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Abstract. The existence and uniqueness of quantizations that are equi-
variant with respect to conformal and projective Lie algebras of vector
fields were recently obtained by Duval, Lecomte and Ovsienko. In or-
der to do so, they computed spectra of some Casimir operators. We
give an explicit formula for those spectra in the general framework of
IFFT -algebras classified by Kobayashi and Nagano. We also define tree-
like subsets of eigenspaces of those operators in which eigenvalues can
be compared to show the existence of IFFT-equivariant quantizations.
We apply our results to prove the existence and uniqueness of quanti-
zations that are equivariant with respect to the infinitesimal action of
the symplectic (resp. pseudo-orhogonal) group on the symplectic (resp.
pseudo-orthogonal) Grassmann manifold.

Math. Classification (AMS 2000) : 17B66, 22E46, 81R05
Keywords : Lie subalgebras of vector fields, Modules of differential opera-
tors, Casimir operators.

1. Introduction

The word “quantization” carries several different meanings, both in physics
and mathematics. One approach — see for instance [12] — is to consider
a quantization procedure as a linear bijection from the space of symbols
Pol(T ∗M) of smooth functions on the cotangent bundle of a manifold M
that are polynomial along the fibres to the space D 1

2
(M) of linear differen-

tial operators acting on half-densities. It is known that these spaces cannot
be canonically identified. In other words, there does not exist a preferred
quantization procedure.

The concept of equivariant quantization was introduced and developed
in [10, 11] and [2]. These recent works take care of the symmetries of the
classical situation to quantize.

If G is a group acting on the manifold M , a G-equivariant quantization is
an isomorphism of representations of G between the spaces of symbols and
of differential operators. Obviously, such an identification does not exist for
all groups G acting on M : for instance those spaces are not equivalent as
Diff (M)-modules. At the infinitesimal level, if G is a Lie group, its action
gives rise to a Lie subalgebra g of vector fields over M and one is led to build
a g-equivariant linear bijection. Lecomte and Ovsienko examined the case of
a projective structure on a manifold of dimension n, with G = SL(n+ 1, R)
and then, together with Duval, the case of the group G = SO(p+ 1, q + 1)
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on a manifold of dimension p + q. That latter group defines conformal
transformations with respect to a pseudo-Riemannian metric.

In these works, the authors consider the more general modules Dλ,µ of
differential operators transforming λ-densities into µ-densities. These pa-
rameters give rise to the shift value δ = µ− λ and to the special case δ = 0,
which can be specialized to the original problem. They obtain existence
and uniqueness (up to normalization) results for a quantization procedure
in both projective and conformal cases, provided the shift value does not
belong to a critical set. Furthermore, they show that this set never contains
zero.

In suitable charts, the subalgebras mentioned up to now are realized
by polynomial vector fields and they share the property of being maximal
proper subalgebras of the algebra of polynomial vector fields.

In [1], we investigated this maximality property and showed that the finite
dimensional, graded and maximal proper subalgebras of the Lie algebra of
polynomial vector fields over a Euclidean vector space correspond to the
list of so called “Irreducible Filtered Lie algebras of Finite Type”(IFFT-
algebras), classified by S. Kobayashi and T. Nagano in [7].

Our concern in this paper is to deal with the natural next question :
“Is it possible to build (unique) equivariant quantizations with respect to the
IFFT-algebras ?”

The original construction of the conformally equivariant quantization
(see [2]) involves the computation of the spectrum of the Casimir opera-
tor of so(p + 1, q + 1) acting on the space of symbols. The obstructions to
the existence of a quantization show up as equalities among some eigenval-
ues of that operator. It was also shown in [2] how the relevant eigenvalues
that should be compared are associated to tree-like subsets of eigenspaces.

Section 3 of the present article is devoted to this computation. We obtain,
for a wide range of IFFT-algebras, a formula where the eigenvalues are
expressed in terms of the dimension of the manifold and of the highest
weights of some finite dimensional representations of the semisimple part of
the linear isotropy algebra of g (see [8]).

In Section 4, we propose a general definition for the above-mentioned
tree-like subsets. A few elementary properties of these subspaces allow us
to reformulate the existence theorem for equivariant quantizations in the
framework of IFFT-algebras.

We later apply these results in Section 5. The Lie algebras of fundamen-
tal vector fields associated to the action of the symplectic (resp. pseudo-
orthogonal) group on the Lagrangian (resp. pseudo-orthogonal) Grassmann
manifold are indeed IFFT. We prove existence and uniqueness results for
equivariant quantizations with respect to both of those algebras. Once more,
these results hold outside of a critical set of values of the shift. We further-
more prove that this set never contains zero.
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2. Basic definitions and notation

Here we recall the definitions of the fundamental objects involved in this
work. For the most part, we will follow the notation of [2, 10] and we refer
the reader to these papers for more detailed information. It will also be
sufficient for our computations to fix our notation over vector spaces.

