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Abstract

The Lie algebra of vector fields Vect(M) of a smooth manifold M acts
by Lie derivatives on the space Dpλ,µ of differential operators of order ≤ p
that map fields of densities of weight −λ on fields of densities of weight
−µ. In this paper, we determine all the intertwining operators between
these modules, when DimM ≥ 2.

1 Introduction

Let M be a smooth, connected, Hausdorff, second countable manifold of dimen-
sion m.

We denote by ∆λ(M) the vector bundle of scalar densities of weight λ ∈ R,
and by Fλ the space of smooth sections of ∆−λ(M). We refer to [2] and [3] for
the definitions. Let us recall that for each chart (U, (x1, . . . , xm)) of M , F ∈ Fλ
and X ∈ Vect(M), the restriction of F over U is of the form

F |U = f |dx1 ∧ · · · ∧ dxm|−λ,

where f : U → R is smooth. The corresponding local expression of LλXF is then

LλXF |U = (X.f − λtr(DxX)f) |dx1 ∧ · · · ∧ dxm|−λ, (1)

where X.f is the derivation of f in the direction of X, tr denotes the trace
and DxX is the differential of the local expression of X. The Lie derivative on
differential operators is given by the commutator : for every differential operator
D : Fλ → Fµ and X ∈ Vect(M),

Lλ,µX D = LµX ◦D −D ◦ L
λ
X (2)

is a differential operator of order at most that of D. Equipped with (2), the
space of differential operators of order ≤ p from Fλ into Fµ is then a module
over Vect(M), which we will denote by Dpλ,µ.
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In this paper, assuming that DimM > 1, we compute all the linear inter-
twining operators

T : Dpλ1,µ1
→ Dqλ2,µ2

,

that is, the operators T such that

Lλ2,µ2

X (T (D)) = T (Lλ1,µ1

X D),

for every D ∈ Dpλ1,µ1
and every X ∈ Vect(M). This problem is a generalization

of the question treated in [2] and [3] and we recover the results of these papers in
the case λ1 = µ1 and λ2 = µ2. Our method is as follows : We first determine the
conditions of existence of non local intertwining operators (i.e. operators that do
not preserve the support of their arguments) : these are defined on the modules
D0
λ,λ−1 and Dp0,−1. We describe them all and then we confine ourselves to the

study of local intertwining operators. It is well-known that the restrictions of
such a T over the relatively compact open subsets ofM are differential operators.
We then show that if the difference of shifts s = (λ2 − µ2) − (λ1 − µ1) is not
equal to zero or one (in the case DimM = 2), then T = 0.

In the case s = 0, we show that T is filtered with respect to p, i.e. that
if r ≤ p, then T maps Drλ1,µ1

into Drλ2,µ2
. We also show that T is completely

determined by its restriction to D2
λ1,µ1

. We then find all the solutions for p = 2,
and those that extend to the higher order differential operators.

In the case s = 1, we present a fundamental example of intertwining operator
defined on D0

λ,λ with values in D1
0,−1. Then we prove that the operators of this

case are the compositions of this fundamental example with the intertwining
operators of the case s = 0.

2 Polynomials associated to differential opera-
tors

We recall here how one can associate a polynomial to a differential opera-
tor. We refer to [3] for the details. In local coordinates on M and simulta-
neous trivializations, any differential operator between the smooth sections of
two vector bundles E1 and E2 over M has a local expression of type

D(f)x =
∑
|α|≤p

Aα,x(Dα
x f),

where α = (α1, . . . , αm) ∈ Nm and Dα
x f denotes the partial derivative of order α

Dα1

x1 . . . Dαm

xm f

of the local expression f of the argument of D. Moreover the smooth map
x 7→ Aα,x takes values in the space of linear mappings between the typical
fibers of the bundles.
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We define the associated polynomial in the following way :

P (ξ; f)x =
∑
|α|≤p

Aα,x(f)ξα

where ξ1, . . . , ξm are the components of ξ ∈ T ∗x M in the basis dx1, . . . , dxm and

ξα = ξα
1

1 . . . ξα
m

m .

This construction extends in an obvious way to multidifferential operators.
We will now give two examples that will be useful in further computations :

• The polynomial associated to the Lie derivative acting on Fλ :

Lλ : Vect(M)×Fλ → Fλ : (X,F ) 7→ LλX F

is
PLλ(θ, ξ;X, f) = (〈X, ξ〉 − λ〈X, θ〉)f,

where θ and ξ are associated to X and f respectively.

• The polynomial associated to the Lie derivative acting on Dpλ,µ :

Lλ,µ : Vect(M)×Dpλ,µ → D
p
λ,µ : (X,D) 7→ Lλ,µX D

is

PLλ,µ(θ, η;X,P ) = 〈X, η〉P + λ〈X, θ〉τθP −XτθP
+(λ− µ)〈X, θ〉P

where P = P (ξ) denotes the polynomial associated to D ∈ Dpλ,µ, τθ acts
on P to give the polynomial

τθP (ξ) = P (ξ + θ)− P (ξ)

and where the product XτθP is that of the polynomials ξ 7→ 〈X, ξ〉 and
τθP .

