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Soit A un alphabet fini.
A" : ensemble des mots finis sur A

Soit f : A — A* morphisme, i.e. Vx,y € A

f(x-y)="Ff(x)-f(y) et f(e)=e.

Exemple
aw— abc
Soient A={a,b,clet f:A— A": b~ ac
c—b

Alors, f(abbc) = f(a)f(b)f(b)f(c) = abcacacb.

Perspectives
000



Si f est (strictement) prolongeable en a, i.e.,
f(a) =awavecac A,w € A"\ {¢},

alors
{f"(a)|n € N} est infini
et
f“(a) = lim f"(a).

n—+o00

Si f(a) = abc, f(b) = ac, f(c) = b,

f“(a)=a



Si f est (strictement) prolongeable en a, i.e.,
f(a) =awavecac A,w € A"\ {¢},

alors
{f"(a)|n € N} est infini
et
f“(a) = lim f"(a).

n—+o00

Si f(a) = abc, f(b) = ac, f(c) = b,

f“(a) = abc



Si f est (strictement) prolongeable en a, i.e.,
f(a) =awavecac A,w € A"\ {¢},

alors
{f"(a)|n € N} est infini
et
f“(a) = lim f"(a).

n—+o00

Si f(a) = abc, f(b) = ac, f(c) = b,

f“(a) = abcac



Si f est (strictement) prolongeable en a, i.e.,
f(a) =awavecac A,w € A"\ {¢},

alors
{f"(a)|n € N} est infini
et
f“(a) = lim f"(a).

n—+o00

Si f(a) = abc, f(b) = ac, f(c) = b,

f“(a) = abcacb



Si f est (strictement) prolongeable en a, i.e.,
f(a) =awavecac A,w € A"\ {¢},

alors
{f"(a)|n € N} est infini
et
f“(a) = lim f"(a).

n—+o00

Si f(a) = abc, f(b) = ac, f(c) = b,

f“(a) = abcacbabc



Si f est (strictement) prolongeable en a, i.e.,
f(a) =awavecac A,w € A"\ {¢},

alors
{f"(a)|n € N} est infini
et
f“(a) = lim f"(a).

n—+o00

Si f(a) = abc, f(b) = ac, f(c) = b,

f“(a) = abcacbabc - - -
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Si f est (strictement) prolongeable en a, i.e.,
f(a) =awavecac A,w € A"\ {¢},

alors
{f"(a)|n € N} est infini

et
f“(a) = lim f"(a).

n—+o00

Un mot infini u sur A est ultimement périodique si

u=vw” avecv e A", we A"\ {e}.

Perspectives
000
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Si f est (strictement) prolongeable en a, i.e.,
f(a) =awavecac A,w € A"\ {¢},
alors
{f"(a)|n € N} est infini
et
f“(a) = nﬂToo f(a).

Un mot infini u sur A est ultimement périodique si
u=vw” avecv e A", we A"\ {e}.

Probleme (DOL periodicity problem)

Si f: A— A* est un morphisme prolongeable en a € A,
le mot infini f“(a) est-il ultimement périodique ?

C’est décidable. [Harju, Linna, 1986]
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Variante

Soient A et B deux alphabets finis.
Un morphisme g : A — B est un codage si |g(a)| =1, Va € A.

Probleme (HDOL-ultimate periodicity problem)
Soient

@ un codage g : A — B,

@ un morphisme f: A — A* tel que

@ f est prolongeable en a € A*.
Le mot infini g(f“(a)) est-il ultimement périodique ?



Soient A={a,b,c,d} et B={0,1}.

f: a—ab g: a—1
b+— cb b1
c+— bd c—0
d— dd d—20
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Exemple : suite de Baum-Sweet (X,)n>0

Soient A={a,b,c,d} et B=1{0,1}.

a
f: a—ab g: a—1 b
b— cb b—1 f
¢ bd cis 0 f agcgbdb
d s dd dis 0 §( @pebbde

Alors,

f“(a) = abcbbdcbebddbd - - -

(Xn)nzo = g(f“(a))
=11011001010010...

Perspectives
000
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Cas particulier

Perspectives
000

Supposons f: A — A* est k-uniforme, i.e.,
fla)|=k  YaeA

Théoréme (Cobham, 1972)

Soit un mot infini x.

x = g(f¥(a)) & x est k-automatique.

