
On simplified handling of state events in time-domain simulation
Davide Fabozzi Angela S. Chieh Patrick Panciatici
University of Liège RTE - DMA RTE - DMA

Liège, Belgium Versailles, France Versailles, France
davide.fabozzi@ulg.ac.be angela.chieh@rte-france.com patrick.panciatici@rte-france.com

Thierry Van Cutsem
FNRS and University of Liège

Liège, Belgium
t.vancutsem@ulg.ac.be

Abstract - The power system models typically used in
dynamic simulations involve discrete events in addition to
the standard differential-algebraic equations. Those events
cause the system to jump from one continuous behavior to
another. Solvers have to handle those jumps. This paper
focuses on simplified time simulation where large steps are
used in conjunction with stiff-decay integration methods to
obtain approximate solutions in short computing times. In
the proposed simulation scheme, the simulation time steps
are not synchronized with the system jumps, which are
treated a posteriori in a corrective step. In this context,
the paper analyzes several simple nonlinear models involv-
ing limiters, switches, minimum gates, etc. from which some
precautions to be taken at the modelling and solving stages
are stressed. The paper also reports on results obtained with
a representative power system model.

Keywords - hybrid systems, differential-algebraic
equations, stiff-decay methods, simplified simulation,
long-term dynamics

1 Introduction

POWER systems are modelled by large sparse sys-
tems of nonlinear stiff differential-algebraic equa-

tions. The size of these systems can easily reach tens of
thousands of variables for large scale cases. In some ap-
plications detailed simulations are not feasible because of
the excessive computational effort. For instance, dynamic
security assessment requires long-term simulation of nu-
merous contingencies in short periods of time.

Simplified simulation can be used in applications
where a loss of accuracy can be accepted in exchange of a
faster computation. This can be achieved by:

• model simplification. Models are simplified in or-
der to become smaller and/or less stiff. An example
that combines reduction in size and stiffness is the
quasi steady-state approximation of long-term dy-
namics. In this approach the short-term dynamics
are replaced by their equilibrium equations [1];

• large-step integration. In this approach, no simpli-
fication is performed on the models, i.e. they are the
same as in detailed simulation, which avoids main-
taining several models of the same system. A sim-
plified solver with appropriate numerical stability is
used to “filter out” the fast dynamics [2].

Integrating with large steps may bring a significant
reduction of computational effort. It is known that stiff-
decay methods allow integrating with steps larger than the
smallest system time constants (which of course will dis-
card some fast dynamics) [3]. A method has stiff-decay if
the error introduced by a bounded disturbance on the state
variable of the ẋ = −λx equation (with λ > 0) tends to
zero as the integration step tends to infinity. These meth-
ods are used in both detailed simulations [3, 4, 5] and sim-
plified ones [2]. In fact, for a large class of continuous-
time dynamics, there is virtually no convergence limit for
the step size taken by a stiff-decay method: simply, an in-
tegration step much larger than the time constant would
practically lead to the solution of the equilibrium equation
of that dynamics. Thus, the step size is not limited by sta-
bility but only by accuracy.

By way of illustration, Fig. 1 shows the time evolu-
tion of a bus voltage obtained with respectively a detailed
and a simplified solver. The former uses a second-order
method with steps of 0.01 s while the latter uses a first-
order stiff-decay method with steps of 0.5 s. The case
refers to a long-term voltage unstable scenario of a test
system used in Section 6. As can be seen, the simplified
simulation overlooks some of the oscillations but matches
the detailed one as soon as the large transients have died
out. The large steps allow substantial reduction in com-
puting time while rendering the overall evolution of the
system. As a rule of thumb, the speed-up ratio approches
the step size ratio, i.e. 50 in the above example.

Power systems are also hybrid systems, i.e. they
involve variables which change at specific instants of
time [6]. These systems are more problematic to handle
with large steps. Relatively few attention has been paid
in the literature on power system dynamic simulation to
the handling of discrete parts of the model. In the general
case, whether the solver uses constant or variable step size,
those instants where variables change do not coincide with
a simulation time step. Thus, for detailed simulation, the
step size should be adjusted to make a step coincide with
the upcoming event. On the other hand, as it will be shown
later on, some care must be taken if the step size is not re-
duced, as it is the case in simplified simulation with large,
fixed steps: shifting the event in time may cause variables
to converge to wrong values, or even not converge, if some
modelling and solving precautions are not taken.