In our computations, we will use the whole polynomial, even if it depends
in general both on the coordinates system and on the chosen trivializations.

Only its part of higher order σD, the symbol of D, is known to have an
intrinsic meaning : It is indeed a smooth section of the fiber bundle

∨pTM ⊗Hom(E1, E2).

In our situation, we have for D in Dpλ,µ

σD ∈ Γ(Ep;µ−λ) = Γ(∨pTM ⊗∆λ−µ(M)).

Moreover, one verifies easily that the following equality holds :

σLλ,µX D = LXσD,

where the Lie derivative on the right-hand side is the classical Lie derivative of
the tensor product.
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3 Non local intertwining operators

In order to treat the question of existence of non local intertwining operators,
we will determine the conditions to have the following property (1) : Given
D ∈ Dpλ,µ and x 6∈ suppD, there exist Xi ∈ Vect(M) and Di ∈ Dpλ,µ such that
x 6∈ suppXi and

D =

n∑
i=1

LXiDi.

In a first step (lemma’s 3.1 and 3.2) we will use the results of [1] to ob-
tain stronger results in most of the cases. Then we will need some topological
lemma’s to determine when the property (1) holds true in the remaining cases.
We recall here two definitions of [1] :

Definition 3.1. Let E be a vector bundle over a manifold M . A family L of
differential operators from Γ(E) into Γ(E) is globally transitive if for every open
subset ω of M and every section s with support in ω, s can be written

s =

k∑
i=1

Lisi, (3)

with Li ∈ L, si ∈ Γ(E) and suppLi, supp si ⊂ ω.

Definition 3.2. A family L of differential operators from Γ(E) into Γ(E) is
locally transitive if each point x of M has a neighborhood Ω such that (3) holds
true for every subset ω of Ω and every s with compact support in ω, the number
of terms in (3) being bounded above independently of s and Ω.

We have the following

Lemma 3.1. The family of Lie derivatives is locally transitive on the fiber
bundle Er;q = ∨rTM ⊗Fq if r 6= 0 or q 6= −1.

Proof. Let x0 be a point of M and (U, (x1, . . . , xm)) be a chart containing x0
whose image is Rm.

Let u be a smooth section of Er;q with compact support in U . We can
consider u of type ϕ⊗ u′0, where

u′0 = Dxi1 ∨ · · · ∨Dxir ,

and ϕ ∈ Fq has compact support in U .
Using a linear change of coordinates, one can rewrite u as ϕ0 u0 where ϕ0 is

a smooth function with compact support in U and

u0 =
∣∣dx1 ∧ · · · ∧ dxm∣∣−q ⊗Dr

x1 .

If there exist smooth functions ϕi, i ∈ {1, . . . ,m} with compact support in
U such that ϕ0 =

∑n
i=1Dxiϕi, and if α has compact support in U such that
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α = 1 on ∪ni=0 suppϕi, then

u = ϕ0 u0 =

n∑
i=1

LαDxi (ϕi u0).

It is well-known from analysis (see for instance [5]) that if ϕ is a smooth func-
tion with compact support in Rm such that

∫
Rm ϕdx = 0, then ϕ =

∑n
i=1Dxiϕi

where ϕi are smooth functions with compact support in Rm.
We have for any smooth function ψ

LxiDxi (ψu0) = (xiDxiψ)u0 − (q + pi)ψ u0,

where pi denotes the number of times Dxi occurs in u0.
If q + pi + 1 6= 0,∫

Rm

[
xiDxiψ − (q + pi)ψ

]
dx = −(q + pi + 1)

∫
Rm

ψ dx

equals
∫
Rm ϕ0 dx for a suitable choice of ψ. Thus

ϕ0 u0 − LαxiDxi (ψ u0) = β u0

where
∫
Rm β dx = 0, hence ϕ0 u0 has the required form.

Here we have p1 = r and pi = 0 for i 6= 1, thus the condition above can be
satisfied if q + 1 6= 0 or r 6= 0.

Remark 3.1. In the construction above, all the vector fields that we use are
at most linear in the coordinates on the support of their arguments.

Lemma 3.2. The family

Lpλ,µ =
{
Lλ,µX : Dpλ,µ → D

p
λ,µ|X ∈ Vect(M)

}
is globally transitive if λ− µ− 1 6= 0 or λ− µ = 1, p 6= 0 and λ 6= 0.

