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Abstract: Effective tight glycemic control (TGC) can improve outcomes in intensive care unit (ICU) 

patients, but is difficult to achieve consistently. Glycemic level and variability, particularly early in a 

patient’s stay, are a function of variability in insulin sensitivity/resistance resulting from the level and 

evolution of stress response, and are independently associated with mortality. This study examines the 

daily evolution of variability of insulin sensitivity in ICU patients using patient data (N = 394 patients, 

54019 hours) from the SPRINT TGC study. Model-based insulin sensitivity (SI) was identified each hour 

and hour-to-hour percent changes in SI were assessed for Days 1-3 individually and Day 4 Onward, as 

well as over all days. Cumulative distribution functions (CDFs), median values, and inter-quartile points 

(25th and 75th percentiles) are used to assess differences between groups and their evolution over time. 

Compared to the overall (all days) distributions, ICU patients are more variable on Days 1 and 2 (p < 

0.0001), and less variable on Days 4 Onward (p < 0.0001). Day 3 is similar to the overall cohort (p = 0.74). 

Absolute values of SI start lower and rise for Days 1 and 2, compared to the overall cohort  (all days), (p < 

0.0001), are similar on Day 3 (p = .72) and are higher on Days 4 Onward (p < 0.0001). ICU patients have 

lower insulin sensitivity (greater insulin resistance) and it is more variable on Days 1 and 2, compared to 

an overall cohort on all days. This is the first such model-based analysis of its kind. Greater variability 

with lower SI early in a patient’s stay greatly increases the difficulty in achieving and safely maintaining 

glycemic control, reducing potential positive outcomes. Clinically, the results imply that TGC patients will 

require greater measurement frequency, reduced reliance on insulin, and more explicit specification of 

carbohydrate nutrition in Days 1-3 to safely minimise glycemic variability for best outcome. 

 

1. INTRODUCTION 

There are strong physiological links between maintaining 

normal glycemic levels and variability, and improved 

immune response to infection (Weekers et al., 2003) as well 

as reductions in organ failure (Van den Berghe et al., 2001). 

Thus, tight glycemic control (TGC) by intensive insulin 

therapy (IIT) has successfully reduced organ failure and/or 

mortality in some prior studies (Van den Berghe et al., 2001, 

Krinsley, 2004, Chase et al., 2008). However, safely 

achieving improved outcomes with TGC has been difficult 

(Finfer et al., 2009, Preiser et al., 2009) due largely to 

significant increases in hypoglycemia and glycemic 

variability in TGC cohorts. 

 
Glycemic level, range and variability are associated with 

increased organ failure and risk of death (Egi et al., 2006). 

Early hypoglycemia and increased glycemic range on Day 1 

of a patient’s stay, have also shown an increased risk of death 

(Bagshaw et al., 2009). Finally, hypoglycemia itself has been 

linked to poor outcome (Egi et al., 2006). All these outcomes 

result from the variability in these patients response to insulin 

or their variability in insulin sensitivity. They are exacerbated 

by TGC protocols that use larger insulin doses and/or 

infrequent sampling (Wilson et al., 2007), both of which 

allow outcome glycemia to vary more greatly. As a result 

there have been calls to increase target glycemic levels to 

avoid hypoglycemia (Cerra et al., 1997). 

 

This study examines the evolution and variability of insulin 

sensitivity (1/insulin resistance) over the first days of an ICU 

patient’s stay. It implicitly hypothesizes that it is increased 

variability in insulin sensitivity early in a patient’s stay that 

makes achieving safe, effective TGC more difficult, 

increasing the risk of hypoglycemia and glycemic variability, 

and thus of poor outcomes. 

2. METHODS 

2.1 Patients and Data: 

This study uses data from 394 patients treated on SPRINT 

(August 2005 – May 2007) for whom all APACHE and other 

data was available (Chase et al., 2008). Their overall 

glycemic data are shown combined and independently in 

Table 1, including summary glycemic control metrics. The 

Upper South Regional Ethics Committee (NZ) granted ethics 

approval for the audit, analysis and publication of this data. 