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 10 20 30 40 50 60 70 80 90 100

t (s)

detailed simulation
simplified simulation

Figure 1: Detailed vs. simplified simulations; bus voltage (pu)

The objective of this paper is to investigate the prob-
lems that arise from the interaction of large step integra-
tion with the hybrid dynamics of power system models.
The emphasis is on models used for stability analysis, i.e.
derived under the phasor approximation [7]. The paper an-
alyzes in some detail jumps taking place in some nonlin-
ear models such as limiters, switches, minimum gates, etc.
and proposes guidelines to handle the resulting changes
in continuous-time dynamics. Some possible limitations,
such as non-existence of solution of the discretized prob-
lem are also stressed. The proposed algorithm has been
implemented in an industry-grade software in the context
of the European FP7 project PEGASE [8], and simulations
of a representative controller model are presented.

Notation
xt denotes the values of the state x at the discrete time t
xk denotes the value of the state x at the k-th iteration of
an integration formula (discrete time omitted for clarity)
x
(j)
t denotes an intermediate solution for the state x at dis-

crete time t, considering the j-th candidate jump

2 Hybrid system dynamics

The dynamic model of a power system under phasor
approximation takes on the form:

Γ(z) ẋ = f(x, z) (1)
z(t+k) = h(x, z(t−k)) (2)

where Γ is a diagonal matrix with (Γ)ℓℓ = 0 if the ℓ-th
equation (1) is algebraic, and (Γ)ℓℓ = 1 if the ℓ-th equa-
tion (1) is differential.

The continuous-time dynamics equations (1) deal with
the network and various phenomena and controls, ranging
from the short-term dynamics of power plants, static var
compensators, induction motors, etc., to the long-term dy-
namics of secondary frequency control, load self restora-
tion, etc. These equations can be either algebraic or dif-
ferential. Vector x includes the corresponding (differential
and algebraic) state variables, such as rectangular compo-
nents of bus voltages, rotor angles, flux linkages, motor
slips, controller state variables, etc. The components of x
take values in R or in an interval of R.

The discrete-time equations (2) capture:
1. the response of discrete controls and protections

acting with various delays in shunt compensation,
secondary frequency and voltage control, load tap
changers, overexcitation limiters, etc. The corre-
sponding components of z are shunt susceptances,
generator setpoints, transformer ratios, etc.

2. the change in continuous-time equations caused by
limits, switches, minimum gates, hysteresis, etc.
The corresponding variables z act as “switches”.
Note that the diagonal entries of Γ may vary with z,
as suggested by (1), since a change in z may cause
an equation to change from differential to algebraic
and vice versa.

The components of z take values in a countable subset of
R.

A classical example of the second category above is
the integrator with non-windup limit, shown in Fig. 2.a.
Let us define z as a discrete variable with value 1 if
x < xmax and value 0 if x = xmax. This component
is described by the following continuous-time equation of
type (1):

z ẋ = z u+ (1− z) (x− xmax)

Thus, Γ(z) = z. The changes in z can be described by the
state transition diagram of Fig. 2.b [9, 10].

1

a. b.

z = 1z = 0

ẋ ≥ 0

x = xmax

ẋ < 0

x = xmax ẋ = u

u x

xmax

s

Figure 2: Integrator with non-windup limit

Continuous-time states x evolve over intervals of time.
The algebraic states in x can also vary over instants, when
some z components change. The discrete states z evolve
over discrete instants. With the notation of Eq. (2), z
changes from z(t−k) to z(t+k) at time instants tk dictated
by events. In the example of Fig. 2, the events are the
transitions from z = 0 to z = 1 and vice versa.

The dynamic behavior over a continuous interval ac-
cording to Eq. (1) is referred to as flow. The variation of
some components of z causes the passage from one flow
to another at one point in time. This passage is referred to
as a jump.

Events are classified according to whether it is possi-
ble or not to forecast when they take place [10]. In the
former case, they are called time events, and in the latter
case, state events. State events take place when a jump
condition is satisfied, as a result of system evolution. It is
usually possible to specify the event condition as a zero-
crossing function, i.e. the event takes place when the value
of that function passes through zero. A general solver is

thus in charge of monitoring the zero-crossing functions
in order to identify the event times.

3 Handling of state events

3.1 Computations required by detailed simulation

The most important effect of events on dynamic simu-
lations is that they force the solver to adjust the length of
continuous-time evolution intervals in order to land over
the event times. This mechanism, in case of many events,
leads to a reduction of the average step size (and hence an
increase in the number of steps). Moreover, when Newton
iterations are performed to solve both the algebraic and the
algebraized differential equations (which is mandatory in
case the step is large with respect to the smallest system
time constant), the Jacobian of those equations with re-
spect to the state x has to be updated and re-factorized
when the step size h changes (the latter is involved in the
algebraized differential equations).

In detailed simulation the handling of events requires
the solver to perform several tasks in addition to the afore-
mentioned step size adjustment. By definition, a jump in-
duces a change in some components of f , and hence a dis-
continuity of ẋ. Furthermore, the jump may cause some
algebraic variables to undergo a discontinuity, i.e. there is
at least one ℓ such that xℓ(t

−
k) ̸= xℓ(t

+
k) and (Γ)ℓℓ = 0.