Proof. Using Proposition 3 of [1], we only have to prove that Lpλ,µ is locally

transitive. Let x0 be a point of M and (U, (x1, . . . , xm)) be a chart containing
x0 whose image is Rm. Let D be in Dpλ,µ with compact support in ω ⊂ U . The
symbol of D is an element of Ep;µ−λ.

If µ − λ + 1 6= 0, by the previous lemma, there exist ui ∈ Ep;µ−λ and
Xi ∈ Vect(M) such that suppXi, suppui ⊂ ω and

σD =
∑
i

LXiui.

We then find operators Di with compact support in ω such that ui = σDi
and the order of the operator

D −
∑
i

LXiDi
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is strictly lower than the order of D. An easy induction allows then to conclude.
If λ− µ = 1, we can find in the same way operators Di and vector fields Xi

such that
D −

∑
i

LXiDi = π(ϕ)

where π(ϕ) denotes the operator multiplication by ϕ ∈ Fµ−λ.
Now, if X ∈ Vect(M), we have

Lλ,µX (ϕ⊗Dx1) = LX(ϕ⊗Dx1) + λπ(ϕDx1DxiX
i),

so that π(ϕ) can be written as a finite sum of Lie derivatives acting on operators
of order one (here we have to use vector fields whose components are polynomials
of degree two in the coordinates).

It remains to look for what happens in the cases p = 0 or λ = 0, when
λ − µ − 1 = 0. In both cases, we have to deal with operators of order zero :
the multiplication by an element of F−1. We will now need some topological
lemma’s :

Lemma 3.3. Let C = (Vi | i ∈ N) be a countable and locally finite covering of
M by relatively compact open subsets.

• If M is not compact, there exists an order ψ on C such that for all k ∈ N

Vψ(k) ∩

 ⋃
ψ(i)>ψ(k)

Vψ(i)

 6= ∅. (4)

• If M is compact, there exists an order ψ on C such that (4) holds true for
every V in C except the last one.

Proof. The compact case seems to be well-known but we will present its proof
to fix the notations in order to treat the non compact case. First, we associate
a graph to the problem in a natural way :

The vertices of the graph are the elements of C, and there is an edge between
two vertices V and V ′ if and only if V ∩ V ′ 6= ∅.

Secondly, we determine a tree A in the graph as follows :
We take a vertex as the root and denote it by L0, then we put

Lk =

{
V ∈ G \

⋃
i<k

Li : V is connected by one edge toLk−1

}
.

If V ∈ Lk, there exists at least an element V ′ of Lk−1 and an edge between
V and V ′. To get a tree, we have to suppress some edges in such a way that each
element of the level Lk corresponds to one and only one element in Lk−1. We
put A = ∪∞k=0 Lk. The graph G is connected, since the manifold M is connected
and C is a covering. Hence we have A = G.
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Now let us suppose that M is compact. There exists q ∈ N such that
A = ∪qk=0 Lk. We fix the order on A from the leaves to the root : We construct
the order ψ in such a way that Lq < Lq−1 < · · · < L0. It is then clear by the
definition of the levels Lk that the order ψ fulfills the required property.

If M is not compact, such a construction obviously does not work. We
denote by FB(V ) the set of finite branches starting from V ∈ A (a finite branch
starting from V is a finite connected component of the subtree of A whose root
is V , minus V ). We consider FB(L0). This is a finite tree because each level
contains a finite number of vertices. We fix the order ψ on FB(L0), from the
leaves to the root. In L1, there exists V 6∈ FB(L0), since A is not finite. We go
on with FB(V ) and so on. We construct ψ as

ψ(FB(L0)) < · · · <

{
ψ(FB(V )) : V ∈ Lk \

⋃
i<k

FB(Li)

}
< · · · ,

and we get the required property.

Lemma 3.4. Let C1 = (Ui | i ∈ N) be a locally finite covering of the manifold M
by connected relatively compact open subsets. If M is not compact, there exists
an order on (Ui | i ∈ N) and a covering C2 = (Vi | i ∈ N) such that, for all i ∈ N

• V −i ⊂ Ui,

• Ui 6⊂ ∪k≤i V −k .

If M is compact, there exists an order on (Ui | i ≤ N) and a covering C2 =
(Vi | i ≤ N) such that the first property above holds true for every i ≤ N and the
second one holds true except for N .

Proof. Suppose that M is not compact. The existence of a covering C2 satisfying
the first condition is well-known. We consider the order of lemma 3.3 for this
covering (and modify the order of C1 in the same way). We will now modify the
sets Vi to satisfy the second property : If Ui ⊂ ∪k≤i V −k , there exists m > k such
that Vk∩Vm 6= ∅. Hence, there exists an open subset ω such that ω− ⊂ Vk∩Vm,
then we modify V1, . . . , Vk in V1 \ ω−, . . . , Vk \ ω−. This process stabilizes,
because every element of the covering C2 only intersects a finite number of other
elements, and we get the required property.

The same construction yields the proof of the compact case, but it is not
available for UN .