 



     

Table 1:  Patient data summary 

 SPRINT 

Total patients 394 

Age (years) 65 [50 – 74] 

% Male 62.9% 

Diabetic history 67 (17.0%) 

  

APACHE II score 18 [14 – 24] 

APACHE II risk of death 25.6% 

[13.1% - 49.4%] 

  

ICU LoS [median, IQR] (days) 4.0 [1.7 – 10.4] 

  

Median BG (SD) (mmol/L) 6.0 (1.5) 

% BG in 4.4-6.1 mmol/L 53.9% 

% BG in 4.0-7.0 mmol/L  79.0% 

% BG < 2.2 mmol/L 0.1% 

  

Patients on Day 1 394 

Patients on Day 2 264 

Patients on Day 3 201 

Patients on Day 4 181 

2.2 Metabolic System Model: 

A clinically validated computer model of the metabolic 

system (Chase et al., 2007) is used to identify patient-

specific, time-varying (hourly) insulin sensitivity (SI) every 

hour:  
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Where G(t) [mmol/L] is plasma glucose I(t) [mmol/L] is 

plasma insulin, uex(t) [mU/min] is exogenous insulin input, 

basal endogenous insulin secretion is IB [mU/L/min], with kI 

representing suppression of basal secretion by exogenous 

insulin. Interstitial insulin is Q(t) [mU/L], with k [1/min] 

accounting for losses and transport. Body and brain weight 

are denoted by mbody [kg] and mbrain [kg]. Endogenous glucose 

clearance is pG [1/min] and time-varying insulin sensitivity is 

SI or (formally) SI(t) in Equation (1) [L/(mU.min)]. Finally, 

VI,frac [L/kg] is the insulin distribution volume per kg body 

weight and n [1/min] is the transport rate of insulin from 

plasma. Total plasma glucose input is P(t) [mmol/min], 

endogenous glucose production is PEND [mmol/kg/min] and 

VG,frac [L/kg] represents the glucose distribution volume per 

kg body weight. CNS [mmol/kg/min] captures non-insulin 

mediated glucose uptake by the central nervous system. 

Michaelis-Menten functions model saturation, with αI 

[L/mU] for the saturation of plasma insulin disappearance, 

and αG [L/mU] for insulin-dependent glucose clearance 

saturation. 

 

These parameters and their clinically validated values are 

well documented in the literature (Lin et al., 2008), and have 

been used in several clinical TGC studies and to create 

SPRINT. The model has also shown good correlation to gold 

standard research assessments (Lotz et al., 2006) in clinical 

metabolic research studies. Hence, the insulin sensitivity 

metric (SI) is a well validated metric that captures the whole 

body metabolic tradeoff of insulin and glucose, thus 

reflecting the hyperglycemic counter regulatory stress 

response and its variability that is seen in the critically ill. 

2.3 Insulin Sensitivity (SI) and Variability: 

The value of SI can be identified every hour using clinical 

data for blood glucose concentration, insulin administered 

and the carbohydrate nutrition administered from all sources 

(Hann et al., 2005). Its hourly variation can be obtained as the 

difference from one hour to the next, so that at hour (n+1): 

∆SI,n+1 = SIn+1 – SIn; or as a percentage change from the prior 

value: %∆SI,n+1 = (SIn+1 – SIn)/SIn+1*100, normalising values 

to a patient-specific level.  Mathematically, this definition of 

%∆SI,n+1 limits positive changes (increase in SI from hour n 

to hour n+1) to 100% while drops in SI are not capped. These 

values for ∆SI,n+1 and %∆SI,n+1 are aggregated for each day of 

ICU stay. 

2.4 Analysis and Statistics: 

SI and its percent variation are plotted as cumulative 

distribution functions (CDFs) for Days 1, 2 and 3 of ICU 

stay. Day 4 Onward values are grouped. Variability at 

different levels of SI is normalised by presenting it as a 

percentage change instead of an absolute value.  

 

Absolute values of SI are compared using the non-parametric 

Mann-Whitney test as distributions are skewed. Variability 

across days is assessed by comparing the number of %∆SI,n+1 

values within ±15% to those outside this range, thus 

comparing the central portions of the CDF to those outlying 

portions of either positive or negative change. These values 

are compared using a Chi Squared test on a 2x2 contingency 

table. The ±15% range was chosen as a level below which 

clinical assay errors and other clinically insignificant 

variations dominate the model-based metric’s variability. It 

thus separates clinically insignificant (within) and clinically 

significant (outside) variations. A value of p < 0.005 is 

considered significant given the large number of data points. 

 

3. RESULTS 

Figure 1 shows the CDFs for SI on Days 1-3, 4 Onwards and 

for the total overall cohort (all days). Table 2 shows the 

median and inter-quartile ranges (IQR) for SI on each day. 