Throughout this section, V will be a d-dimensional vector space over
K = R or C. Whenever E is a vector bundle over V , the space of sections
of E, which we will write Γ(E), is taken to be the space of C∞ sections if
K = R or the space of holomorphic sections if K = C.

2.1. Tensor densities and differential operators. Let us denote by
∆λ(V ) → V the line bundle of tensor densities of weight λ over V and
by Fλ the space Γ(∆λ(V )). There exists a natural representation L of the
Lie algebra of vector fields Vect(V ) on Fλ. In local coordinates, the Lie
derivative is given by

LXφ = X.φ+ λ tr(
∂

∂x
X)φ, ∀X ∈ Vect(M),∀φ ∈ Fλ, (1)

where ∂
∂xX denotes the Jacobian matrix of X.

Let now Dλ,µ be the space of linear differential operators from Fλ to Fµ.

The representation Lλ,µ of Vect(M) on Dλ,µ is induced by L :

Lλ,µD = L ◦D −D ◦ L.
In order to keep the notations light, we will simply write L for Lλ,µ unless
that leads to confusion.

To the module Dλ,µ is associated the shift value δ = µ− λ.

2.2. Symbols. The symbol space of degree k associated to Dλ,µ, which we

denote by Skδ is the space of contravariant symmetric tensor fields of degree
k, with coefficients in δ-densities, that is

Skδ = Γ(SkTV ⊗∆δ(V )).

We also consider the whole symbol space

Sδ =
⊕
k≥0

Skδ .

As we continue, we will identify symbols with functions on T ∗V that are
polynomial along the fibre and we will denote by ξ their generic argument
in the fibre of T ∗V .

The Lie derivative of symbols is also natural. It is an extension of (1).
We recall that the natural action of gl(d,K) on ∆δ(Kd) is given by

ρ(A)φ = −δtr(A)φ, ∀A ∈ gl(d,K), ∀φ ∈ ∆δ(Kd).

Then in local coordinates, the Lie derivative of P ∈ Skδ in the direction of a
vector field X writes

LXP = X.P − ρ(
∂

∂x
X)P, (2)
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where ρ is the natural action of gl(d,K) on the typical fibre SkKd⊗∆δ(Kd)
of the space of symbols.

The link between differential operators and symbols is the following : the
space Dλ,µ is the filtered union

⋃
k∈NDkλ,µ of the submodules of differential

operators of order at most k. In local coordinates, any D ∈ Dkλ,µ may be
written

f ∈ Fλ 7→
∑
|α|≤k

cαd
αf ∈ Fµ,

where α is a multi-index, dα stands for ( ∂
∂x1

)α1 · · · ( ∂
∂xd

)αd and cα ∈ Fδ. The
principal symbol of D is then

σ(D) =
∑
|α|=k

cαξ
α (3)

It is well-known that σ : Dkλ,µ → Skδ intertwines the actions of Vect(V ) on
these spaces :

σ ◦ L = L ◦ σ.
Moreover, its kernel is by definition Dk−1

λ,µ . The module (Sδ, L) is then the

graded module associated to (Dλ,µ,L).

2.3. Equivariant quantizations and symbol maps. Let g be a subal-
gebra of Vect(V ). A g-equivariant symbol map is a g-module isomorphism

σg : Dλ,µ → Sδ
that induces the identity on the associated graded module. Explicitly, this
latter requirement means that

D ∈ Dkλ,µ =⇒ σg(D)− σ(D) ∈
⊕
l<k

S lδ.

The inverse map of such an application is named g-equivariant quantization.
Let us quote a first example of equivariant symbol map that will be useful

as we continue. Since V is a vector space, it makes sense to consider constant
and linear vector fields. These vector fields generate the affine subalgebra
Aff of Vect(V ). Now, it is well-known that the total symbol map, which is
also known as the standard ordering,

σAff : Dλ,µ → Sδ :
∑
|α|≤k

cαd
α 7→

∑
|α|≤k

cαξ
α

is an isomorphism of Aff-representations.
Remark : We can endow Sδ with the module structure that turns σAff into
a module isomorphism. This is done by considering the representation

σAff ◦ Lλ,µ ◦ (σAff)−1,

which we still denote Lλ,µ or simply L. The comparison of spaces of differen-
tial operators and tensor fields as modules over a given subalgebra of vector
fields becomes the comparison of the modules (Sδ, L) and (Sδ,L), provided
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one keeps in mind that two parameters, namely λ and µ, are attached to
the second one.

2.4. Equivariance algebras. In [2] and [10], the authors considered the
problem of equivariant quantization with respect to the subalgebras of vector
fields generated by infinitesimal projective (or conformal) transformations,
over a manifold endowed with a flat projective (or conformal) structure.
Both algebras are realized over suitable charts as subalgebras of polynomial
vector fields. They are graded by the degree of polynomials and of finite
dimension. They are moreover maximal in the set of proper subalgebras
of the algebra of polynomial vector fields. In this sense, they represent a
maximal set of equivariance conditions that one can impose to a quantization
procedure. In [1], we determined all the graded, finite-dimensional maximal
proper subalgebras of polynomial vector fields over a vector space V (real
or complex). We proved that these subalgebras are the Irreducible Filtered
Finite-dimensional Transitive Lie algebras, listed by Kobayashi and Nagano
in [7]. The most important properties of these algebras are the following :

• They are simple.
• Their grading contains exactly three terms :

g = g−1 ⊕ g0 ⊕ g1.