Lemma 3.5. Let u be an m-form with compact support in a connected open
subset Ω of Rm. There exist vector fields Xi and m-forms ui with compact
support in Ω such that

u =

m∑
i=1

LXi ui

iff
∫
Rm u = 0.
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Proof. By Poincaré’s duality, there exists an (m− 1)-form v with compact sup-
port in Ω such that u = dv iff

∫
Rm u = 0. In this case, we have

u = dv =

m∑
i=1

d
(
fi dx

1 ∧ · · · ı̂ · · · ∧ dxm
)
,

where the functions fi have compact support in Ω. We set

ui = fi dx
1 ∧ · · · ∧ dxm,

and get

u =

m∑
i=1

LDxi ui.

If αi has compact support in Ω and is equal to one on suppui, then

u =

m∑
i=1

LαiDxi ui,

hence the result.

Lemma 3.6. Let u be in F−1 and let x be a point of M \ suppu.

• If M is not compact, there exist vector fields Xi and densities ui such that
x 6∈ suppXi and

u =

m∑
i=1

LXi ui.

• If M is compact, this property holds true if we require in addition that∫
M
u = 0.

Proof. Let (Ui | i ∈ N) be a Palais covering of M by connected and relatively
compact domains of chart and (Vi | i ∈ N) be the covering constructed in
lemma 3.4. For every k ∈ N, there exists ϕk with compact support in Uk,
such that ϕk = 1 in Vk.

If M is not compact, for every v ∈ F−1 and k ∈ N, there exists Fk(v) ∈ F−1,
with compact support in Uk \ (∪i≤k V −i ∪ {x}) such that∫

M

(ϕk v + Fk(v)) = 0.

Then we have

u = u0 =

∞∑
k=1

uk,

where uk = ϕk(u0−
∑k−1
i=1 ui)+Fk(u0−

∑k−1
i=1 ui) can be written, using lemma 3.5

as
m∑
i=1

LXk,i uk,i,
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with suppXk,i ⊂ Uk \ {x}. We get the result by using the fact that (Ui | i ∈ N)
is a Palais covering.

If M is compact, we have a finite covering (Ui | i ≤ N). We can construct in
the same way u1, . . . , uN−1 such that

u−
N−1∑
k=1

uk

has compact support in VN . At this point, we can use lemma 3.5 for this density
if its integral is equal to zero, and this is true since

∫
M
u = 0.

Theorem 3.1. If the manifold M is not compact, then every intertwining op-
erator is local. If the manifold M is compact, then there exist only two non-local
intertwining operators :

Tn`,1 : Dp0,−1 → D0
µ,µ : D 7→ π

(∫
M

D(1)

)
and

Tn`,2 : D0
λ,λ−1 → D0

µ,µ : π(ϕ) 7→ π

(∫
M

ϕ

)
.

Proof. Let D ∈ Dpλ1,µ1
and x 6∈ suppD. By Lemma’s 3.2 and 3.6, there exist

Xi ∈ Vect(M) and Di ∈ Dpλ1,µ1
such that x 6∈ suppXi and D −

∑
i LXiDi =

π(u) ∈ D0
λ1,µ1

. Moreover, we can require that D −
∑
i LXiDi vanishes if M is

not compact or λ1 − µ1 6= 1 or p 6= 0 and λ1 6= 0. Note that in the remaining
cases, π(u) is the part of order zero of D and is independent of the choice of Xi

and Di.
We have, for any intertwining operator T : Dpλ1,µ1

→ Dqλ2,µ2
:

T (D)x = T (π(u))x.

Moreover, for any X ∈ Vect(M) and any y ∈M \ suppu, we have

Lλ2,µ2

X T (π(u))|y = T
(
π
(
L−1X u

))
|y = 0.

Then it is easily seen that T (π(u))x is vanishing if λ2 6= µ2 and there exists
a locally constant function C(x, u) such that T (π(u))x = π(C(x, u)) if λ2 = µ2.

Now for any v ∈ F−1 such that x 6∈ supp v we set

v1 =

(∫
M

u

)
v −

(∫
M

v

)
u.

We have
∫
M
v1 = 0 and x 6∈ supp v1 then(∫

M

u

)
T (π(v))x −

(∫
M

v

)
T (π(u))x = 0,

and there exists a constant C ′ such that C(x, u) = C ′
∫
M
u.
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4 Local intertwining operators

Any local intertwining operator T : Dpλ1,µ1
→ Dqλ2,µ2

is a differential operator.
We can define as in Section 2 the polynomial T associated to T over a chart
(U, (x1, . . . , xm)). This is a polynomial with values in the linear applications
between the spaces of polynomials associated to the elements of Dpλ1,µ1

and

Dqλ2,µ2
.