In this case, the solver has to determine the new values
xℓ(t

+
k). In principle, the occurrence of a discontinuity re-

quires to momentarily decrease the order of the integration
formula to one. Indeed, from a strict mathematical view-
point, it is not correct to integrate over one of the those dis-
continuities; in fact, all numerical integration methods are
based on polynomial expansions which cannot reproduce
discontinuities. The well-known Backward Euler formula
xt+h = xt + hẋt+h, however, allows to integrate over a
discontinuity because it has a form which does not involve
time derivatives of state variables at the point of disconti-
nuity. Therefore, and because it involves only one past
value of the differential states, this scheme can be used for
the time step that immediately follows a discontinuity.

The computations typically performed by a detailed
solver are as follows. Let us assume that, at time t, it is
intended to take a step of length h, to arrive at time t+ h.
Let us suppose that the zero-crossing function analysis in-
forms the solver that a state event is going to take place at
t+h′ < t+h, where h′ has to be determined with proper
accuracy. The solver will thus integrate the current set of
Eqs. (1) with a step h′, impose the event, solve the as-
sociated discontinuity, change the flow and proceed with
the simulation. In practice, the accurate identification of
the event time t + h′ may require additional steps if the
zero-crossing function is strongly nonlinear.

3.2 Proposed procedure for simplified simulation

As mentioned in the Introduction, for simplified but
fast simulation purposes, it is of interest to take relatively
large, constant integration steps. However, overstepping
the correct event times is risky and may yield wrong re-

sults, or even divergence, unless some precautions are
taken when modelling and solving.

The scheme that is proposed in this paper for simpli-
fied simulation can be outlined as follows, with reference
to the above example:

1. at time t, starting from the state vector xt, take a
step of length h, to arrive at t + h. Let x(1)

t+h be the
corresponding state vector

2. at this time the jump conditions are checked
3. if it is detected that a state event has occurred in be-

tween t and t+h, z is changed accordingly, and the
step from t to t + h is repeated with the flows cor-
responding to the new z. This yields the new value
x
(2)
t+h of the state vector

4. steps 2 and 3 are repeated, updating the state vec-
tor, until no jump occurs any longer or a maximum
number of jumps is reached. This yields the final
state vector for the current step

5. then, the simulation proceeds with a new step.
In comparison to the detailed simulation, the proposed

approach will show a speed-up. Firstly, the step size will
not be reduced, leading eventually to a smaller number of
steps. Moreover, Jacobian updates to account for the vary-
ing step size are avoided. Lastly, if there is a discontinuity
associated with the event, it is not solved but taken into
account when computing the states at t+h [2]. This leads
to saving a number of Jacobian factorizations and Newton
iterations.

3.3 Implementation considerations

Newton iterations are performed to pass from xt to
x
(j)
t+h, j = 1, 2, . . . It is essential to iterate until reaching a

solution x
(j)
t+h accurate for the current flow, before check-

ing possible jump conditions (step 2). In other words, the
flow must not be changed during the Newton iterations.
Otherwise, incorrect jumps can be experienced, in an un-
predictable manner.

When a jump takes place, the Jacobian used in Newton
iterations must be updated to reflect the change in equa-
tions (1). This update can be performed locally, using a
decomposed formulation as discussed in [11]. For effi-
ciency reasons, as long as the flow does not change (i.e. in
between event instants), the Jacobian should be updated as
infrequently as possible. This standard technique is usu-
ally referred to as “dishonest Newton scheme” [5].

Another issue is the initialization of the Newton iter-
ations. In dynamic simulation it is customary to adopt
predictor-corrector methods. In accurate simulation, when
the steps are small compared to the dynamics involved
and especially when event times are well separated, high-
order prediction is used in order to start from an initial
point hopefully closer to the solution. Furthermore, the
difference between predicted and corrected values may be
used to estimate the local truncation error [3]. In simpli-
fied simulation, however, the steps may be large compared
to some of the dynamics. In this case a high-order pre-
diction may be far from the actual solution. In addition,
since the step size is not adjusted to match event times,

high-order prediction might be more dangerous than help-
ful. Finally, local truncation error is not assessed. All this
leads to adopt a zero-order prediction, i.e. merely use the
value of the state at the last point in time as initial guess
for the new time step.

4 Solving and modelling precautions

Attention must be paid to formulating the flow so that
it is differentiable with respect to x. If this does hold true,
the dishonest Newton scheme may lead to using an out-
dated Jacobian resulting in divergence of Newton itera-
tions. A non-differentiable flow has to be reformulated as
a combination of differentiable flows together with appro-
priate conditions to jump from one flow to another. This
point is illustrated in Example 1 below.