• g0 is reductive : one has

g0 = h0 ⊕KE ,

where h0 is the semisimple part of g0 and where the Euler element
E spans a one-dimensional center.
• gp is the eigenspace of eigenvalue p of ad(E).

It is worth noticing that in [7], the authors listed simple matrix algebras
together with their gradings. But in [8], they described a standard procedure
to view these algebras as subalgebras of polynomial vector fields over the
vector space V = g−1. Namely, if we denote by Xh the vector field over g−1

which corresponds to h ∈ g,
Xh
x = −h ∀h ∈ g−1

Xh
x = −[h, x] ∀h ∈ g0

Xh
x = −1

2 [[h, x], x] ∀h ∈ g1

(4)

In [1], we proved that the subalgebra of vector fields obtained in this way is a
maximal proper subalgebra, provided it meets the additional requirement :

• When the base field is R, the representation g−1 of g0 has no complex
structure.

In the present paper, we will compare the modules (Sδ, L) and (Sδ,L) over
the base space V = g−1.
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3. Casimir operators

In [2], the computation of the Casimir operator of the space of symbols
was based on the knowledge of explicit formulas for the action of generators
of the conformal algebra . From now on, we will consider an IFFT-algebra
g realized as a maximal proper subalgebra of vector fields over g−1. We will
derive a general formula for the spectrum of the Casimir operator of the
space of symbols, based on the analysis of finite-dimensional representations
of h0. We will denote by B the Killing form of g, set d = dim(g−1) and
denote by B0 the Killing form of h0.

3.1. Choice of a basis. Let us first describe suitable bases of g in order to
simplify the computation of the Casimir operators.

Proposition 1. Let (ei) (i = 1, . . . , d) denote a basis of g−1 and (hj) (j =
1, . . . ,dim(h0)) a basis of h0. There exist unique bases (εi) and (h∗j ) of g1

and h0 respectively such that the bases (ei, E , hj , εi) and (εi, 1
2dE , h

∗
j , ei) of g

are dual to each other with respect to B.
Moreover, one has ∑

i

[ei, ε
i] = −1

2
E . (5)

Proof. The existence and uniqueness of the basis (εi) in g1 such thatB(ei, ε
j) =

δi,j follows from the relations (proved in [7])

B(g−1 ⊕ g1, g0) = B(g−1, g−1) = B(g1, g1) = 0.

But h0 and KE are orthogonal to each other too. It is sufficient to note that
h0 is equal to its derived ideal and that

B(E , [x0, y0]) = B([E , x0], y0) = 0, ∀x0, y0 ∈ h0.

This ensures the existence and uniqueness of the basis (h∗j ) in h0.
Finally, for every x0 ∈ g0, we have

B(x0, E) = tr(ad(x0)|g1)− tr(ad(x0)|g−1
)

=
∑
i

B(ei, [x0, ε
i])−

∑
i

B(εi, [x0, ei]) = −2B(x0,
∑
i

[ei, ε
i])

The second relation shows that B(E , E) = 2d, while the third one proves (5).
�

3.2. The cocycle γ. Since the Lie derivatives Lλ,µX and LX coincide for
every X in the affine algebra, the obstuctions to build a g-equivariant quan-
tization come from g1. They are best seen in the difference of the Casimir
operators on differential operators and symbols. As we continue, we will
denote Cδ the Casimir operator of (Sδ, L) and by Cλ,µ the Casimir operator

of (Sδ,Lλ,µ). The following maps will also play an important role :

γ : g→ gl(Sδ) : X 7→ LX − LX ,
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and

NC : Sδ → Sδ : P 7→ 2
∑
i

γ(εi) ◦ LeiP.

Let us analyse their most important properties.
Proposition 2. The map γ has the following properties

• It is a Chevalley-Eilenberg cocycle with values in the representation
(gl(Sδ), L′) of g, where

L′X : gl(Sδ)→ gl(Sδ) : T 7→ LX ◦ T − T ◦ LX .

• Its restriction to g−1 ⊕ g0 vanishes.
• For every X in g1 and every k ∈ N, γ(X) : Skδ → S

k−1
δ is a differ-

ential operator of order zero with constant coefficients.

Proof. The first statement is a direct consequence of the Jacobi identity for

Lλµ. For the second one, we recall that Lλ,µX and LX coincide for every X
in the affine algebra, while the third one is the result of a straightforward
computation. �

The next proposition shows the link between the Casimir operators.

Proposition 3. The Casimir operators Cλ,µ and Cδ are related by the for-
mula

Cλ,µ = Cδ +NC .