Definition 4.1. The difference of shifts s of the modules Dpλ1,µ1
and Dqλ2,µ2

is
the real number defined by

s = (λ2 − µ2)− (λ1 − µ1).

If x is a point of U , then T |x belongs to the space

∨TxM ⊕Hom
(
∆λ1−µ1TxM ⊗ ∨≤pTxM,∆λ2−µ2TxM ⊗ ∨≤qTxM

)
.

This space is isomorphic to

SI(TxM) = ∆sTxM ⊗ ∨TxM ⊗Hom
(
∨≤pTxM,∨≤qTxM

)
.

One easily sees that the equivariance condition

Lλ2,µ2

X T (D) = T
(
Lλ1,µ1

X D
)

reads, if
∣∣dx1 ∧ · · · ∧ dxm∣∣λ1−µ1 ⊗ P is associated to D ∈ Dpλ1,µ1

,

(X.T )(η, P ) + 〈X, η〉T (η, P )− 〈X, ξ〉τθT (η, P )
+λ2〈X, θ〉τθT (η, P ) + (λ2 − µ2)〈X, θ〉T (η, P )

= 〈X, η〉T (η + θ, P )− T (η + θ,XτθP )
+λ1〈X, θ〉T (η + θ, τθP ) + (λ1 − µ1)〈X, θ〉T (η + θ, P )

where X.T is obtained by derivation of the coefficients of T in the direction
of the arbitrary vector field X. The terms of degree zero and one in θ of this
equation yield the following

Theorem 4.1. The polynomial associated to any intertwining operator from
Dpλ1,µ1

to Dqλ2,µ2
over every chart (U, (x1, . . . , xm)) has constant coefficients and

is invariant under the natural action of gl(m,R).

Proof. The term of degree zero of the above equation reads X.T = 0. Thus, the
coefficients of T are constant. Hence, setting E = Rm, T belongs to the space

SI(E) = ∆sE ⊗ ∨E ⊗Hom
(
∨≤pE,∨≤qE

)
.

This space is isomorphic as a vector space and as a sl(m,R)-module (but not
as a gl(m,R)-module) to the space of scalar polynomials :

∨E ⊗Hom
(
∨≤pE,∨≤qE

)
.
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One verifies easily that the terms of degree one in θ read

− 〈X, ξ〉θDξT (η, P )− 〈X, η〉θDηT (η, P ) =

− T (η,XθDξP ) + [(λ1 − µ1)− (λ2 − µ2)]〈X, θ〉T (η, P ),

where θDξ denotes the derivation with respect to ξ in the direction of θ. This
may be written

LX⊗θT = 0

where LX⊗θ denotes the natural action of X ⊗ θ ∈ gl(E) on SI(E), hence the
result.

Remarks : (1) It is well known that the symmetric tensors on E are spanned
by tensors of the type xr, x ∈ E. In the sequel, we will express the invariance
conditions with P = xr for some x without loss of generality.
(2) In the sequel, using the isomorphism of the space SI(E) and the space
of scalar polynomials, we will only have to determine the scalar polynomial
T (η, xr)(ξ).

We are now able to give some conditions on the parameters λ1, µ1, λ2, µ2 for
the existence of intertwining operators :

Theorem 4.2. If DimM > 2 and s 6= 0 or DimM = 2 and s is not a positive
integer, then every intertwining operator from Dpλ1,µ1

into Dqλ2,µ2
is vanishing.

Proof. A scalar polynomial T (η, xr)(ξ) is invariant under the natural action of
sl(m,R) if and only if it has type

• Q(〈x, ξ〉, 〈x, η〉, a), if m = 2;

• Q(〈x, ξ〉, 〈x, η〉), if m > 2,

where a is the determinant of the matrix (ξ, η) and Q is a polynomial function.
Hence, T (η, xr)(ξ) has the form

∑
k a

kTk, where Tk is homogeneous of degree
k in the variables (〈x, ξ〉, 〈x, η〉).

We now have to use the invariance equation with the identity matrix of
gl(m,R). This reads∑
i

ξiDξiT (η, xr) +
∑
i

ηiDηiT (η, xr) = [r−m(λ1 − µ1) +m(λ2 − µ2)]T (η, xr).

If DimM > 2, then T (η, xr)(ξ) equals T0 and the equation reads

m[(λ1 − µ1)− (λ2 − µ2)]T = 0.

If DimM = 2, then we have for every k

2kTk = 2[(λ2 − µ2)− (λ1 − µ1)]Tk,

hence the result.
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Remark : When s = 0, the scalar polynomial T (η, xr)(ξ) is invariant under
the natural action of gl(m,R). When DimM = 2 and s is a positive integer, the
scalar polynomial T (η, xr)(ξ) is invariant under the natural action of sl(2,R),
and it is reduced to the monomial as Ts.
In the sequel, we will have to deal with two cases :

• m ≥ 2 and (λ1−µ1) = (λ2−µ2), that we call the gl(m,R)-case or classical
case;

• m = 2 and (λ2 − µ2)− (λ1 − µ1) is a strictly positive integer, that we call
the sl(2,R)-case.

