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Introduction 
Relationship coefficients correspond to genetic covariances between related individuals 
expressed relatively, independently from the considered traits. Relationship coefficients are 
traditionally based on pedigree data. But any pedigree is somewhat incomplete for various 
reasons. The two most important are, first, that cut-off dates for recording the pedigree might 
exist and, second, that animals of unknown origins enter the herdbooks, e.g., animals coming 
from another breed/country. With availability of molecular data, pedigree based relationship 
coefficients are often completely replaced by molecular coefficients. Examples are 
relationships from microsatellites for bio-diversity studies (Caballero and Toro (2002); 
Oliehoek et al. (2006)) but also genomic relationships from single nucleotide polymorphisms 
(SNP) as currently used in genomic prediction of breeding values (Zhang et al., 2007; 
VanRaden, 2008). The availability of dense molecular markers like SNP has opened the door 
for genomic selection (Meuwissen et al. (2001)). Even if this new evaluation method is very 
promising for animal breeding, the limit is that genotyping an entire population is impossible 
due to its high cost or for logistic restrictions (i.e., culled, slaughtered or foreign animals). 
The current used approach consists in genotyping precisely evaluated animals to create a 
training population, often of older sires. The developed prediction equations are then used to 
evaluate prospective future selection candidates. However, this way to proceed is suboptimal 
as molecular data is not directly combined with pedigree and phenotypic data (e.g., Legarra 
et al. (2009)). Already VanRaden in 2008 showed equivalences between models using linear 
prediction equations and models using directly a genomic relationship matrix. Misztal et al. 
(2009) and Aguilar et al. (2010) developed this further to show that by modifying mixed 
model equations replacing the relationship matrix A by a modified one that includes genomic 
information, will lead to genomic predictions including molecular, pedigree and phenotypic 
data.  In many situations, optimal combination of pedigree and molecular data would be the 
best solutions. This is the case of the Deep Red cattle, a breed originated from the 
Netherlands, which is incompletely genotyped and has sparse pedigree information. The 
objective of this study was therefore to apply a new method to estimate relationship by 
combining molecular data with pedigree data. The estimation of relationships in the Deep 
Red Cattle population could help for the management of the breed and its conservation. 
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Material and methods 
Pedigree data. The Deep Red Cattle pedigree includes 6477 animals, 2036 males and 4441 
females born between 1945 and 2008. Animals born between 2002 and 2007 where 
considered as reference population (living and reproducing animals). The deepness of 
pedigree information was characterized by the number of generation-equivalents (GEQ). 
This parameter is considered as the best criterion to characterize the quality of the pedigree 
information (Maignel et al. (1996); Baumung and Sölkner (2003)). The GEQ was computed 
for each animal as the sum of (1/2)n, where n is the number of generations separating the 
individual from each known ancestor (Huby et al. (2003)). The inbreeding level of the living 
population was also calculated. The individual inbreeding coefficient (F) is defined as the 
probability that an individual has two genes identical by descent (Wright (1931)). 
 
Genotypes. DNA samples were collected from 195 animals. The samples were tested for 
genetic variation at 16 loci with microsatellite markers: BM1824, BM2113, ETH10, 
ETH225, ETH3, INRA23, SPS115, TGLA22, TGLA126, TGLA227, TGLA53, BM1818, 
CSRM60, CSSM66, HAUT27, ILSTS006. All these markers are used globally for routine 
bovine genotyping for various purposes such as parentage verification and kinship analysis 
(van de Goor et al. (2009)). 52 animals were genotyped only for the first 11 markers. For 
each marker, the average polymorphism information content (PIC) value was calculated. 
This parameter was introduced by Botstein et al. (1980) and refers to the value of marker 
informativeness within a population, depending on the number and allele frequencies. 
 