Proof. Using the notation of Proposition 1, the Casimir operator Cλ,µ can
be rewritten as follows:

Cλ,µ =
∑
i

(Lei ◦ Lεi + Lεi ◦ Lei) +
1

2d
(LE)2 +

∑
j

Lhj ◦ Lh∗j

= 2
∑
i

Lεi ◦ Lei + L∑
i[ei,ε

i] +
1

2d
(LE)2 +

∑
j

Lhj ◦ Lh∗j .

The conclusion is then a direct consequence of the vanishing of γ on g−1 ⊕ g0.
�

Let us end this section by stating some properties of NC .
Proposition 4. For every k ∈ N, the map NC : Skδ → S

k−1
δ is a differential

operator of order one with constant coefficients. Moreover, for every X ∈
g−1 ⊕ g0, we have

LX ◦NC = NC ◦ LX .

Proof. The first statement is a corollary of Proposition 2 while the second
one is a consequence of Proposition 3. �
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3.3. Spectrum of Cδ. We will now compute the spectrum of the Casimir
operator on the space of symbols. We first recall that the Lie derivative of
a symbol P in the direction of a vector field X writes

LXP = X · P − ρ(
∂

∂x
X)P (6)

where ρ is the natural representation of gl(g−1) on the fibre of the space of
symbols and ∂

∂xX is the Jacobian matrix of X.
Note that, in view of formula (4), the map

− ∂

∂x
: g0 → gl(g−1) : X 7→ − ∂

∂x
X

is just the (matrix realization of the) adjoint action of g0 on g−1. As we
continue, we will denote by ρk the natural extension of the adjoint represen-
tation of g0 on the fibre Skg−1 ⊗∆δ(g−1) of Skδ .

It is also noteworthy that we have ad(h0) ⊂ sl(g−1), since h0 is semisimple.
Therefore, as a representation of h0, Skg−1⊗∆δ(g−1) is isomorphic to Skg−1.
Now we can come to the first result.

Proposition 5. For every P ∈ Skδ , one has

CδP =
1

2d
(dδ − k)(d(δ − 1)− k)P +

dim(h0)∑
j=1

ρk(hj)ρ
k(h∗j )P. (7)

Proof. As in Proposition 3, we write

Cδ =
∑
i

Lεi ◦ Lei −
1

2
LE +

1

2d
(LE)

2 +
∑
j

Lhj ◦ Lh∗j .

The operator Cδ commutes with the action of g−1. It is therefore a differ-
ential operator with constant coefficients. Hence we only need to sum the
constant terms in the right-hand side of the last formula. In view of for-
mula (6) of L, it is clear that the Lie derivatives with respect to a quadratic
vector field do not contribute to such terms. Furthermore we have

LEP =
∑
i

xi
∂

∂xi
P + (dδ − k)P (8)

and

LhjP =
∑
i

(hj)
i ∂

∂xi
P + ρk(hj)P.

Hence the result. �

In order to state the main theorem, we introduce a few more notations.
From now on to the end of this Section, for each vector space (resp. Lie
algebra) E, we will denote by EC the complexified vector space (resp. Lie
algebra) E ⊗R C. We will set

Ẽ =

{
E if the base field K is C,
EC if K = R.
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Furthermore, we fix a Cartan subalgebra C in h̃0, a root system Λ, a simple
root system ΛS . Finally, let us denote by ρS half the sum of the positive

roots and by (·, ·) the scalar product induced by the extension of B0 to h̃0

on the real vector space spanned by the roots.
If E is an irreducible module over h0, then either Ẽ is irreducible as a

complex representation of h̃0 and we denote by µE its highest weight or E
admits a complex structure as a module over h0. In this latter case, we set

µE to be the highest weight of E as a complex representation of h̃0. Recall
that the latter case never occurs when E is taken to be g−1.

Finally, as a representation of h0, Skg−1 ⊗ ∆δ(g−1) is decomposed as a
sum of irreducible representations, say

Skg−1 ⊗∆δ(g−1) = ⊕nk
p=1Ik,p,

and for each irreducible representation Ik,p we denote by Ek,p the corre-
sponding space of sections, that is

Ek,p = Γ(Ik,p).

We are now in position to present the main result.

Theorem 6. Let g be an IFFT-algebra such that h̃0 is simple. Then the
Casimir operator Cδ is diagonalizable.

Indeed, for every k ∈ N, the restriction of Cδ to Ek,p is equal to

1

2d
(dδ − k)(d(δ − 1)− k)

+
dim(h0)

2(µg−1 , µg−1 + 2ρS)d+ dim(h0)
(µIk,p , µIk,p + 2ρS) (9)

times the identity of Ek,p.