5 The gl(m,R)-case

This is the case that occurs in the problem treated in [3] and [2]. The polynomial
T (η, xr)(ξ) is homogeneous of degree r in (ξ, η), so it is of degree less than or
equal to r in ξ and we have the following

Theorem 5.1. In the gl(m,R)-case, every intertwining operator respects the
filtration of differential operators.

We will now consider the term of order two the equivariance equation. It reads

1

2
〈X, ξ〉(θDξ)

2T (η, xr) +
1

2
〈X, η〉(θDη)2T (η, xr)

=
1

2
T (η,X(θDξ)

2xr) + θDηT (η,XθDξx
r)− λ1〈X, θ〉T (η, θDξx

r)

− (λ1 − µ1)〈X, θ〉θDηT (η, xr) + λ2〈X, θ〉θDξT (η, xr). (5)

The solutions of this equation are actually solutions of the whole equiv-
ariance equation since when DimM ≥ 2, the Lie algebra of vector fields whose
components are polynomials is generated by the vector fields whose components
are polynomials of order at most two.

We set Tr = T (η, xr), u = 〈x, ξ〉 and v = 〈x, η〉, then we use the following
identities

T (η,Xxi) =
1

i+ 1
(XDx)T

(
η, xi+1

)
,

Tr−1
(
η,X(θDξ)

2xr
)

= r〈x, θ〉2XDxTr−1

and
θDηTr (η,XθDξx

r) = 〈x, θ〉θDηXDxTr,

to obtain an equation of the form

〈X, ξ〉Q1 + 〈X, η〉Q2 + 〈X, θ〉Q3 = 0.

We can consider 〈X, ξ〉, 〈X, η〉 and 〈X, θ〉 as independent parameters since
DimM ≥ 2, and this equation is equivalent to the vanishing of the polynomials
Q1, Q2 and Q3 separately.
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So, we get the equations D2
uTr − rDuTr−1 − 2DuDvTr = 0

D2
vTr + rDvTr−1 = 0

(1− λ1 + µ1)DvTr + λ2DuTr − rλ1Tr−1 = 0

corresponding respectively to Q1, Q2 and Q3.

5.1 The injectivity property

The restriction of an intertwining operator defined on Dpλ1,µ1
to Drλ1,µ1

(r ≤ p)
is again an intertwining operator. The aim of this section is to know if an
intertwining operator is completely determined by its restriction to differential
operators of a certain order. We have the following result :

Theorem 5.2. Any intertwining operator is completely determined by its re-
striction to differential operators of order at most two.

Proof. Let r be greater than 3. Let us suppose that Ti = 0,∀i ∈ {0, . . . , r − 1},
and show that Tr = 0. In this situation, the equations become D2

uTr − 2DuDvTr = 0
D2
vTr = 0

(1− λ1 + µ1)DvTr + λ2DuTr = 0.

The second one yields
Tr = vT1 + T2

where T1 et T2 are polynomials independent of the variable v. Then the first
one is equivalent to

D2
uT1 = 0

and
D2
uT2 = 2DuT1.

This implies that T1 is at most linear with respect to u and it is then at
most of degree two in (u, v) and has to vanish since r ≥ 3. The last equation
allows then to conclude in the same way.

We are now able to determine all the local intertwining operators. We will
start by the operators defined on D0

λ1,µ1
, then on D1

λ1,µ1
and so on.

5.2 Operators of order zero

In D ∈ D0
λ1,µ1

, then D is the multiplication by an element of Fµ1−λ1
. Theorems

4.1 and 5.1 imply that the only intertwining operators are multiples of the
identity mapping. We have

T0 : D0
λ1,µ1

→ D0
λ2,µ2

: T0(π(ϕ)) = π(ϕ).

13



5.3 Operators of order one

In general, we can write
T1 = a1u+ a2v.

The coefficients a1 and a2 have to fulfill the following equation :

(1− λ1 + µ1)a2 + λ2a1 − λ1a = 0.

We then get the following solutions

• If λ1 6= 0,

first we have a bijective intertwining operator T1,1 whose local expression
is given by

T1,1(η, x)(ξ) = a1〈x, ξ〉

T1,1(η, 1)(ξ) = a1
λ2
λ1
·

This implies

T1,1
(
π(f) ◦ Lλ1

X

)
= π(f) ◦ Lλ2

X

T1,1(π(f)) =
λ2
λ1
π(f),

which ensures that T1,1 is globally defined.

