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Soit A un alphabet fini.

A∗ : ensemble des mots finis sur A

Soit f : A→ A∗ morphisme, i.e. ∀x , y ∈ A

f (x · y) = f (x) · f (y) et f (ε) = ε.

Exemple

Soient A = {a,b, c} et
a 7→ abc

f : A→ A∗ : b 7→ ac
c 7→ b

.

Alors, f (abbc) = f (a)f (b)f (b)f (c) = abcacacb.
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Si f est (strictement) prolongeable en a, i.e.,

f (a) = aw avec a ∈ A,w ∈ A∗ \ {ε},
alors

{f n(a)|n ∈ N} est infini

et
fω(a) = lim

n→+∞
f n(a).

Exemple

Si f (a) = abc, f (b) = ac, f (c) = b,

fω(a) = a

Problème (D0L periodicity problem)
Si f : A→ A∗ est un morphisme prolongeable en a ∈ A,
le mot infini fω(a) est-il ultimement périodique ?

C’est décidable. [Harju, Linna, 1986]
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Variante

Soient A et B deux alphabets finis.

Un morphisme g : A→ B est un codage si |g(α)| = 1, ∀α ∈ A.

Problème (HD0L-ultimate periodicity problem)
Soient

un codage g : A→ B,
un morphisme f : A→ A∗ tel que
f est prolongeable en a ∈ A∗.

Le mot infini g(fω(a)) est-il ultimement périodique ?
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Exemple : suite de Baum-Sweet (xn)n≥0

Soient A = {a,b, c,d} et B = {0,1}.

f : a 7→ ab g : a 7→ 1
b 7→ cb b 7→ 1
c 7→ bd c 7→ 0
d 7→ dd d 7→ 0

a
ab
abcb
abcbbdcb
...

f
f
f
f

Alors,

fω(a) = abcbbdcbcbddbd · · ·

(xn)n≥0 := g(fω(a))

= 11011001010010 . . .
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Cas particulier

Supposons f : A→ A∗ est k -uniforme, i.e.,

|f (α)| = k ∀α ∈ A.

Théorème (Cobham, 1972)
Soit un mot infini x.

x = g(fω(a))⇔ x est k-automatique.

Une suite (xn)n≥0 est k-automatique si xn est engendré par un
automate fini (avec sortie), lisant en entrée repk (n).

q/1 r/0

1 1
0

0
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Exemple : (xn)n≥0 = 11011001010010 . . .

xn 1 1 0 1 1 0 0 1 0 . . .
n 0 1 2 3 4 5 6 7 8 . . .

rep2(n) ε 1 10 11 100 101 110 111 1000 · · ·

xn = 1⇔
rep2(n) n’a pas de blocs de 0 de longueurs impaires.

q/1 r/1 s/0 t/0
1

1
0

0
1

0,1

 (xn)n≥0 est 2-automatique.
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Exemple : (xn)n≥0 = 11011001010010 . . .

En particulier,

S0 = {n ∈ N | xn = 0} et S1 = {n ∈ N | xn = 1}

sont 2-reconnaissables, i.e.,

rep2(Si) = {rep2(n) |n ∈ Si} avec i = 0,1

est accepté par un automate fini.

Exemple
S1 est accepté par

q r s t
1

1
0

0
1

0,1
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Soit un ensemble d’entiers X ⊆ N.

Sa suite caractéristique est 1X = (1X (n))n≥0 définie par

1X (n) =

{
1 si n ∈ X
0 sinon

.

L’ensemble X est ultimement périodique si

1X est ultimement périodique.

Problème
Soient un morphisme f : A→ A∗ k -uniforme prolongeable en
a ∈ A et un codage g : A→ B.
Le mot infini g(fω(a)) est-il ultimement périodique ?
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Théorème (Honkala, 1986)
Le problème est décidable dans le cas des bases entières.

Idée :

Si X est ultimement périodique,

la taille de l’automate↗ avec la période et la prépériode.
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Procédure de décision

Donnée : X ⊆ N via un AF acceptant 0∗repb(X ).

Si X est ultimement périodique,

alors nous avons une borne supérieure pour sa période et
prépériode.

 Nombre fini de couples (période, prépériode) à tester.

Remarque

Allouche, Rampersad, Shallit 2009
Muchnik 1991
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Un système de numération positionnel est donné par une suite
d’entiers strictement croissante U = (Ui)(i≥0) tels que

U0 = 1
CU := supi≥0dUi+1/Uie est fini.

La U-représentation gloutonne d’un entier positif n est l’unique
mot repU(n) = w` · · ·w0 sur AU = {0, . . . ,CU − 1} satisfaisant

n =
∑`

i=0 wiUi ,
w` 6= 0,∑t

i=0 wiUi < Ut+1,∀t = 0, . . . , `.

Cas particulier : les bases entières

(Ui)i≥0 = (bi)i≥0
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Système de numération de Fibonacci

Soit F = (Fi)i≥0 = (1,2,3,5,8,13,21,34, . . .) défini par

F0 = 1,F1 = 2 et Fi+2 = Fi+1 + Fi pour tout i ≥ 0.

13 8 5 3 2 1
ε 0
1 1

1 0 2
1 0 0 3
1 0 1 4

...
1 0 0 1 0 1 17

repF (17) = 100101

repF (N) = {ε} ∪ 1{0,01}∗

1

0
0

1
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Théorème (Bell, Charlier, Fraenkel, Rigo, 2008)

Le problème est décidable pour une classe de systèmes de
numération positionnels.

Condition sur les systèmes :

NU(t)→ +∞ si t → +∞.