Each of Days 1-3 and Day 4 Onwards are different (p < 

0.0001), and Days 1-2 and Days 4 Onward are different from 

the overall total cohort (all days, p < 0.0001). Day 3 and the 

overall cohort, as seen in the graph, are similar (p = 0.72). It 

is clear that median and overall SI increase daily, with Days 4 

Onward surpassing the total overall cohort (all days) results. 
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Figure 1: CDFs of SI for Days 1-3, Day 4 Onwards and the 

total overall cohort (all days). 

 

Table 2: SI values (median [IQR]) for each day(s) analysed, 

where SI has units of (L/mU/min * 10
-3

). 

Day SI: median [IQR] 

1 0.169  [0.095,  0.270] 

2 0.224  [0.143,  0.339] 

3 0.242  [0.162,  0.336] 

4 Onward 0.261  [0.182,  0.354] 

Total (all days) 0.242  [0.159,  0.341] 

 

For clarity, Figure 2 shows the CDFs of percent change SI 

variability for the total overall cohort (all days) and for Days 

1 and 2. The figure is repeated, but for Days 3 and 4 Onward 

in Figure 3. It is clear that variability decreases on all days 

from Days 1-3 and then Days 4 Onward. All curves for each 

day noted are different (p < 0.0001) from each other. Days 1-

2 and Days 4 Onward are different from the total overall (all 

days) with (p < 0.0001).  

 

In particular, Days 4 Onward have less variability, and Days 

1 and 2 greater variability, as is evident in the figures. Day 3 

and the total overall cohort (all days) have similar variability 

(p = 0.74). The median and IQR values for each curve are 

shown in Table 3. 
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Figure 2: CDFs of SI variability for Days 1 and 2 versus the 

overall cohort (all days). 
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Figure 3: CDFs of SI variability for Days 3 and 4 Onwards 

versus the overall cohort (all days). 

 

Table 3: %∆SI values (median [IQR]) for each day(s) 

analysed in (%). 

Day ∆SI: median [IQR] 

1  3.6    [-22.0, 25.3] 

2  1.5    [-14.5, 15.9] 

3  1.2    [-12.2, 13.5] 

4 Onward -0.15  [-9.3, 10.5] 

Total (all days) <0.01   [-11.2, 13.1] 

 

Similar to the trends for SI, amount of changes greater than 

±15% decrease for each day that passes. Days 1-2 are more 

variable than the total overall cohort (p < 0.0001), Day 3 is 

less different (p = 0.74), and Days 4 Onward are less variable 

(p < 0.0001). These results are also evident in the curves of 

Figures 2-3, and data of Table 3. 

 

4. DISCUSSION 

Several studies have examined inflammation and stress 

response, and their metabolic outcome as stress 

hyperglycemia in critically ill cohorts (e.g. (Marik and 

Raghavan, 2004)). With respect to TGC, the anti-

inflammatory role of insulin has also been examined. 

However, to the authors’ knowledge, none have made 

specific comparisons of the strength, time course or 

behaviour of the stress response across a broad cohort. This 

study effectively compares the evolution and strength of this 

stress response using its metabolic impact (assessed by SI 

here) as a surrogate marker. 

 

Figures 1-3 and Tables 2-3 clearly show four main outcomes: 

1) ICU patients have a lower insulin sensitivity (greater 

resistance) in the first 1-2 days compared to analyses that 

have in past looked only at the whole cohort and all days 

(Langouche et al., 2007, Lin et al., 2008); 2) ICU patients are 

more dynamically variable in their SI (more variable insulin 

resistance) than the overall cohort (over all days) in the first 

1-2 days and similar on Day 3; 3) SI and its variability are 

reduced, compared to the overall cohort (all days) behaviours 

for Days 4 Onward; and 4) SI rises and variability decreases 

over each day of stay, and the differences between days are 

significant both statistically and clinically. 

 



     

In the original SPRINT study (Chase et al., 2008), glycemic 

control metrics, as seen in Table 1, were not a significant 

factor in differentiating survivors and non-survivors within 

the SPRINT cohort. Thus, given the large number of hours 

shown and significant variability, the quality of glycemic 

control was not a factor in these results.  

 

It should also be noted that the trends for increasing SI over 

time matches results reported in other studies (Langouche et 

al., 2007). Similarly, TGC-based mortality improvements 

were evident in SPRINT after 3 days of ICU stay, at which 

point the overall cohort average is equal to the daily 

behaviour of SI and its variability. Hence, Day 3 represents a 

crossover point in patient behaviour versus its overall long 

term total behaviour. 