Une suite (xn)n>0 est k-automatique si x, est engendré par un
automate fini (avec sortie), lisant en entrée rep,(n).
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Cas particulier

Perspectives
000

Supposons f: A — A* est k-uniforme, i.e.,
fla)|=k  YaeA

Théoréme (Cobham, 1972)

Soit un mot infini x.

x = g(f¥(a)) & x est k-automatique.

Une suite (xn)n>0 est k-automatique si x, est engendré par un
automate fini (avec sortie), lisant en entrée rep,(n).

1 1
0



Xn 11 0 1 1 0 0 1 0
n 01 2 3 4 5 6 7 8
repo(n) ¢ 1 10 11 100 101 110 111 1000
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Exemple : (Xp)n>0 = 11011001010010. ..

11 0 1 1 0 0 1 0
n 01 2 3 4 5 6 7 8
e 1 10 11 100 101 110 111 1000

Xn:1<:>

rep,(n) n'a pas de blocs de 0 de longueurs impaires.

Perspectives
000
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Exemple : (Xp)n>0 = 11011001010010. ..

11 0 1 1 0 0 1 0
n 01 2 3 4 5 6 7 8
e 1 10 11 100 101 110 111 1000

Xn — 1 =
rep,(n) n'a pas de blocs de 0 de longueurs impaires.

1 0,1

)] o [0

Perspectives
000
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Exemple : (Xp)n>0 = 11011001010010. ..

11 0 1 1 0 0 1 0
n 01 2 3 4 5 6 7 8
e 1 10 11 100 101 110 111 1000

Xn — 1 =
rep,(n) n'a pas de blocs de 0 de longueurs impaires.

1 0,1

)] o [0

~+ (Xn)n>0 est 2-automatique.
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Exemple : (Xp)n>0 = 11011001010010. ..

En particulier,
So={neN|x,=0}etS;={neN|x,=1}
sont 2-reconnaissables, i.e.,
repo(Sj) = {repo(n) | n € S;} avec i = 0,1
est accepté par un automate fini.

Exemple
S; est accepté par
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Soit un ensemble d’entiers X C N.

Sa suite caracteéristique est 1x = (1x(n))n>o définie par

1 sineX
0 sinon

tx(m = {
Lensemble X est ultimement périodique si
1x est ultimement périodique.

Probleme

Soient un morphisme f : A — A* k-uniforme prolongeable en
ac Aetuncodageg: A— B.
Le mot infini g(f“(a)) est-il ultimement périodique ?
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Soit un ensemble d’entiers X C N.

Sa suite caractéristique est 1x = (1x(n))n>o définie par

1 sineX
1X(n)_{ 0 sinon

Lensemble X est ultimement périodique si
1x est ultimement périodique.

Probleme

Etant donné un AF acceptant la représentation de X C N,
'ensemble X est-il ultimement périodique ?
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Théoréme (Honkala, 1986)
Le probléme est décidable dans le cas des bases entiéres.

ldée :
Si X est ultimement périodique,

la taille de 'automate * avec la période et la prépériode.
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Procédure de décision

Donnée : X C N via un AF acceptant 0*repp(X).
Si X est ultimement périodique,

alors nous avons une borne supérieure pour sa période et
prépériode.

~~ Nombre fini de couples (période, prépériode) a tester.
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Procédure de décision

Donnée : X C N via un AF acceptant 0*repp(X).
Si X est ultimement périodique,

alors nous avons une borne supérieure pour sa période et
prépériode.
~~ Nombre fini de couples (période, prépériode) a tester.

Remarque

Allouche, Rampersad, Shallit 2009
Muchnik 1991



Un systéeme de numération positionnel est donné par une suite
d'entiers strictement croissante U = (U;)i>o) tels que

("] Uo =1
@ Cy :=sUp;>o[Ujy1/U;] est fini.
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Un systéeme de numération positionnel est donné par une suite
d'entiers strictement croissante U = (U;)i>o) tels que

o Uo =1
@ Cy :=sUp;>o[Ujy1/U;] est fini.