Proof. Let us assume first that K = C and consider an irreducible submodule
Ik,p. Using Proposition 5, we only have to compute the operator

dim(h0)∑
j=1

ρk(hj)ρ
k(h∗j )

on Ik,p. Under the assumption that h0 be simple, there exists l ∈ C \ {0}
such that

B|h0 = lB0. (10)

Then we consider the bases (fj) and (f∗j ) of h0 defined by fj = hj and
f∗j = lh∗j . These bases are dual with respect to B0 and so we have

dim(h0)∑
j=1

ρk(hj)ρ
k(h∗j ) =

1

l
Ch0,Ik,p ,
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where Ch0,Ik,p is the Casimir operator of the representation Ik,p of h0. More-
over, it is well-known that

Ch0,Ik,p = (µIk,p , µIk,p + 2ρS) (11)

times the identity (see for instance [6, p. 122]).
In order to compute l, we recall that g−1 and g1 are dual representations

of h0. Then, for all x, y ∈ h0, we have

B|h0(x, y) = 2tr(ad(x)|g−1
ad(y)|g−1

) + tr(ad(x)|h0ad(y)|h0)

= 2Bρ1(x, y) +B0(x, y),

where Bρ1 is the bilinear form associated to the representation g−1 of h0.
The latter formula also writes

Bρ1 =
l − 1

2
B0.

Note that l 6= 1 because Bρ1 is non-singular since ρ1 is not zero (see [5,
p. 143]). Then we look at the Casimir operator Ch0,g−1 of the representation
g−1. We have, as above

Ch0,g−1 = (µg−1 , µg−1 + 2ρS)

times the identity of g−1. But the bases (fj) and ( 2
l−1f

∗
j ) are dual with

respect to Bρ1 and then

tr(Ch0,g−1) = d(µg−1 , µg−1 + 2ρS)
= tr(

∑
j ρ

1(fj)ρ
1(f∗j ))

= l−1
2

∑
j Bρ1(fj ,

2
l−1f

∗
j ) = l−1

2 dim(h0).

Hence the result over the field of complex numbers.
Let us now handle the case K = R. We first remark that Formula (10)

still holds — with l ∈ R, this time — since h0 has no complex structure.
Now, let us adapt Formula (11). If ICk,p is a simple representation of hC0 , its
Casimir operator is the C-linear extension of the Casimir operator of Ik,p,

since the Killing form of hC0 is just the extension of B0. The Casimir operator
of ICk,p is then the real multiple of the identity given by Formula (11). If ICk,p
is reducible, then Ik,p admits a complex structure and becomes a simple

complex representation of hC0 . We then conclude using the same arguments.
�

The eigenvalue formula (9) is easily shown to coincide, when g is taken
to be sl(n+ 1,R), with the formula given in [11, Prop. 2].

4. Building equivariant quantizations

Throughout this Section, we assume that h̃0 is simple, in order to apply
Theorem 6. We will denote by αk,p the eigenvalue of Cδ on Ek,p.
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4.1. The tree-like subspace associated to γ. We identify tensors in
Skg−1 ⊗ ∆δ(g−1) with symbols with constant coefficients. Since for every
X ∈ g1, γ(X) has constant coefficients, we can consider that γ(X) is defined
on Skg−1 ⊗∆δ(g−1).

Lemma 7. Let k ∈ N and F be a submodule of Skg−1 ⊗∆δ(g−1) over h0.
Then γ(g1)(F ) is a submodule of Sk−1g−1 ⊗∆δ(g−1) over h0.

Proof. It is easy to see that the cocycle relation for γ implies

LY ◦ γ(X)P = γ(X) ◦ LY P + γ([Y,X])P ∈ γ(g1)F

for every Y ∈ g0, X ∈ g1 and P ∈ F . We conclude by noticing that on the
subspace of symbols with constant coefficients, L reduces to ρk. �

We define the tree-like subspace associated to γ, starting at an irreducible
submodule Ik,p :

Tγ(Ik,p) =
⊕
l∈N
T lγ (Ik,p),

where T 0
γ (Ik,p) = Ik,p and T l+1

γ (Ik,p) = γ(g1)(T lγ (Ik,p)) for all l ∈ N. The

spaces T lγ (Ek,p) are defined in the same way.
Recall that the module structure defined by L is related to two parameters

λ and µ and that their difference δ is called shift. As one would expect, the
possibility of building equivariant quantization depends on the values of λ
and µ. We will say that a couple of parameters (λ, µ) is critical if there exist
k, p such that the eigenvalue αk,p belongs to the spectrum of the restriction

of Cδ to
⊕

l≥1 T lγ (Ek,p). In the same way, we will say that a shift value δ is

critical if there exists a value of λ such that (λ, µ) is critical in the previous
sense.

The following straightforward lemmas show the link between the existence
of a g-equivariant quantization and the last definition.

Lemma 8. Let Ik,p be an irreducible submodule of Skg−1 ⊗ ∆δ(g−1) and
let g∗−1 ⊗ Ik,p denote the subspace of Ek,p made up of sections with linear
coefficients. Then

NC(g
∗
−1 ⊗ Ik,p) = γ(g1)(Ik,p).

Proof. In the basis (ei) of g−1 chosen in Proposition 1, Lei takes the local

form ∂
∂xi

. It then follows that

NC(
∑
l,m

almx
mul) = 2

∑
l,m

almγ(εm)ul,

for all alm ∈ K and ul ∈ Ik,p. �

In a similar fashion, we have

Lemma 9. For all u ∈ Ek,p, NC(u) ∈ γ(g1)(Ek,p).