 

More specifically, the insulin sensitivity variability observed 

may be the primary reason for the outcome variability and 

hypoglycemia seen in many other TGC studies. In particular, 

many TGC protocols administer insulin to relatively high 

levels in the face of the initial high insulin resistance (low SI) 

seen here, including doses of up to 15 U/hour for a blood 

glucose concentration of 8.0-9.0 mmol/L, as reported in 

(Wilson et al., 2007). This insulin sensitivity variability, 

combined with relatively high(er) insulin doses, will result in 

greater glycemic variability and thus increased risk of 

hypoglycemia for many protocols, especially in the first days. 

More insulin sensitive cohorts (higher SI, as in (Suhaimi et 

al., 2010)) will further multiply this variability if insulin 

dosing isn’t implicitly or explicitly titrated to SI. The direct 

outcome is poor control, increased hypoglycemia and poor 

outcome, matching recent reports (Griesdale et al., 2009). 

 

The strong inflammatory stress and immune responses that 

occur after insult or the onset of all forms of critical illness 

are well studied (Marik and Raghavan, 2004). Their general 

persistence and/or decrease over time and treatment has also 

been studied in some cases (Quaniers et al., 2006), including 

the impact of insulin (Krogh-Madsen et al., 2004). Changes 

in whole body glucose uptake and insulin sensitivity due to 

the impact of counter regulatory hormones and pro-

inflammatory cytokines, captured here by SI, are complex 

and.may be a (currently unknown) function of the severity of 

illness, stage or time of the disease or insult, evolution of 

disease state, as well as a function of the treatment with 

insulin, whether normo-glycemia is maintained, or other anti-

inflammatory effects, and/or increased non-insulin mediated 

glucose uptake. The results presented capture this behaviour 

with the overall model-based SI metric, which indicates the 

impact of this whole body stress response on outcome 

glycemia, providing a source of overall validation for the 

results found.  

 

While the patho-physiology of these stress responses is well 

understood, their specific day-to-day dynamic evolution, and 

thus the variability observed here, is not as well understood. 

In many forms of critical illness, inflammatory cytokines and 

counter regulatory hormones have been observed to rise 

(Quaniers et al., 2006). However, whether these rises persist 

or decrease depends on the study and the treatment, 

particularly with respect to elements that reduce 

inflammation – notably the use of insulin and the ability to 

maintain normoglycemia (Weekers et al., 2003). Further, the 

potentially large and rapid changes seen may also be due to 

the high secretion rates due to stress, combined with 

relatively short half lives in plasma, of inflammatory 

cytokines and counter-regulatory hormones in these cohorts.  

 

One overall potential limitation in the generality of this study 

is the level of tight control provided by SPRINT. Lower 

glycemic levels reduce physiological stress and inflammatory 

markers (e.g. (Weekers et al., 2003)). Thus, the control 

provided by SPRINT, which was consistent across all 

patients, may have resulted in the decrease in variability and 

general increase in SI over Days 1-4. It should be noted that 

this general increase in insulin sensitivity over time and as 

patients improve matches results seen in other studies 

(Langouche et al., 2007). However, and in contrast, a less 

well controlled cohort might see increased variability and/or 

reduced SI for longer periods of time. This issue would 

require data from another study for confirmation, linking 

variability to glycemic level (and thus inflammatory status), 

and thus remains an open issue. 

 

It should also be noted that the number of patients decreases 

over time, as expected. However, the number of hours on any 

day is never less than 1700. Thus, there are enough data 

points and data density to ensure a consistent result that is 

unaffected by outliers. All patients were grouped in this 

analysis, regardless of diagnostic code. There may exist 

variability across diagnoses, which may be further elucidated 

by analysing sub-sets of larger cohorts of patient data. 

 

With respect to the metric chosen, the SI parameter is a 

model-based measure of overall metabolic balance and whole 

body insulin sensitivity. It is highly correlated to the gold 

standard euglycemic clamp (R = 0.98) (Lotz et al., 2006), and 

has been extensively used and validated in a wide range of 

insulin sensitivity tests . It has also been shown to capture 

overall patient status in its use as part of a sepsis biomarker 

(Blakemore et al., 2008), and in predictive, real-time ICU 

glycemic control studies. Hence, it is a well validated 

measure that captures the fundamental metabolic behaviours 

important in this study. 