Next, since relatively large step sizes are taken, the in-
termediate values x(j)

t+h of the procedure may significantly
deviate from the actual solution. Both the jump conditions
and the flows must be formulated in a way that accom-
modates those deviations. In particular, the intermediate
values x

(j)
t+h may fall outside the feasibility domain de-

fined by the limits that are enforced by the jumps. The
formulation must accommodate these infeasibilities. This
is illustrated in Example 2 hereafter.

Last but not least, the procedure sketched in the previ-
ous section may lead to cycling between flows. A modi-
fication of the state transition graph can help solving this
problem, as illustrated in Example 3 below. The list of
recommendations in this Section is probably not exhaus-
tive.

In the time plots of this section and of the next one, the
solid line refers to the exact solution, the dotted line show
unsuccessful trajectories and the dashed line corresponds
to the correctly implemented simplified simulation.

4.1 Example 1

Consider the simple system in Fig. 3 (which of course
could be embedded in a much larger model).

t

simulations:
exact
erroneous simplified
correct simplified

x 0+ −
t

3−
9

0

−1

1

2

3

2 4

x

Figure 3: Example 1: block-diagram and simulation results

The corresponding flow equation is:

f(x, t)
def
= 0 = t− 3 + x+min(0, 9 x) (3)

where t is the time and x is an algebraic state. Assume the
initial condition x0 = 3 at t = 0.

Consider a simplified simulation with step size h =

2 s, using Newton iterations:

xk = xk−1 − (df/dx)
−1

f(xk−1, t) k = 1, 2, . . .

where upperscripts refer to iteration numbers. According
to the dishonest Newton scheme, the Jacobian (a scalar in
this case) is evaluated at t = 0 and kept constant. Thus,
we have df/dx = 1. The first two simulation steps are as
follows:
◃ passing from t = 0 to t = 2 : the first Newton
mismatch is f(x0, 2) = 2 and the first Newton iteration
yields: x1 = 3 − (1 × 2) = 1. Since f(x1, 2) = 0, the
iterations end up and the solution at t = 2 is x2 = 1;
◃ passing from t = 2 to t = 4 : the first Newton
mismatch is f(x2, 4) = 2 and the first Newton iteration
yields: x1 = 1 − (1 × 2) = −1. The second mis-
match is f(x1, 4) = −9 and the second iteration gives:
x2 = −1 − (1 × −9) = 8. The third mismatch is
f(x2, 4) = 9. Clearly, the iterations do not converge; sim-
ulation cannot proceed.

Divergence occurs because the Jacobian should be up-
dated each time x changes sign. However, in the dishonest
Newton scheme this option is not considered.

In fact, the need to refactorize the Jacobian comes
from the non-differentiable nature of the min function in
(3). To avoid this, the model should be rewritten in terms
of two flows with a jump according to the sign of x:

fA(x, t)
def
= 0 = t− 3 + x if x > 0

fB(x, t)
def
= 0 = t− 3 + 10 x if x ≤ 0

At t = 0, x0 > 0 and the flow is fA, with the correspond-
ing Jacobian dfA/dx = 1. The first two simulation steps
of this hybrid system are as follows:
◃ passing from t = 0 to t = 2 : same as above, leading
to x2 = 1;
◃ passing from t = 2 to t = 4 : the first Newton mis-
match is fA(x2, 4) = 2 and the first Newton iteration
yields: x1 = 1− (1× 2) = −1. Since fA(x

1, 4) = 0, the
iterations end up;
◃ testing jump condition at t = 4 : since x1 < 0, the
condition to jump to flow fB is satisfied. The Jacobian is
updated to dfB/dx = 10;
◃ redoing the step from t = 2 to t = 4 : the first
Newton mismatch is fB(x2, 4) = 11 and the first New-
ton iteration yields: x1 = 1 − (10−1 × 11) = −0.1.
Since fB(x

1, 4) = 0, the iterations ends up, and since
the jump condition is not satisfied, the solution at t = 4 is
x4 = −0.1.

To summarize, having replaced the non-differentiable
flow by two differentiable flows and a jump condition, it
is possible to overstep the event that occurs at t = 3 and
obtain the sought approximate evolution.

4.2 Example 2

Consider the system in Fig. 4 involving an integrator
with a non-windup limit.

3

correct simplified
erroneous simplified
exact

simulations:

t

x

1

s

xu
+ −

1
1

0 1 2

2

Figure 4: Example 2: block diagram and simulation results

A standard mathematical formulation of the system is:

fA(x)
def
= ẋ = −x+ u if x > 1 or (4)

(x = 1 and u− x > 0)

fB(x)
def
= ẋ = 0 if x = 1 and u− x ≤ 0 (5)

Starting from the initial condition x0 = 3 at t = 0, we
assume that u is the step function with u = 3 for t < 0
and u = 0 for t ≥ 0. Since x0 > 1, the initial flow is fA.