Theorem 10. If (λ, µ) is not critical, then there exists a g-equivariant quan-
tization.
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Proof. The proof machinery goes as in [2]. We give it for the sake of com-
pleteness.

Let P ∈ Ek,p. We first prove that there exists a unique P̂ ∈ Tγ(Ek,p)

such that P is the principal symbol of P̂ and that P̂ is an eigenvector of Cλµ
associated to the eigenvalue αk,p. For all R ∈ Sδ, write Rl the projection

of R onto S lδ. With these notations, the equation CλµP̂ = αk,pP̂ can be
rewritten : {

CδP = αk,pP

(Cδ − αk,pid)P̂l = NCP̂l+1
(12)

where the last equation must be satisfied for all l < k. The existence and the
properties of the correspondence P 7→ P̂ follow from the observation that the
latter system is triangular and admits a unique solution. Indeed, the right
hand side of the equations involving NC always belongs to

⊕
l≥1 T lγ (Ek,p)

and the restriction of Cδ − αk,pid to this space is non-singular.
Now, let Q denote the linear extension of this correspondence. It remains

to prove that it is equivariant with respect to g. It suffices to check that

LX ◦ Q(P ) = Q ◦ LX(P ),

for all X ∈ g, all k ∈ N and all eigenvectors P ∈ Skδ of Cδ associated to
any eigenvalue αk,p. But both sides of this condition are eigenvectors of
Cλµ associated to the same eigenvalue αk,p. Moreover, they have the same
principal symbol: LX(P ). Since Ek,p and Tγ(Ek,p) are respectively closed
under LX and LX , both sides belong to the latter tree. The first part of the
proof ensures that they coincide. �

5. Examples

We will now apply the method described in the previous section to two
particular algebras. The treatment will be done in a concurrent way. Through-
out this Section, g denotes one of the algebras O(n) and S(n) defined below.

We will significantly refine Theorem 10 by proving that 0 is never a critical
shift value and obtaining the uniqueness of the quantization.

5.1. Orthogonal and Symplectic algebras. From now on, we assume
that n is an integer greater than 2. It is well-known that the Lie subalge-
bras so(n, n,K) and sp(2n,K) of the general linear algebra gl(2n,K) can be
realized as 3-graded algebras. These are described in [7, pp. 893-894].

For the constructions below to be self-contained, we only need to recall
that so(n, n,K) is written

O(n) = O
(n)
−1 ⊕O

(n)
0 ⊕O

(n)
1 ,

where O
(n)
−1 = ∧2Kn, O

(n)
1 = ∧2Kn∗ and O

(n)
0 = gl(n,K). For all A ∈ O

(n)
0

and h ∈ O
(n)
−1 ⊕O

(n)
1 ,

[A, h] = ρ(A)h,
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where ρ is the natural representation of O
(n)
0 on O

(n)
−1 ⊕ O

(n)
1 . The Euler

element is −1
2 id ∈ gl(n,K). We will refer to O(n) as the orthogonal algebra.

Similarly, sp(2n,K) is written

S(n) = S
(n)
−1 ⊕S

(n)
0 ⊕S

(n)
1 ,

where S
(n)
−1 = S2Kn, S

(n)
1 = S2Kn∗ and S

(n)
0 = gl(n,K). The same state-

ments about the bracket and Euler element hold. We will refer to this
algebra as the symplectic algebra.

5.2. Casimir operator eigenvalues. In the examples under considera-

tion, the subalgebra h0 is isomorphic to sl(n,K) and h̃0 = sl(n,C) is ob-
viously simple. The data introduced to state Theorem 6 are classical. Let
us denote by d(n,K) the matrix subalgebra of diagonal matrices of gl(n,K)
and Dj ∈ d(n,K), (j = 1, . . . , n− 1), as the diagonal matrix

diag(0, . . . , 0,
(j)

1 , 0, . . . , 0,−1).

These diagonal matrices generate the Cartan subalgebra sl(n,K) ∩ d(n,K)
of sl(n,K). In its dual space, we define δj by δj(Di) = δij for all i, j ∈
{1, . . . , n − 1}. As it is common, we set δn = −

∑n−1
i=1 δi as well. Then, a

simple root system of sl(n,K) is given by the δi−δi+1, (i = 1, . . . , n−1) and
ρS =

∑
i(n − i)δi. The Killing form B0 of sl(n,K) is given by B0(A,B) =

2n tr(AB) for all A,B ∈ sl(n,K). The induced scalar product satisfies

(δi, δj) =
1

2n2
(nδij − 1) and (δi, 2ρS) =

n− 2i+ 1

2n
, (13)

for all i = 1, . . . , n.
Now, let K = C. The decomposition of Skg−1 into irreducible submodules

over h0 is given in [4]. These submodules may be generated by the action of
real matrices on their (real) highest weight. Therefore, these results can be
used when K = R as well. As it is well-known, irreducible submodules can
be conveniently indexed by Ferrers diagrams, which in turn can be denoted
by elements of Nn. We will respectively denote by (5, 5, 2, 2) and (6, 4, 2, 2)
the Ferrers diagrams given in Figure 1. They admit 5(δ1 + δ2) + 2(δ3 + δ4)
(resp. 6δ1 + 4δ2 + 2(δ3 + δ4)) as highest weight.