Secondly we have a conjugation operator T1,2 whose local form is given
by :

T1,2(η, x)(ξ) = a2〈x, η〉

T1,2(η, 1)(ξ) = a2
µ2 − λ2 + 1

λ1
·

This implies

T1,2
(
π(f) ◦ Lλ1

X

)
= π

(
Lµ2−λ2

X f
)

T1,2(π(f)) =
µ2 − λ2 + 1

λ1
π(f),

hence T1,2 is globally defined.

Note that T1,1 is the identity mapping if λ1 = λ2.

• If λ1 = 0,

there is a third solution T1,3 defined by :

T1,3(D) = π(D(1)).

We define T ′1,1 and T ′1,2 which are equal to T1,1 and T1,2 on operators of
order one and vanish on operators of order zero and we have

14



– if λ2 = 0 and µ2 = −1 : T ′1,1, T ′1,2 and T1,3;

– if λ2 = 0 and µ2 6= −1 : T ′1,1 and T1,3;

– if λ2 6= 0 : T1,3 and (λ2 − µ2 − 1)T ′1,1 + λ2T ′1,2.

The solutions in the case (λ1 = 0, λ2 = 0) are the restrictions to operators
of order one of solutions defined for any order. We will discuss them in section
5.5.

5.4 Operators of order two

The most general expression of T2 is given by

T2 = a20 u
2 + a11 uv + a0v

2.

The coefficients must fulfill the following system of equations
(1− λ2 + µ2)a2 + λ2a1 − λ1a = 0
a20 − a11 − a1 = 0
a02 + a2 = 0
2(µ2 − λ2 + 1)a02 − 2λ1a2 + λ2a11 = 0
(µ2 − λ2 + 1)a11 − 2λ1a1 + 2λ2a20 = 0.

First, we have a general solution given by

a20 = λ1(1 + λ1 + µ1)(1 + µ1)
a11 = 2λ1(λ1 − λ2)(1 + µ1)
a02 = −λ1λ2(λ1 − λ2)
a1 = λ1(1 + λ2 + µ2)(1 + µ1)
a2 = λ1λ2(λ1 − λ2)
a = λ2(1 + λ1 + µ1)(1 + µ2).

This implies

T
(
π(f) ◦ Lλ1

X ◦ L
λ1

Y

)
= λ1(1 + λ1 + µ1)(1 + µ1)π(f) ◦ Lλ2

X ◦ L
λ2

Y

+λ1(λ1 − λ2)(1 + µ1)
[
π(f) ◦ Lλ2

[Y,X]

+ π(LXf) ◦ Lλ2

Y + π(LY f) ◦ Lλ2

X

]
−λ1λ2(λ1 − λ2)π(LY LXf)

T
(
π(f) ◦ Lλ1

X

)
= λ1(1 + λ2 + µ2)(1 + µ1)π(f) ◦ Lλ2

X

+λ1λ2(λ1 − λ2)π(LXf)
T (π(f)) = λ2(1 + λ1 + µ1)(1 + µ2)π(f),

which ensures that the intertwining operator is globally defined. This is always
a solution but it vanishes for some values of the parameters. We can say that
this is the unique solution (up to a multiplicative constant) when the system of
equations has rank five. For given values of the parameters (when the system has
rank less than five or in an equivalent way when the general solution vanishes),
there exist additional solutions. These solutions actually extend to higher order
differential operators and we will present them in the next section.
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5.5 Higher order differential operators

Here are the intertwining operators defined on spaces of differential operators
of order greater than two.

5.5.1 The identity mapping

When λ1 = λ2, the identity mapping is obviously an intertwining operator. Its
local expression is given by

T (η, xr)(ξ) = xr(ξ).

5.5.2 The projection on operators of order zero

When λ1 = 0, the part of order zero of a differential operator has an intrinsic
meaning : it is the result of the evaluation of the operator on the constant
function 1. We can define a projection in the following way :

Tpr : Dp0,µ1
→ D0

λ2,µ1+λ2
: D 7→ π(D(1)).

It is easily seen that this is an intertwining operator. Its local expression is

Tpr(η, x
r)(ξ) = 1,

if r = 0 and
Tpr(η, x

r)(ξ) = 0,

else.
Note that there exists a link between this operator and the ones that we

have found in Theorem 3.1 : we have

Tn`,1 = Tn`,2 ◦ Tpr.

5.5.3 The bijective conjugation

This operator has already been discussed in [3]. It exists when µ1 +λ2 = −1 or
in an equivalent way when µ2+λ1 = −1. In any chart domain U , given f ∈ Fλ1 ,
D ∈ Dpλ1,µ1

with compact support in U and g ∈ Fλ2
, we have D(f)g ∈ F−1 and

we define Tbc by ∫
U

D(f)g =

∫
U

fTbc(D)g.

We readily get

Tbc
(
π(ϕ) ◦ Lλ1

X1
◦ · · · ◦ Lλ1

Xr

)
= (−1)r

(
Lµ2

Xr
◦ · · · ◦ Lµ2

X1
◦ π(ϕ)

)
.