Pour une suite (Ui)i≥0 d’entiers, notons NU(t)∈ {1, . . . ,m} le
nombre de valeurs prises infiniment souvent par la suite
(Ui mod t)i≥0.
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Système de numération de Fibonnacci

Soit F = (Fi)i≥0 = (1,2,3,5,8,13,21,34, . . .) défini par

F0 = 1,F1 = 2 et Fi+2 = Fi+1 + Fi pour tout i ≥ 0.

Nous avons

(Fi)i≥0 = (1,2,3,5,8,13,21,34,55,89,144,233,377,610 · · · ).

(Fi mod 4)i≥0 = (1,2,3,1,0,1,1,2,3,1,0,1,1,2,3, · · · ).

 NU(4) = 4.
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Inconvénient

La procédure de décision ne peut pas être appliquée aux
systèmes de numération en base entière b ≥ 2 :

(Ui)i≥0 = (b i)i≥0.

On a, pour tout n ≥ 1,

Ui+1 = b Ui ⇒ Ui ≡ 0 (mod bn) ∀i ≥ n
⇒ NU(bn) = 1

Donc, NU(t) 6→ +∞ si t → +∞.
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Soit L un langage sur l’alphabet fini A.

Contexte d’un mot u ∈ A∗ par rapport à L :

CL(u) = {(x , y) ∈ A∗ × A∗|xuy ∈ L}

Congruence↔ de Myhill pour L : ∀u, v ∈ A∗,

u ↔L v ⇔ C(u) = C(v)

Exemple

Posons A = {a,b} et L = a∗b∗ = {anbm|n,m ∈ N}.

C(ab) = {(ai ,bj)|i , j ∈ N}
C(ba) = ∅
C(a) = {(ai ,ajb`)|i , j , ` ∈ N}
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La relation↔L est une relation d’équivalence.

Notons [u] la classe d’un mot u ∈ A∗.

Munissons A∗/↔L d’un produit

[u] ◦ [v ] = [w ] si [u] · [v ] ⊆ [w ].

En particulier, [u] ◦ [v ] = [uv ].

(A∗/↔L , ◦) est le monoïde syntaxique.

Théorème
L est accepté par un AF⇔ A∗/↔L est fini.

Complexité syntaxique de L : #(A∗/↔L)
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Retour au problème de décision

Problème
Etant donné un AF acceptant la représentation de X ⊆ N,
l’ensemble X est-il ultimement périodique ?

Si X ⊆ N est périodique de période m,

alors la représentation de X dans un système de numération
raisonnable donne un langage L accepté par un AF.

Question : #(A∗/↔L) croît avec la période de X ?
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Quelques résultats

Théorème (Rigo, V., 2011)

Soient m,b ≥ 2 des entiers tels que pgcd(m,b) = 1. Si X ⊆ N
est périodique de période m, alors

#(A∗/↔0∗repb(X)
) = m · ordm(b).

Notation : ordm(b) = min{ j ∈ N \{0}|b j ≡ 1 (mod m)}.

Idée de la preuve : Montrer que pour tous u, v ∈ A∗,

u ↔0∗repb(X)∗ v ⇔
{

valb(u) ≡ valb(v) (mod m)
|u| ≡ |v | (mod ordm(b))

.
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Quelques résultats

Résultats similaires obtenus pour une période m et une base b
tels que :

pgcd(m,b) = 1,
m = bn avec n ≥ 1,
m = bnq avec q ≥ 2, pgcd(q,b) = 1 et n ≥ 1.

Théorème (Rigo, V., 2011)

Si b est premier et X ⊆ N est ultimement périodique de période
m = bnq avec pgcd(q,b) = 1 et n ≥ 0, alors

#(A∗/↔0∗repb(X)
) ≥ (n + 1)q.
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Cas manquant

Si b n’est pas un nombre premier, il y a des entiers

m = bnq avec pgcd(q,b) > 1

et n maximal.

Exemple
Prenons b = 4 et m = 72 = 4 · 18.
Nous avons pgcd(4,18) = 2 > 1.
Un tel cas n’a pas encore été traité.
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Objectif : Traiter une classe plus large de systèmes de
numération grâce au monoïde syntaxique.

Par exemple, le système de numération de Fibonacci défini par

F0 = 1,F1 = 2 et Fi+2 = Fi+1 + Fi pour tout i ≥ 0.

Conjecture

Si X = mN = {m · n |n ∈ N}, alors

#(A∗/↔0∗repF (X)
) = 4 ·m2 · PF (m) + 2

où PF (m) est la période de (Fi mod m)i≥0.
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Généralisation

Système de numération abstrait : S = (L,Σ, <) où

L est un langage régulier infini
(Σ, <) alphabet totalement ordonné.

La S-représentation d’un entier positif n est

repS(n) := le (n + 1)-ième mot de L.

Exemple

Soit S = (L, {a,b},a < b) avec L = {ε} ∪ {a,ab}∗.

L ε a aa ab aaa aab aba aaaa . . .

repS(L) 0 1 2 3 4 5 6 7 . . .
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Problème (équivalent au "HD0L periodicity problem")
Soient

un système de numération abstrait S
un ensemble X ⊆ N tel que repS(X ) est accepté par un AF.

Pouvons-nous décider si X est ou non un ensemble ultimement
périodique ?

Oui pour une classe de systèmes de numération abstraits.
[Bell, Charlier, Fraenkel, Rigo, 2008]

Résultat similaire avec la complexité syntaxique ?
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Merci pour votre attention.

Des questions ?
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