

Fi→j =
Mj

Mi
(11)

where Mj is the number of rays emitted by facet i
that reach facet j and Mi is the total number of rays
emitted by facet i.

The most used method to distribute the rays within
the unit disc is the Monte Carlo method [?], i.e. the ray
positions are set in a purely random way (Fig. 12a).
This method always converges but requires a great
number of rays to achieve a good precision. Vueghs et
al. [?] propose an improved method called the Strat-
ified Hemisphere and based on a prior division of the
circle in cells of equal area (similar to the meridians
and parallels of the earth globe). A ray is shot in a ran-
dom position inside each cell (Fig. 12b). This method
proved to be more efficient than the purely random
method since the rays are more smoothly distributed
within the circle. Its main drawback is that the cells



have very different shapes, needle-shaped in the cen-
tre of the circle and flat near the perimeter.

Figure 12: Ray distribution methods; Monte Carlo (a),
Stratified Hemisphere (b) and Isocell (c).

The Isocell method does not exhibit such behaviour
as shown in Fig. 12c. The cell shape is constant over
the circle and so is the precision. In order to avoid
aliasing, the first cell of each ring is shifted from 0
with a random angle so that the distribution exhibits
no symmetry.

Basically, the distribution methods (Monte Carlo,
Stratified Hemisphere and Isocell) are similar to an
integration method over a circular domain, the inte-
gration points being the ray positions within the cir-
cle (we will denote them ”cell centres” for the sake of
simplicity). Several tests were performed to compare
these three distribution methods. The first one consists
in moving a simple shape (a circle for instance) of a
known area A0 inside the unit disc and measuring its
approximated area A calculated as the sum of the ar-
eas of cells for which the centre lies inside the moving
shape. In the example in Fig. 13a, there are four cen-
tres lying inside the circular shape so its approximated
area is the sum of the area of the four coloured cells
(Fig. 13b).

Figure 13: Cell centres lying inside the moving circle
(a) and approximated area (b).

For a given position of the moving shape, the rela-
tive error is given by

ε =
|A−A0|
A0

(12)

The moving shape is moved thousands of times and
the relative error is plot each time in function of the
moving shape radial position. Representative results
are given in Figs. 14 and 15.

Figure 14: Relative error for a moving circle of ra-
dius 0.3 and 5000 rays; Monte Carlo distribution (left),
Stratified Hemisphere (centre) and Isocell (right).

Figure 15: Relative error for a moving circle of radius
0.05 and 100000 rays; Monte Carlo distribution (left),
Stratified Hemisphere (centre) and Isocell (right).

The integration error of the Monte Carlo method is
very high compared to the other two methods. That
is why it converges slowly and requires a high num-
ber of rays. The method of the Stratified Hemisphere
presents a better behaviour except for some radial po-
sition of the moving shape: about 0.3 for a circle of
radius 0.3 and about 0 for a circle of radius 0.05. This
is due to the fact that the cell centres are badly dis-
tributed in the middle of the unit disc (Fig. 12b). In
fact, the error is made on the cells that are partially
covered by the moving shape, i.e. cells located on the
circumference in the case of a moving circle. So, for
the Stratified Hemisphere, the error increases when the
border of the moving shape is located near the centre
of the unit disc.



Unlike the stratified hemisphere method, the Isocell
method performs equally for any radial position of the
moving shape. Compared to Monte Carlo based meth-
ods, the Isocell method achieves a precision about 10
times greater for a given number of rays. Put it another
way, it is possible to shoot 10 times less rays with the
Isocell method to achieve the same precision. This is
very useful since ray-tracing methods are known to be
highly time consuming.

Figure 16: Convergence of distribution methods.

Convergence tests were also carried out. Here, the
shape is located at a given position and the number
of rays is increased from 5000 to 500000 (Fig. 16).
The Monte Carlo method converges slower than the
Isocell method, the rates being respectively equal to
0.5 and 0.75. Again, depending on the shape position,
the method of the Stratified Hemisphere may converge
even slower than the pure random method (0.25 in the
case of Fig. 16).

5 Conclusion

The Isocell method is a new method for partitioning
the circle in cells of equal area and shape. Its natu-
ral simplicity makes it appealing for various applica-
tions. It outclasses the usual partition in cells along ra-
diuses and inner circles (meridians and parallels). The
only weakness of the Isocell method is that the cells
are not conforming such as for a usual mesh. Never-
theless, the Isocell method should apply very well for
most calculation methods based on a circular domain.
The computation of the view factors with ray-tracing,
presented in this paper, is an application for which the
Isocell method brings a great improvement on other

methods in terms of performance and precision.

6 Acknowledgments

This work is supported by a grant from the Walloon
Government as a part of the research convention no.
6020 ”Recherches industrielles de base en prototypage
virtuel multiphysique”. The authors also gratefully
acknowledge the help and advice of Professor Pierre
Beckers (University of Liège, Belgium).
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