Appendix: Metabolic System Model and Insulin Sensitivity (SI):

This appendix is designed to present the model and methods used in several referenced
studies (e.g. [1-9]) in this paper. In particular, it addresses the model validation and
validity, and, due to its rising concern in the field, it discusses the potential impact of
sensor error on the results. The presentation is brief relying on a separate set of references
(from the main article) given at the end of this appendix, which interested readers can use
for explicit details on any aspect of this model and the methods used herein.

A-1: Model Definition:

A clinically validated computer model of the metabolic system [10] is used to identify
[11] patient-specific, time-varying (hourly) insulin sensitivity (SI) every hour:
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Where G(t) [mmol/L] is plasma glucose I(t) [mmol/L] is plasma insulin, ue(t) [mMU/min]
is exogenous insulin input, basal endogenous insulin secretion is Iz [mU/L/min], with K,
representing suppression of basal secretion by exogenous insulin. Interstitial insulin is
Q(t) [mU/L], with k [1/min] accounting for losses and transport. Body and brain weight
are denoted by myogy [Kg] and myrain [kg]. Endogenous glucose clearance is pg [1/min]
and time-varying insulin sensitivity is Sl or (formally) SI(t) in Equation (1) [L/(mU.min)].
Finally, Vs [L/kg] is the insulin distribution volume per kg body weight and V, the
resulting volume [L], and n [1/min] is the transport rate of insulin from plasma. Total
plasma glucose input is P(t) [mmol/min], endogenous glucose production is Pgnp
[mmol/kg/min] and Ve srac [L/Kg] represents the glucose distribution volume per kg body
weight. CNS [mmol/kg/min] captures non-insulin mediated glucose uptake by the central
nervous system. Michaelis-Menten functions model saturation, with o, [L/mU] for the
saturation of plasma insulin disappearance, and ag [L/mU] for insulin-dependent glucose
clearance saturation.

Figure A-1 shows this model (Figure 2 in the paper) schematically.

The insulin sensitivity SI can be identified hourly from blood glucose data along with the
clinical insulin and nutritional inputs from all sources [12, 13]. Where the methods of
these references are novel in the field (compared to e.g. [14-19]) and provide a unique,
convex solution that other methods cannot. Hence, the values found for this critical
parameter are guaranteed to be optimal and thus affected only by model resolution or
Sensor error.

Sl is also the critical parameter in predicting the outcome of a nutrition and/or insulin
intervention in this model, based on the definition above [2, 3, 12]. It represents the whole



body balance of insulin and carbohydrate from all sources, and, in the highly
inflammatory and counter-regulatory state of the critically ill patient it thus effectively
captures patient status. Equally, it can vary with patient-status hour to hour, with larger
acute changes or smaller gradual evolution. Thus, the identified parameters can be used to
create models of this parameters evolution for cohorts or specific-patients that enable
more optimal and robust dosing [20-23]. Figure A-1 shows this stochastic model in the
overall model context and Figure A-2 shows its potential use in glycemic control
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Figure A-1. Model schematic for Equations (1)-(3) showing the physiological
compartments and clearances, as well as the appearance of exogenous insulin and
carbohydrate, and their kinetic pathways. The stochastic model in the lower left shows
how the insulin sensitivity (SI) can vary over time (hour to hour) thus affecting glycemic
outcomes for a given insulin and/or nutrition intervention.
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Figure A-2: Use of stochastic insulin sensitivity models to forecast likely BG outcomes
for a given intervention, using the model of Equations (1)-(3). This approach allows the
optimisation of care and its safety from hypoglycemia.

A.2: Model Validity and Validation:

The validity of the model and in particular the SI value identified is based on three types
of studies and analyses:

Correlation of the Sl versus gold standard measures for whole body insulin
sensitivity in the hyperinsulinemic euglycemic clamp (EIC), including its ability
to measure changes in EIC derived insulin sensitivity after an intervention [24-
26].

Use of the model to predict the glycemic outcomes of an insulin and nutrition
intervention [9, 23, 27] on retrospective data from the SPRINT [28] and
Glucontrol [29] studies, as well as in similar predictive use in real-time TGC in
the ICU [2-6] and NICU [20, 21] to guide therapy and optimise insulin dosing.

A specific validation study [10] in which virtual patients [1, 12] are created from
fitting this time-varying Sl value to clinical data using novel integral-based
methods [12], and then tested in their ability to predict the patient-specific and
overall cohort glycemic outcomes when simulating another protocol using a
matching cohort.



Results from these three types of validation are presented briefly below with relevant
references to published literature for this model.