Figure 1. Ferrers diagrams of irreducible submodules of

SkO
(n)
−1 and SkS

(n)
−1 (n ≥ 4).
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Theorem 5.2.11 in [4] states that SkO
(n)
−1 ⊗ ∆δ(O

(n)
−1 ) ∼= SkO

(n)
−1 splits as

a sum of one copy of each irreducible submodule of weight
∑n

i=1 µiδi such
that

(1) µ1 ≥ · · · ≥ µn ≥ 0, (µ is dominant nonnegative),
(2)

∑
i µi = 2k,

(3) µ2i−1 = µ2i, ∀i ∈ {1, . . . , bn/2c},
(4) µn = 0 if n is odd.

Theorem 5.2.9 ibidem states that SkS
(n)
−1 ⊗ ∆δ(S

(n)
−1 ) ∼= SkS

(n)
−1 splits as a

sum of one copy of each irreducible submodule of weight
∑n

i=1 µiδi such that

(1) µ1 ≥ · · · ≥ µn ≥ 0, (µ is dominant nonnegative),
(2)

∑
i µi = 2k,

(3) µi ∈ 2N, ∀i ∈ {1, . . . , n− 1}.
Let us compute explicitly the value of Expression (9). For all submod-

ules R of O(n) or S(n) with highest weight µR described by a Ferrers dia-
gram (k1, . . . , kn), Formula (13) shows that

(µR, µR + 2ρS) =
1

2n2

n∑
i,j=1

(kikj(nδij − 1) + 2ki(n− j)(nδij − 1)). (14)

In the orthogonal case, d = n(n−1)
2 and the highest weight of g−1 = O

(n)
−1 is

δ1 + δ2. Let R now denote an irreducible submodule of SkO
(n)
−1 associated to

a Ferrers diagram ~k = (k1, . . . , kn). A direct computation using (9) and (14)

shows that the eigenvalue of Cδ associated to R⊗∆δ(O
(n)
−1 ) equals

αo(~k) =
n(n− 1)

4
δ2 − (k +

n(n− 1)

4
)δ +

n

n− 1
k +

∑n
i=1 ki(ki − 2i)

4(n− 1)
. (15)

In the symplectic case, d = n(n+1)
2 and the highest weight of g−1 = S

(n)
−1

is 2δ1. Let R now denote an irreducible submodule of SkS
(n)
−1 associated

to a Ferrers diagram (k1, . . . , kn). Then the eigenvalue of Cδ associated to

R⊗∆δ(O
(n)
−1 ) equals

αs(~k) =
n(n+ 1)

4
δ2 − (k +

n(n+ 1)

4
)δ + k +

∑n
i=1 ki(ki − 2i)

4(n+ 1)
. (16)

5.3. Another tree. In both symplectic and orthogonal cases, it is easy
to check that the difference of two eigenvalues corresponding to different
degrees k cannot be identically zero. Indeed, such a difference is a linear
expression in δ with rational coefficients. Thus there exist infinitely many
values of the shift for which a quantization exists.

We will now develop two important refinements. First, we will determine
a set CV that contains the critical shift values and we will show that this set
does not contain zero in both symplectic and orthogonal cases. Then, given
any value of the shift outside CV , we will prove that the only equivariant
quantization is the one we have built.
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In order to prove that 0 is not critical, it is unfortunately not sufficient to
check all the eigenvalues by a straight inspection. For instance, the eigen-
values associated to diagrams (6, 2, 2, 2) and (6, 4) are equal when n = 5 in
the symplectic case. But it is clear from Equation (12) that only some of
those equalities can actually prevent the quantization from existing.

Let I ⊂ Skg−1⊗∆δ(g−1) be an irreducible submodule over h0. We define

a bigger tree than Tγ(I) as follows. Let T̃ 1(I) be the sum of all irreducible

submodules Jp in Sk−1g−1 ⊗∆δ(g−1) that are isomorphic to an irreducible

submodule of g∗−1⊗I. Define T̃ 2(I) =
⊕

(p) T̃ 1(Jp) and continue recursively.

We write
T̃ (I) = I ⊕

⊕
k≥1

T̃ k(I).

Consider now the natural representation of h0 on g∗−1⊗I. It is isomorphic to
the representation defined by the Lie derivative in the direction of (linear)
vector fields of h0 on the space of sections valued in I with linear coefficients.
Lemma 8 and Proposition 4 then show that for all λ, Tγ(I) is indeed a subset

of T̃ (I).
It is customary to order the Ferrers diagrams as follows:

~k ≤ ~l ≡ (ki ≤ li, ∀i ≤ n)

and of course
~k < ~l ≡ (k ≤ l and k 6= l).