 

Prior work by the authors group had shown that variability in 

metabolic response, using the same SI parameter, could be 

quite large (Lin et al., 2008). However, these studies had not 

considered differences over time. Advanced glycemic control 

protocols can take advantage of this knowledge to improve 

safety by accounting for the variability in SI and thus the 

variability outcome glycemia in response to an insulin 

intervention (Le Compte et al., 2009, Lin et al., 2008). 

 

Clinically, these results have significant implications for the 

implementation of TGC. Enhanced variability in SI leads 

potentially to enhanced variability in the blood glucose level 

resulting from a given insulin intervention (Lin et al., 2008). 

In addition, the variability shown in Figures 2-3 is hourly, 



     

where the greater variability shown implies a greater 

variability in blood glucose for longer intervals between 

measurements (Lonergan et al., 2006). These effects are 

multiplied by the overall insulin sensitivity of the cohort, 

where, for example, the Glucontrol cohort at the Liege centre 

were approximately 1.5-2.0x more sensitive than the SPRINT 

cohort (Suhaimi et al., 2010). The overall outcome is greater 

glycemic variability and a greater risk of both hyperglycemia 

and hypoglycemia. Thus, since glycemic variability and 

hypoglycemia are independent risk factors for the critically 

ill, it is important to manage these dynamics when 

implementing TGC. 

 

More specifically, in implementing TGC, these results 

indicate that protocols should seek to minimise or reduce 

excessive insulin usage in the first 1-3 days while 

maintaining control to a given target. Given a high level of 

insulin resistance and the saturation of insulin action (Natali 

et al., 2000), the implication is that the level of carbohydrate 

administration and thus nutrition inputs, formulas and 

practice should be explicitly considered. In particular, 

SPRINT explicitly controlled nutritional inputs and used a 

low-carbohydrate nutritional formula to ensure better and 

more robust control. Thus, excessive nutritional regimes 

(high or low) might be avoided in consideration of an explicit 

choice that also helps manage the metabolic dynamics 

observed in this study, as supported by other studies 

(Krishnan et al., 2003). 

 

Finally, these findings have clinical implications for 

advocates of early and/or high nutritional therapies (Martin et 

al., 2004). The potential benefit of early enteral or parenteral 

feeding may be lost if the variability it induces through 

requiring higher insulin doses to maintain normal or near-

normal glycemia result in excessive glycemic variability and 

range, and/or hypoglycemia. Similarly, the benefits of early 

nutritional support may be difficult to delineate if glycemic 

control is not similar, resulting in ambiguous clinical and 

research outcomes (Doig et al., 2008). 

 

5. CONCLUSIONS 

This study presents results from a unique analysis that 

evaluates the metabolic dynamics of patients over time. Three 

main conclusions are drawn from this analysis. It is the first 

such study of its kind and shows the ability of clinically 

validated physiological models to quantitatively capture 

clinically important trends that might otherwise be missed, 

but have significant impact on the delivery of care and thus 

patient outcome.  

 

First, SI rises over time, matching reports from other studies 

that looked only at selected days. This analysis clearly shows 

that SI is much lower (resistance is much higher) on Days 1-2 

compared to the overall cohort, and keeps improving up 

through Day 3-4. Second, the same trends hold for insulin 

sensitivity variability, with variability decreasing over time. 

Hence, insulin sensitivity variability may be the primary 

reason for the outcome variability and hypoglycemia seen in 

many other TGC studies. In particular, those protocols that 

utilise higher insulin doses and/or measure infrequently will 

be more likely to see greater glycemic variability and 

hypoglycemia in the first days, which is linked to poor 

outcome. Cohorts and patients with higher insulin sensitivity 

will multiply these effects. Third, managing this variability 

will require minimising relative insulin use in the first 2-3 

days of care, as well as more explicit consideration of 

carbohydrate and overall nutritional inputs if tight glycemic 

control is to be safely achieved and maintained.  

 

Overall, these results imply that TGC protocols should be 

able to accurately estimate insulin sensitivity as part of their 

operation, providing a strong impetus to support model-based 

control methods as a best-practice approach. 

 

These main conclusions remain to be prospectively tested. 

However, this unique data driven analysis highlights several 

important outcomes with respect to the analysis and 

implementation of TGC protocols, and should inform future 

protocol designs and studies.  
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