Consider a simplified simulation with step size h =
1 s, using Backward Euler method (the simplest method
with stiff-decay property). For the step from t = 0 to
t = 1, we have:

x1 = x0 + hẋ1 = x0 − hx1 (6)

In this example, the emphasis is not on Newton iterations,
but on the solution reached. The latter is easily obtained
from (6) as:

x1 =
x0

1 + h
= 1.5

Since no jump takes place, we proceed with the integration
from t = 1 to t = 2. The solution reached is:

x2 =
x1

1 + h
= 0.75

At this point we face the problem that x has left its do-
main of existence implicitly defined by (4, 5), which is the
interval [1 +∞[. In principle, the simulation cannot pro-
ceed since the jump conditions have not been written for
x < 1, which is not supposed to occur when Eqs. (4, 5)
are solved accurately.

Thus, the jump conditions have to be adjusted to ac-
commodate values of x lying temporarily outside its do-
main of existence. To this purpose, let us tentatively re-
place (5) by:

fB(x)
def
= ẋ = 0 if x < 1 or (7)

(x = 1 and u− x ≤ 0)

in which the jump condition accommodates values of x
smaller than 1.

Pursuing our example, the condition for jumping from
fA to fB is now satisfied. Hence, the step from t = 1 to
t = 2 is repeated, restarting from x1 = 1.5 and following
flow fB . The Backward Euler formula yields:

x2 = x1 + hẋ1 = 1.5 + (1× 0) = 1.5

This is obviously wrong. Instead of bringing x back to its
limit 1, the flow fB forces x to remain at its value at t = 1.

In fact, the model (7) is correct if at the instant of
jumping from fA to fB , the value of x is exactly equal
to 1. Again, the formulation is not suited to integration
steps not falling on the event times 1.

A more general solution to the above problem consists
in writing the flows as follows:

fA(x)
def
= ẋ = −x+ u if x > 1 or (8)

(x = 1 and u− x > 0)

fB(x)
def
= 0 = x− 1 if x < 1 or (9)

(x = 1 and u− x ≤ 0)

in which Eq. (9) implicitly assigns x to its limit. Note that,
when x reaches its limit, the equation changes from differ-
ential to algebraic, a feature that was captured in (1). Note
that this technique also applies to the case where the limit
is not a constant, but a function of time and/or a function
of another state.

Let us illustrate how the above formulation works:
◃ passing from t = 1 to t = 2 : same as above, leading
to x2 = 0.75;
◃ testing jump condition at t = 2 : since x2 < 1, the
jump to flow fB takes place, with the Jacobian updated to
dfB/dx = 1;
◃ redoing the step from t = 1 to t = 2 : start-
ing back from x1 = 1.5, the first Newton mismatch
is f(x1) = 0.5 and the first Newton iteration yields:
x1 = 1.5 − (1 × 0.5) = 1. Since fB(x

1) = 0, the itera-
tions end up, and since no new jump condition is satisfied,
the solution at t = 2 is x2 = 1. As expected, the limit is
satisfied.

4.3 Example 3

Consider the small system in Fig. 5 involving an in-
tegrator with limits on the rate of change of x. It can be
modelled by:

fA(x)
def
= ẋ = −1 if u− x ≤ −1 (10)

fB(x)
def
= ẋ = −x+ u if −1 < u− x < 1 (11)

fC(x)
def
= ẋ = 1 if u− x ≥ 1 (12)

t

simulations:
exact
erroneous simplified
correct simplified

2

0 4 8

−1

1

−

x

s

1
+

u
4

6

−2

x

Figure 5: Example 3: block diagram and simulation results

1To overcome this problem one could force the state x to its limit and redo the integration step: this will adjust all other variables accordingly. This
technique, however, has its own limitations, especially with varying limit implementation.

Starting from the initial condition x0 = 6 at t = 0, we
assume that u is the step function with u = 6 for t < 0
and u = 0 for t ≥ 0. The initial flow is fA.

Consider a simplified simulation with step size h =
4 s, still using Backward Euler method. From t = 0 to
t = 4 we have:

x4 = x0 + hẋ4 = 6 + (4× (−1)) = 2

No jump takes place and the simulation proceeds to t = 8.
Using the same formula:

x
(1)
8 = x4 + hẋ8 = 2 + (4× (−1)) = −2

At this point, the condition to jump from fA to fC is satis-
fied. Hence, the step is repeated with the new flow, which
yields:

x
(2)
8 = x4 + hẋ8 = 2 + (4× 1) = 6

for which the condition to revert to flow fA is satisfied.
Therefrom, the solutions will endlessly oscillate between
the above two values:

x
(3)
8 = x

(1)
8 = −2 x

(4)
8 = x

(2)
8 = 6 . . .