La U-représentation gloutonne d’un entier positif n est 'unique
mot rep,(n) = wy--- wp sur Ay = {0, ..., Cy — 1} satisfaisant
e n= Zf:o w; U,
o w, #0,
o Yl owilUi < Upyy,Vt=0,.... L
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Un systéeme de numération positionnel est donné par une suite
d'entiers strictement croissante U = (U;)i>o) tels que

o Uo =1
@ Cy :=sUp;>o[Ujy1/U;] est fini.
La U-représentation gloutonne d’un entier positif n est 'unique
mot rep,(n) = wy--- wp sur Ay = {0, ..., Cy — 1} satisfaisant
o n= Zf:o w; U,
o w, #0,
o Yl owilUi < Upyy,Vt=0,.... L

Cas particulier : les bases entieres

(Up)iso = (b')ix0
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Systéme de numération de Fibonacci

Soit F = (Fj)i>0 =(1,2,3,5,8,13,21,34, .. .) défini par
Fo=1,F1 =2et Fiy» = Fiy1 + Fj pour tout i > 0.
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Systéme de numération de Fibonacci

Soit F = (F))j=0 = (1,2,3,5,8,13,21,34, ...) défini par

Fo=1,F1 =2et Fiy» = Fiy1 + Fj pour tout i > 0.

13 8 5 3 2 1
| 0
1|1 repe(17) = 100101
1 0l o2 PF()
1 0 0| 3
1 0 1] 4
1 00 1 0 1|17

Perspectives
000
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Systéme de numération de Fibonacci

Soit F = (Fj)i>0 =(1,2,3,5,8,13,21,34, .. .) défini par
Fo=1,F1 =2et Fiy» = Fiy1 + Fj pour tout i > 0.

13 8 5 3 2 1
| 0
1)1 rep(17) = 100101
1 0l o2 PF( )
1 0 0| 3 )
10 1| 4 repr(N) = {e} U1{0,01}
1 00 1 0 1|17
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Systéme de numération de Fibonacci

Soit F = (Fj)i>0 =(1,2,3,5,8,13,21,34, .. .) défini par
Fo=1,F1 =2et Fiy» = Fiy1 + Fj pour tout i > 0.

13 8 5 3 2 1
| 0
1)1 rep(17) = 100101
1 0l o2 PF( )
1 0 0| 3 )
10 1| 4 repr(N) = {e} U1{0,01}
1 00 1 0 1|17 0



Le probléme est décidable pour une classe de systéemes de
numeération positionnels.
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Théoréme (Bell, Charlier, Fraenkel, Rigo, 2008)

Le probleme est décidable pour une classe de systemes de
numeération positionnels.

Condition sur les systémes :

Ny(t) — +oo si t — +oo.

Pour une suite (U;);>o d’entiers, notons Ny(t)e {1,...,m} le
nombre de valeurs prises infiniment souvent par la suite
(Ui mod t);>o.
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Systéme de numération de Fibonnacci

Soit F = (Fi)is0 = (1,2,3,5,8,13,21,34, . ..) défini par
Fo=1,Fy =2et Fi,» = Fi,1 + Fjpour tout i > 0.

Nous avons

(Fi)i>o =(1,2,3,5,8,13,21,34,55,89, 144,233,377,610 - - - ).

(Fimod 4);> = (1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,---).
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Systéme de numération de Fibonnacci

Soit F = (Fi)is0 = (1,2,3,5,8,13,21,34, . ..) défini par
Fo=1,Fy =2et Fi,» = Fi,1 + Fjpour tout i > 0.

Nous avons

(Fi)i>o =(1,2,3,5,8,13,21,34,55,89, 144,233,377,610 - - - ).

(F’ m0d4),‘20:(1,273’1707171’2,37170717172’3,”‘).
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Systéme de numération de Fibonnacci

Soit F = (Fi)is0 = (1,2,3,5,8,13,21,34, . ..) défini par
Fo=1,Fy =2et Fi,» = Fi,1 + Fjpour tout i > 0.

Nous avons

(Fi)i>o =(1,2,3,5,8,13,21,34,55,89, 144,233,377,610 - - - ).

(F’ m0d4),‘20:(1,273’1707171’2,37170717172’3,”‘).

~ Ny(4) = 4.
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Inconvénient

La procédure de décision ne peut pas étre appliquée aux
systémes de numération en base entiere b > 2 :

(Up)izo = (b")izo.

On a, pour tout n > 1,

Ui1=bU=U=0 (mod bn) Vi>n
= Nu(bn) =1

Donc, Ny(t) /4 +oo si t — +oo.

Perspectives
000
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Soit L un langage sur I'alphabet fini A.