This implies that Tbc is globally defined. Its local expression is given by

T (η, xr)(ξ) = (−1)r(〈x, ξ〉+ 〈x, η〉)r.
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5.5.4 The internal conjugation

When µ1 = −1 and λ2 = 0, we can compose the bijective conjugation with the
projection on operators of order zero. Since we have an element of D0

0,µ2
, we

can apply T0 to suppress the condition on λ2. We define

Tic = T0 ◦ Tpr ◦ Tbc.

Its local expression is given by

Tic(η, x
r)(ξ) = (−1)r〈x, η〉r.

We call this operator internal conjugation because it transforms the deriva-
tives of the operator in derivatives acting on the coefficients of the operator.

Now, we are able to discuss the solutions found in section 5.3, for operators
or order one : we consider another basis of the linear space generated by the
solutions T ′1,1, T ′1,2 and T1,3 and we get

• If λ1 = 0, λ2 = 0 and µ1 = −1, we have three independent solutions given
by the identity, the projection on operators of order zero, and the bijective
conjugation.

• If λ1 = 0, λ2 = 0 and µ1 6= −1, we have two independent solutions given
by the identity and the projection on operators of order zero.

Finally we have the following result that ends the study of the gl(m,R)-case :

Theorem 5.3. The previous examples are the only intertwining operators de-
fined on Dpλ,µ, when p is strictly greater than two.

Proof. It is sufficient to solve the system of equations for the operators of or-
der three and to use the injectivity property.

6 The sl(2,R)-case

We will now consider the case where the dimension of M is equal to two and the
difference of shifts s is a strictly positive integer. The most general expression
of the scalar polynomial T (η, xr)(ξ) is given by

dtm(ξ, η)sTr(u, v),

where Tr(u, v) is a polynomial homogeneous of degree r in the variables u and
v. We will once again use the equation (5) to determine all the intertwining
operators. The first theorem of this section gives necessary conditions for the
existence of non vanishing intertwining operators :

Theorem 6.1. In the sl(2,R)-case, there exist non vanishing intertwining op-
erators from Dpλ1,µ1

to Dqλ2,µ2
only if λ1 = µ1, λ2 = 0 and s = 1.
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Proof. We consider a polynomial xr and choose a basis such that x = e1, then
we read the equation (5) with X = x. The coefficient of θ22 readily yields

s(s− 1)

2
(ξ1η

2
1 + η1ξ

2
1)Tr = 0,

hence s = 1.
Now if we read the equation with X = e2 (and s = 1), we get

(λ1 − µ1)ξ1Tr − λ2η1Tr = 0,

so that Tr 6= 0 only if λ1 = µ1 and λ2 = 0 (hence µ2 = −1).

We will now present the fundamental example of intertwining operator of
the sl(2,R)-case.

Theorem 6.2. The operator Tf defined by :

Tf : D0
λ,λ → D1

0,−1 : π(ϕ) 7→ Tf (π(ϕ)) : g → |dϕ ∧ dg|

is an intertwining operator in the sl(2,R)-case.

This readily allows us to present more examples of intertwining operators
in the sl(2,R)-case : if we compose an intertwining operator of the gl(m,R)-
case with the fundamental example, then we still have an intertwining operator.
We will prove in the next theorem that there is no other way to construct
intertwining operators in the sl(2,R)-case.

Theorem 6.3. The intertwining operators of the sl(2,R)-case are Tf , Tf ◦T1,2,
Tf ◦ Tic and Tf ◦ Tpr.

Proof. We consider an intertwining operator defined on Dpλ,λ. We use the re-
maining equation (5) with x = X = e1, write

Tr =

r∑
k=0

Ck,ru
kvr−k,

and consider the coefficient of θ1θ2.
This yields {

(`+ 1)C`+1,r = −`C`,r
rCr,r = 0,

the first equation being available for ` = 0, . . . , r−1. Hence for any r ∈ {0, . . . , p}
we have T (η, xr)(ξ) = C0,rv

rdtm(ξ, η). This local expression fulfills the equiv-
ariance condition if and only if the coefficients C0,r fulfill the following equations{

r(r − 1)(C0,r + C0,r−1) = 0
r(λ1C0,r−1 − C0,r) = 0,

for r ∈ {0, . . . , p}, hence we get the local expressions
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• when p = 0 :
T0 = dtm(ξ, η),

which corresponds to Tf ;

• when p = 1 : {
T0 = dtm(ξ, η)
T1 = λ1vdtm(ξ, η)

which corresponds to Tf ◦ T1,2;

• when µ1 = λ1 = −1 :

Tr = (−1)rvrdtm(ξ, η)

which corresponds to Tf ◦ Tic;

• when λ1 = 0 :
Tr = δr0dtm(ξ, η),

which is the local expression of Tf ◦ Tpr.
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