The large step size causes the flow to oscillate between fA
and fC without a chance of using the correct flow, fB .

The solution consists in preventing a direct transition
from fA to fC , and conversely. This is conveniently repre-
sented in the state transition graph of Fig. 6. In the latter,
there is no arrow between fA and fC ; all the transitions
have to go through fB .

u− x < 1

fCfBfA

ẋ = u− xẋ = −1 ẋ = 1

u− x > −1 u− x ≥ 1

u− x ≤ −1

Figure 6: Example 3: state transition graph for a correct simulation

Adhering to these rules, the integration from t = 4 to
t = 8 is as follows:
◃ passing from t = 4 to t = 8 : same as above, leading
to x

(1)
8 = −2;

◃ testing jump condition at t = 8 : since u− x
(1)
8 > −1,

the jump to flow fB takes place
◃ redoing the step from t = 4 to t = 8 : starting back
from x4 = 2, the Backward Euler formula gives:

x8 = x4 + hẋ8 = x4 − hx8

whose solution is

x
(2)
8 =

x4

1 + h
= 0.4

At this point, no new jump takes place and the simulation
successfully proceeds with flow fB .

5 When everything else fails. . .

5.1 Safeguards against unsolvable situations

There is no guarantee that the safeguards described in
the previous section suffice to avoid numerical difficulties
when overstepping an event with large steps. The problem
most likely to remain unsolved, even after adjusting the
flow equations and/or the jump conditions, is the cycling
between flows, tackled in Example 3.

In order the simulation to proceed, a first option con-
sists in leaving the time step with the last available solu-
tion x(j), once the number of flow jumps reaches a max-
imum, and proceeding with the next step. We found in
many cases that the problem disappears at the next time
step. This temporary discrepancy may be acceptable in
the context of simplified simulation. However, there is no
guarantee that the problem will disappear.

In so far as the problem stems from severely over-
stepped events, another option is to reduce the step size
h until the problem is no longer met. h is first reduced by
a factor k: hnew = h/k (our simulations have shown that
k = 2 is a convenient choice). If no event cycling takes
place any longer, the step is accepted; otherwise further re-
ductions are applied until the problem is solved. Then, the
original step size is restored and the simulation proceeds.
The following example illustrates the benefit of step size
reduction.

5.2 Example 4

Consider a simple system characterized by:

fA(x)
def
= ẋ = −2 if x ≥ 1.5 (13)

fB(x)
def
= ẋ = −1 if x < 1.5 (14)

with the initial condition: x0 = 8.

3

simulations:
exact
erroneous simplified
correct simplified

x

t

2

4

6

0

8

2 41

Figure 7: Example 4: simulation results

We perform a simplified simulation with h = 2 s. The
step from t = 0 to t = 2 with the initial flow fA yields:

x2 = x0 + hẋ2 = 8 + (2× (−2)) = 4

where no jump takes place. The next step gives:

x
(1)
4 = x2 + hẋ4 = 4 + (2× (−2)) = 0

where the condition for jumping from fA to fB is satis-
fied. Thus, the step is repeated, which yields now:

x
(2)
4 = 4 + (2× (−1)) = 2

where the condition for jumping back to fA is satisfied !
The simulation is trapped into a cycle from one flow to the
other, a situation where the previously discussed precau-
tions cannot help.

It can be easily shown that, with h = 2, the cycle prob-
lem takes place if the x computed with flow fA falls in the
interval [−0.5 1.5[. If so, the condition is satisfied for a
jump to fB , which brings x to a value for which the con-
dition for the reverse jump is satisfied. The cycle takes
place.

To avoid this problem, the step size is reduced as pre-
viously suggested. We tentatively use a halved step size,
i.e. h = 1 s. Passing from t = 2 to t = 3 gives:

x3 = x2 + hẋ3 = 4 + (1× (−2)) = 2

where no jump takes place. Thus, simulation proceeds
from t = 3 to t = 4 and yields:

x
(1)
4 = x3 + hẋ4 = 2 + (1× (−2)) = 0

where the condition for jumping from fA to fB is satis-
fied. A repetition of this last step with flow fB yields:

x
(2)
4 = x3 + hẋ4 = 2 + (1× (−1)) = 1

where no jump takes place. The simulation can proceed
normally with flow fB .

With the reduced step h = 1 s, it can be shown that the
cycle problem takes place if the x computed with flow fA
falls in the interval [0.5 1.5[. This is not the case for x3

nor for x(1)
4 , which explains why simulation is successful.

In fact, the width of the interval of problematic x values
has shrunk with the step size h, giving a chance to jump
over that interval.