Methods. Pedigree and markers were combined using the method presented by Bömcke et 
al. (2009). The used formula is the following: 

where âxy,combined is the estimated combined relationship coefficient between individual x and 
individual y. b0 is the estimated intercept. bl are the nl estimated marker regression 
coefficients, one for each marker. taxy,l is the total allelic relationship between x and y. bP is 
the estimated pedigree regression coefficient. And axy,P is the pedigree relationship 
coefficient. The markers regression coefficients were estimated thanks to the PIC value of 
the marker and to the number of genotyped marker. The intercept was calculated with the 
inbreeding level of reference population. Finally, the pedigree regression coefficient was 
estimated according to the mean GEQ value. As described, the procedure will only combine 
relationship coefficients of genotyped animals. However, the relationships between 
ungenotyped and genotyped animals as well as among related ungenotyped animals could be 
affected by the modification of relationships among genotyped animals. Modification of the 
complete A matrix is therefore required, the resulting relationship matrix will be called 
“modified” relationship matrix (Amodified). The following equation gave the inverted complete 
Amodified matrix (Aguilar et al. (2010), Bömcke et al. (2009)): 
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where the elements of (Acombined)-1 are obtained through inversion of the combined matrix and 
Agenotyped is the pedigree based relationship matrix among genotyped animals. 



Statistical analyses. Ancestors of animals with the deepest pedigree were removed 
randomly in order to create a more incomplete pedigree than the real one. The method was 
tested for its capacity to recreate a pedigree that is at least as good as the real one. In order to 
test this new method for combining relationships, we calculated the relative errors between 
“true” pedigree-based relationship values, and estimations obtained with the presented 
method. Calculation of relative error was based on the Frobenius norm, as described by 
Misztal et al. (1995). This method is convenient for comparison of covariance matrices with 
similar diagonal elements. The biases of both estimations as well as the probability density 
function of the residuals were also calculated. 

Results and discussion 
The inbreeding level of the reference population was 0.01 with a maximum of 0.32. The 
mean GEQ of the reference population is equal to 2.82. PIC values of the markers ranged 
from 0.007 to 0.0479. 
Consequently, the estimated intercept was equal to 0.129 for the two sets of markers. The 
estimated regression coefficients varied with the number of markers genotyped for the 
compared individuals (11 or 16 microsatellites). The marker regression coefficients ranged 
from 0.008 to 0.056 when 16 markers were used, while they ranged from 0.009 to 0.061 
when only 11 markers were used. The pedigree regression coefficient was equal to 0.378.  
After addition of the combined information in the complete relationship matrix, the mean 
relative error between pedigree relationship values, calculated on complete Deep Red cattle 
pedigree, and estimations obtained with the incomplete pedigree is equal to 0.902 while the 
mean relative error between pedigree relationship coefficients and estimations obtained in 
Amodified is equal to 0.607. These values quantified the dispersion of the results, there is thus a 
strong decrease of the dispersion of the results when we combined pedigree and genotypes in 
the same matrix. The total mean bias of estimations calculated with classical tabular method 
on the incomplete pedigree was equal to 0.243 while bias of estimations obtained with 
modified matrix was equal to 0.149. Again, there is a strong decrease between the two 
values. These observations are reflected in figure 1.  
 

Figure 1: Probability density function of the residuals obtained with modified matrix 
(in black) and with classical tabular method (in grey) applied on incomplete pedigree. 
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With the incomplete pedigree, the estimated values are always inferior, i.e. the curve starts at 
0, to the expected values, due to the deletion of link in the pedigree, what creates a high 
dispersion of the results and a high bias. The apparition of residuals inferior to 0 with 
modified estimations expressed that including the genotypes allows to increase the 
knowledge of relationship in the population. Another reason is that relationships can be by 
chance not only lower but also higher than the theoretical value. 
The method was applied on the complete pedigree, the inclusion of marker information did 
not increase significantly the inbreeding level of the population. If the increase had been 
significant, it would have been necessary to adopt an iterative solution, i.e. re-estimate the 
intercept and recalculate the combined matrix until there is no significant change in the 
inbreeding level. 

Conclusion 
These results clearly showed that there is an interest to combine pedigree and marker 
information when both sources of information are available. Combining marker and pedigree 
information produced more accurate A-matrices. This method would be particularly useful 
for the genetic management of small cattle breed like the Deep Red Cattle but can be extend 
to other species. 
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