Then we can describe T̃ (I) in the examples under consideration.

Lemma 11. Let K ⊂ Skg−1⊗∆δ(g−1) be an irreducible submodule over h0

whose type is given by the Ferrers diagram ~k. If an irreducible submodule

L ⊂ Slg−1 ⊗∆δ(g−1) with type ~l, (l < k) is in T̃ (K) then ~l < ~k.

Proof. It suffices to determine the diagrams occurring in the decomposition
of g∗−1 ⊗ K into irreducible components using Littlewood-Richardson rule
(see for instance [3, pp. 455-456]).

Let us detail the proof in the orthogonal case, for which g∗−1 is represented
by a column of height n − 2 and width 1. The irreducible components of
K ⊗ g∗−1 are then associated to diagrams made up by adding one box to
n− 2 rows of the diagram associated to K.

Then, one needs to know which of these new diagrams represent irre-
ducible components isomorphic to one occurring in the decomposition of
Sk−1g−1. But the latter admit diagrams with 2(k − 1) boxes while the for-
mer have 2k + n− 2. In order to describe isomorphic sl(n,K) submodules,
they should differ by a column of height n and width 1 on the left. The dia-
gram with 2k−n+2 boxes may thus only be isomorphic to a diagram smaller
than the original diagram of K. The conclusion follows by induction. �
Theorem 12. All critical shift values belong to the set

CV = { n

n+ 1
+

∑n
i=1(ki − li)(ki − li + 2i)

4(n− 1)(k − l)
: ~k > ~l}
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in the orthogonal case and

CV = {1 +

∑n
i=1(ki − li)(ki − li + 2i)

4(n+ 1)(k − l)
: ~k > ~l}

in the symplectic case, where ~k and ~l describe all the admissible Ferrers dia-
grams. In particular, they are greater than 0 and there exists a g-equivariant
quantization into operators that preserve the weight of their arguments.

Proof. Assume that two eigenvalues associated to K and L taken as above
are equal. For instance, in the orthogonal case, we have, using Equation (15)

αo(~k)− αo(~l) = 0⇔ δ =
n

n− 1
+

∑n
i=1(ki − li)(ki + li − 2i)

4(n− 1)(k − l)
,

hence the description of the set CV . The right-hand side of the last equation
is not less than

n

n− 1
+

∑
i(k

2
i − l2i )

4(n− 1)(k − l)
− 2n

∑
i(ki − li)

4(n− 1)(k − l)
,

which is greater than 0. Indeed, the last term sums up to the first and there
exists an index i such that ki > li.

The proof goes the same way in the symplectic case. Hence the result. �

Let us now turn to the uniqueness problem. Here we restrict ourselves to
the real case in order to apply the results of [9].

Lemma 13. Assume that δ is not in the set CV of Theorem 12 and let
k, l ∈ N such that l < k. Then there exists no (non-trivial) g-equivariant
map from (Skδ , L) to (S lδ, L).

Proof. Assume that T is such a map. As proved in [9, Lemma 7.1], the
equivariance of T with respect to g−1 (i.e. every constant vector field) and
E implies that it is a differential operator with constant coefficients. We can
thus write

T =
R∑
r=0

Tr,

with Tr an homogeneous differential operator of order r.
In view of (8), [LE , T ] = 0 leads furthermore to

R∑
r=0

(k − l − r)Tr = 0

and, therefore, T = Tk−l.
Let Ik,p be an irreducible submodule of Skg−1⊗∆δ(g−1) over h0, described

by ~ı. We know that T is entirely defined by its values on the sections in
Γ(Ik,p) with polynomial coefficients of degree k − l. We recall that the Lie
derivative in the direction of vector fields in h0 on those has no effect on the
“density part” and corresponds to the natural representation of h0 on

Sk−lg∗−1 ⊗ Ik,p. (17)
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The image of such sections through the application of T is made of sections
with constant coefficients. This image corresponds to a submodule F of
Sl(g−1) ⊗ ∆δ(g−1) over h0. The irreducible components of F necessarily
appear in the decomposition of (17) and thus the one of ⊗k−lg∗−1 ⊗ Ik,p.

Our last argument goes as in the proof of Lemma 11. Let ~f describe a

submodule of F isomorphic to a submodule L of ⊗k−lg∗−1⊗Ik,p. Let ~l be the
diagram describing L. On the one hand, in application of the Littlewood-

Richardson rule, in the symplectic (resp. orthogonal) case ~l is obtained by
adding 2(k − l)(n− 1) (resp. (k − l)(n− 2)) boxes to ~ı, with no more than

2(k − l) (resp. (k − l)) boxes in a single row. On the other hand, since ~f
contains exactly 2l boxes, it is obtained by removing 2(k− l) (resp. (k− l))
columns on the left of ~l.

Therefore, ~f <~ı. But the invariance of T ensures that the values of Cδ
on F and Ik,p coincide, which contradicts the hypothesis on the shift. �

Corollary 14. If the shift is not in the set CV of theorem 12 then the
g-equivariant quantization is unique.
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