Note that in this example an increase in step size h
could also avoid falling in the interval of problematic x
values as can be checked, for instance, by integrating from
x2 with a step size h = 4 s. However, an increase in h is
not desirable in terms of accuracy of solution and conver-
gence of Newton iterations in nonlinear systems.

6 A power system example

We illustrate hereafter how the proposed algorithm
deals with a typical hybrid power system model.

The case has been obtained with the Nordic32 test sys-
tem, documented in [12] and whose voltage evolution at
one bus has been already shown in Fig. 1. At t = 1 s, the
transmission line 4032− 4044 is tripped. This causes the
neighbouring voltage-controlled generator g14 to operate
above its permanent field current limit. Figure 8 shows the
evolution of this field current obtained by detailed simu-
lation. The limitation of the field current, caused by the
OverExcitation Limiter (OEL), is clearly seen at t = 50 s.
The same figure shows the evolution computed by simpli-
fied simulation, using a default step size of 0.5 s. As ex-
pected, the initial oscillations are not reproduced but the
overall evolution is correctly rendered.

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 0 10 20 30 40 50 60 70

t (s)

detailed simulation
simplified simulation

Figure 8: Evolution of ifd of generator g14 (pu)

The block-diagram of the OEL is shown in Fig. 9.
In normal operating conditions the field current ifd is

much lower than its permanent limit ilimfd and the output of
block 1 is −1. This keeps the integrator of block 2 at its
lower limit L1, which is negative. It results that the switch
in block 3 remains in the lower position and passes the in-
put V o−V . The minimum gate receives two equal inputs,
and we assume it selects w, the output of block 3.

y ≥ 0

4

2 3

−1

0

−0.1

w

e

+

−
vfd

G(1 + sTa)

1 + sTb
V o

−

+

V

min

−

+

ilimfd

ifd

1

s

L1

exciter

transient
gain reduction

−1

10

0

L21

y

y < 0

1

s

timer

Figure 9: Block diagram of voltage regulator, field current limiter and exciter

When the machine operates with ifd > ilimfd , the out-
put y of the integrator block 2 grows, until it reaches a
positive value, causing block 3 to switch. Thus, block 2
acts as a timer and provides inverse-time characteristic to
the OEL. After block 3 has switched, the inputs of the
minimum gate are V o − V > 0 and w = ilimfd − ifd < 0,
respectively. Hence, the gate keeps on selecting w.

The purpose of this minimum gate is to reset the ma-
chine under voltage control whenever operating condi-
tions improve to the point that V o − V becomes negative.
However, in the following example, no such reset takes
place and the minimum gate selects its w input throughout
the whole simulation.

After the line outage, ifd starts increasing and be-
comes larger than ilimfd at t = 1.5 s. The step from t = 1
to t = 1.5 is thus retaken to account for the jump from
flow e = 0 to flow e = ifd − ilimfd in block 1. The output
of block 1 becomes positive, causing a jump in block 2,
corresponding to y leaving its lower limit L1.

Variable y keeps on increasing until it becomes pos-
itive, causing the switch in block 3 to change, i.e. the
machine to switch from voltage to field current control in
between t = 49.5 and t = 50. A zoom on the evolution of
ifd and y is given in Fig. 10.

3.30

a

b

3.15

ilimfd

3.00

−0.2

−0.3

−0.4

−0.1

0

50.049.5

50.049.5

yifd

t

t

Figure 10: Detailed view of iterations when the OEL becomes active

Here is a detailed analysis of this step:
◃ at the beginning of the step, y < 0, block 3 is selecting
its input V o − V ; the step converges to a positive y value
at t = 50, triggering a jump in block 3. This is shown with
dotted lines in Fig. 10;
◃ the step is restarted with block 3 passing ilimfd − ifd.
However, when passing through the exciter and the syn-
chronous machine this signal has such a pronounced effect
on the system that a value ifd close to ilimfd is retrofitted to
the OEL, which causes the updated value of y at t = 50
to get back to negative value. This is shown with dashed
lines in Fig. 10. However, this triggers the reverse jump of
block 3, and causes the jump handling procedure to end-
lessly oscillate between voltage and field control.

In fact, the case bears some similarity with Example 4
of Section 5.2. The variable y that controls block 3, when
integrated with “large” derivative ifd − ilimfd = a (see
Fig.10) triggers the jump to the flow with “small” deriva-
tive ifd − ilimfd = b, where b < a due to the above men-
tioned fast retroaction. Conversely, when integrated with
the “small” derivative b, it triggers the jump to the flow

with “large” derivative a.