The model-based Sl was fitted to data from 146 EIC tests [30] on 73 individuals before
and after an intervention, including a control group. The SI marker correlation to the EIC
derived ISI (insulin sensitivity index) was R = 0.99. Importantly, when analysing the
change in ISI versus the change in SI before and after the intervention, the correlation was
R = 0.94 [24, 26]. Hence, for the gold standard metric the model defined in Equations 1-3
is able to provide very high correlation to a gold standard metric as well as its change
after an intervention, thus validating its ability to capture the fundamental insulin
sensitivity dynamic. These results are shown in Figure A-3.
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Figure A-3: Clamp study correlation showing how the model-based SI metric accurately
captures gold standard assessment of insulin resistance, as well as its change over a series
of interventions [24, 26].

For any model, the ability to predict the outcomes of an intervention are critical. Fitting
only the SI metric to clinical data and then predicting forward using the clinically given
intervention, the error between predicted outcome BG and the clinically recorded value is
critical. Errors equal to or less than measurement error indicate optimum possible
measurement performance. In several studies using data from ICU and NICU patients [9,
20, 27], this model, predicting 1-4 hours ahead, captures up to 40,000 such predictions
with median errors between 3-8%, which is equivalent to the measurement errors of 7-
10%. These studies have been done using data from SPRINT and from the Glucontrol
trial, covering over 1100 patients and ~100,000 hours of data, as well as for NICU
patients. Critically, the ability to predict, using only Sl as a patient-specific parameter is
thus entirely dependent on the validity of that parameter.

Equally, prediction errors can be a function of patient variability over the prediction time
frame. Stochastic models of insulin sensitivity created from SPRINT or NICU data that
measure this variability from the value one hour to the value the next have been used to
test this model [21-23] using the method illustrated in Figure A-2. Predictions as above
fall into expected IQR and 90% confidence intervals to within 1% of the expected number
(e.g. 49% in a 50% wide IQR), even when considering cross validation and testing [23,
31]. These results indicate that the SI metric and model capture patient variations and the
ability to predict the outcome of interventions to a level comparable to sensor error.
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Finally, a full validation study was run using matching cohorts from the Glucontrol TGC
trial and its Liege, Belgium centre [10]. Virtual patients were created form patient data for
both the A and B arms of the trial, creating two sets of matching virtual patients. These
patients were then simulated with both the A and B clinical protocols, creating both self
and cross validations. Self validation tests model error in testing A virtual patients on the
A protocol and then comparing to the group A clinical data, and similarly for the B group.
Cross validation provides a guide as to the overall model quality in that it tests the B
group on the A protocol and compares to the group A clinical data, thus testing whether
the model and SI metric can capture glycemic outcomes for interventions independent of
the data and treatment used to create the virtual patient. And, similarly for the A cohort on
protocol B. Results for cohorts and median patients were within 1-10% across the
cumulative distribution function of glycemic results. Similarly, the insulin interventions
were also comparable. These results are shown in Figure A-4.
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Figure A-4: Results from [10] on the validation of the model of Equations (1)-(3) using
independent data from matched cohorts in the Glucontrol TGC trial. The results clearly
show the ability to capture cohort (upper) and patient (lower) behaviour (median and
variability). No other model is validated to this extent at this time.



The overall result of this study is a form of independent (crossover) validation that shows
that this model and SI metric, and the methods used to find it, are able to accurately
capture the dynamics of ICU patient. No other such complete validation exists in the
literature for any similar model or virtual patient.

Thus, these sets of studies covering gold standard comparators, patient-specific predictive
ability and an overall independent (cross) validation, serve to support the overall validity
of the models and methods used in this article. Interested readers are directed to the
references for further details.

A.3: Identification of S| and Impact of Sensor Error:

The hour to hour value of Sl is identified from clinical data (BG, insulin given, nutrition
and other dextrose or glucose given) for a specific patient. The method is a novel integral-
based method that is convex and thus does not suffer well-known issues with local
minima and non-optimal results found with other approaches (e.g. non-linear recursive
least squares). The details of this method are in Hann et al [12, 13].

The glucose sensor used in SPRINT [28] were glucometers (Arkray Inc, Super Glucocard
I1) with assay errors of 7-12% (CV) depending on glucose level. Note that the lower value
holds for the majority of measurements which were in the 4-8 mmol/L range (~90%), and
because arterial blood was used, rather than capillary blood. Blood gas analysers would
provide a lower error of 1-3%.

In identifying SI using integral-based methods, the BG data is integrated rather than
differentiated, which is an important difference. Specifically, integration acts as a low
pass filter and thus the impact of noise or random sensor error is significantly reduced. As
a result, the Sl values identified are globally optimal from the method and much less
affected by sensor error than they would be using more traditional gradient based
techniques [13].

Finally, for the analysis in this article, any offset in a given Sl value (and resulting offset
in the ASI) can be in either direction as the assay error is random and normally
distributed. Hence, given the large numbers of hours in a large analysis, the central limit
theorem supports the fact that any such errors will effectively cancel in the overall
distributions presented. If data sets were smaller (< 100-300 data points), then sensor
error and its impact on the identified Sl values is potentially an issue for assessment via
other statistical means such as Monte Carlo analysis.
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