Contexte d’'un mot u € A* par rapporta L :
Cu(u) = {(x.y) € A* x A*|xuy € L}
Congruence «» de Myhill pour L : Vu,v € A*,

U<+ ve Clu)=C(v)
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Soit L un langage sur I'alphabet fini A.

Contexte d’'un mot u € A* par rapporta L :
Cu(u) = {(x.y) € A* x A'|xuy € L}
Congruence <« de Myhill pour L : Vu,v € A*,

U<+ ve Clu)=C(v)

Exemple

Posons A= {a,b} et L = a*b* = {a"b"|n,m € N}.

C(ab) = {(&,P)]i,j € N}
C(ba) =0
C(a) ={(&,ab")i,j,teN}

Perspectives
000
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La relation <+, est une relation d’équivalence.
Notons [u] la classe d’'un mot u € A*.

Munissons A*/,,, d’'un produit
[u] o [V] = [w] si [u] - [v] € [w].
En particulier, [u] o [v] = [uv].
(A*/s,, o) est le monoide syntaxique.

Théoreme
L est accepté par un AF < A*/,, est fini.

Complexité syntaxique de L : #(A*/s,)
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Retour au probléme de décision

Probleme

Etant donné un AF acceptant la représentation de X C N,
'ensemble X est-il ultimement périodique ?

Si X C N est périodique de période m,

alors la représentation de X dans un systeme de numération
raisonnable donne un langage L accepté par un AF.

Question : #(A* /., ) croit avec la période de X ?
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Quelques résultats

Théoréme (Rigo, V., 2011)

Soient m, b > 2 des entiers tels que pgecd(m,b) =1. SiX C N
est périodique de période m, alors

(A*/Ho*mpb ) m - Ordm(b)
Notation : ordy,(b) = min{j € N\{0}| b/ =1 (mod m)}.
Idée de la preuve : Montrer que pour tous u, v € A*,

Valb( ) = Valb( ) (mod m)

uHO*remxw@{ ul=|v (mod ordn(b)) -



Introduction Procédures de décision Complexité syntaxique Perspectives
00000000 0000000 0000e0 000

Quelques résultats

Résultats similaires obtenus pour une période m et une base b
tels que :

@ pged(m, b) =1,
@ m=bTavecn>1,
@ m=b"qavec q>2,pged(g,b) =1etn>1.

Théoréme (Rigo, V., 2011)

Si b est premier et X C N est ultimement périodique de période
m = b"q avec pged(qg,b) =1 etn > 0, alors

#(A*/Ho*repb(x)) > (n ol 1)q



Si b n’est pas un nombre premier, il y a des entiers

m=b"q  avec pged(q, b) > 1

et n maximal.
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Cas manquant

Si b n’est pas un nombre premier, il y a des entiers
m=b"q  avec pged(q, b) > 1

et n maximal.

Exemple
Prenonsb=4etm=72=4-18.
Nous avons pged(4,18) =2 > 1.
Un tel cas n’a pas encore été traité.
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Obijectif : Traiter une classe plus large de systemes de
numération grace au monoide syntaxique.

Par exemple, le systéme de numération de Fibonacci défini par
Fo=1,Ff =2et Fi,» = Fi;1 + Fj pour tout i > 0.
Conjecture
SiX=mN={m-n|neN}, alors
#(A*/HO*WF(X)) =4.-m?- Pe(m)+2

ot Pe(m) est la période de (F; mod m);>o.
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Généralisation

Systéme de numération abstrait : S = (L, X, <) ou

@ L est un langage régulier infini
@ (X, <) alphabet totalement ordonné.

La S-représentation d’'un entier positif n est

repg(n) := le (n+ 1)-ieme mot de L.

Exemple
Soit S = (L,{a,b},a< b)avec L = {¢} U {a, ab}".

repg(L) 2 3 4 5 6 7

\ a aa ab aaa aab aba aaaa

Perspectives
[e] To)
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Probleme (équivalent au "HDOL periodicity problem")
Soient
@ un systéme de numération abstrait S
@ un ensemble X C N tel que repg(X) est accepté par un AF.

Pouvons-nous décider si X est ou non un ensemble ultimement
périodique ?

Oui pour une classe de systéemes de numération abstraits.
[Bell, Charlier, Fraenkel, Rigo, 2008]

Résultat similaire avec la complexité syntaxique ?



Merci pour votre attention.

Des questions ?
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