As indicated in Section 5, two options are available
to proceed with the simulation: (i) break the cycle and
accept the last available solution, or (ii) reduce the step
to have more chances to avoid cycling. The first option
yields satisfactory convergence but delays the OEL action
by one step. The result of second option is shown with
solid line in Fig. 10. The step size has been halved after
meeting the problem at t = 49.5. The simulation passes
from t = 49.50 to t = 49.75 without jump. Then the
machine correctly switches under field limit in between
t = 49.75 and t = 50.00. At 49.75 s, the value y escapes
the region of non-existence of solutions and can thus con-
verge successfully.

7 Conclusion

In this paper algorithms for simplified time simulation
of power system dynamics are considered. The objective
is to obtain approximate time responses by “filtering out”
some fast dynamics, using a relatively large time step size
on the original (i.e. non simplified) model. Stiff-decay
integration methods (such as backward differentiation for-
mulae) allow using a step size larger than the fast, ne-
glected dynamics. However, attention must be paid to the
overstepping of time instants where discrete events cause
the differential/algebraic model to jump from one flow to
another.

In the approach detailed in this paper, no attempt is
made to identify the correct event times. Instead, jump
conditions are checked after the step has been solved with
the previous system equations and, if jump conditions are
satisfied, the step is repeated with the new prevailing flow.
The procedure may be repeated if new jump conditions are
satisfied.

Through simple examples, the paper emphasizes some
precautions to be taken in the formulation of the jump con-
ditions and of the new prevailing flow, as well as in the
handling of transitions from one flow to another.

In spite of those precautions, it may happen that the
proposed procedure leads to cycling between flows. In
such a case, one option is to reduce the step size until the
cycling problem is resolved, and progressively restore it to
the original value.

The paper provides an illustrative power system exam-
ple, in which the above procedure allows simulating the
voltage unstable long-term evolution with a step size of
0.5 s, temporarily reduced to solve a flow cycling problem
when an overexcitation limiter comes into action.

The procedure has been implemented in a production-
grade program and is being tested on complex controller
models. So far, it has been found that many discrete events
can be solved by the proposed procedure without reducing
the step size, while a temporary reduction of the latter al-
lows solving the difficult cases.

Acknowledgement

This work was performed in the context of the PE-
GASE project [8] funded by European Community’s 7th
Framework Programme (grant agreement No. 211407).

REFERENCES

[1] T. Van Cutsem, C. Vournas, Voltage Stability of Elec-
tric Power Systems, Boston, Kluwer Academic Pub-
lishers (now Springer), 1998.

[2] D. Fabozzi, T. Van Cutsem, “Simplified
time-domain simulation of detailed long-
term dynamic models”, Proc. IEEE PES
General Meeting, Calgary (Canada), July
2009. Available at http://ieeexplore.ieee.org
(DOI 10.1109/PES.2009.5275463) and
http://hdl.handle.net/2268/9524

[3] U.M. Ascher, L.R. Petzold, Computer Methods for
Ordinary Differential Equations and Differential-
Algebraic Equations, Society for Industrial and Ap-
plied Mathematics (SIAM), 1998

[4] J.Y. Astic, A. Bihain, M. Jerosolimski, “The mixed
Adams - BDF variable step size algorithm to simu-
late transient and long term phenomena in power sys-
tems”, IEEE Trans. on Power Systems, Vol. 9, No. 2,
May 1994

[5] B. Dembart, A.M. Eirsman, E.G. Cate, M.A. Epton
and H. Dommel, “Power System Dynamic Analysis
- Phase I. Final Report EPRI EL-484”, July 1977

[6] I.A. Hiskens, M.A. Pai, “Trajectory sensitivity anal-
ysis of hybrid systems”, IEEE Trans. on Circuits and
Systems I, Vol. 47, No. 2, Feb. 1994

[7] P. Kundur, Power System Stability and Control, Mc
Graw Hill, EPRI Power System Engineering Series,
1994

[8] [Online], Available at http://www.fp7-pegase.eu/
[9] J. Lygeros, “Lecture Notes on Hybrid Systems”, EN-

SIETA, 2-6/2, 2004
[10] F.E. Cellier, E. Kofman, Continuous System Simula-

tion, Springer-Verlag, New York (USA), 2006
[11] D. Fabozzi, T. Van Cutsem, “Localization

and latency concepts applied to time simu-
lation of large power systems”, Proc. 2010
IREP Symposium, Buzios (Brazil), August
2010. Available at http://ieeexplore.ieee.org
(DOI 10.1109/IREP.2010.5563287) and
http://hdl.handle.net/2268/65833

[12] M. Glavic, T. Van Cutsem, “Wide-Area Detection of
Voltage Instability From Synchronized Phasor Mea-
surements. Part II: Simulation Results,” IEEE Trans.
Power Syst., Vol. 24, No. 3, pp. 1417-1425, Aug.
2009.

