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Abstract.

We describe a random matrix approach that can provide generic and readily soluble

mean-field descriptions of the phase diagram for a variety of systems ranging from

QCD to high-Tc materials. Instead of working from specific models, phase diagrams

are constructed by averaging over the ensemble of theories that possesses the relevant

symmetries of the problem. Although approximate in nature, this approach has

a number of advantages. First, it can be useful in distinguishing generic features

from model-dependent details. Second, it can help in understanding the ‘minimal’

number of symmetry constraints required to reproduce specific phase structures.

Third, the robustness of predictions can be checked with respect to variations in the

detailed description of the interactions. Finally, near critical points, random matrix

models bear strong similarities to Ginsburg-Landau theories with the advantage of

additional constraints inherited from the symmetries of the underlying interaction.

These constraints can be helpful in ruling out certain topologies in the phase diagram.

In this Key Issue, we illustrate the basic structure of random matrix models, discuss

their strengths and weaknesses, and consider the kinds of system to which they can be

applied.

PACS numbers: 12.38 Aw, 74.25.Dw, 71.10.Fd

1. Introduction

Determining the phase diagram of a system is a central issue in many areas of physics.

Knowledge of the thermodynamic state of a system as a function of externally controlled

variables (e.g., temperature, density, or magnetic field) often provides important

macroscopic information and can serve to help in identifying correlations among its

microscopic constituents. A further determination of the nature of these correlations,

which can be a consequence either of local interactions or of the cooperative behavior

of a large number of constituents, is central to understanding the physical laws that

govern the system.

In this Key Issue, we discuss the thermodynamics of two seemingly different types of

systems: strongly interacting matter at extreme temperature and density, and high-Tc
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compounds (including cuprates and ferropnictides) at finite temperature and doping.

Strongly interacting matter is governed by Quantum Chromodynamics (QCD). For

QCD with two flavors of massless quarks, a chiral and/or deconfining phase transition

is expected at a temperature of T ∼ 160 MeV for zero quark chemical potential [1]

or at lower temperatures for a chemical potential as large as µ ∼ 300 MeV [2]. In

this latter regime, attractive quark interactions may lead to a ’color-superconducting’

phase [3, 4, 5, 6, 7, 8]. The high density end of the phase diagram is relevant for the

physics of dense stars [8, 9, 10]; the lower densities are relevant for relativistic heavy-ion

collisions [11] where it is hoped that unambiguous signatures of this phase transition

can be observed.

The energy scales appropriate for the description of high-Tc materials are evidently

much (i.e., roughly 1010 times) smaller. For low doping, these materials exhibit an

antiferromagnetic phase (AF) with transition temperatures of ∼ 150 K to 400 K. For

higher doping, these materials exist in a superconducting phase (SC) with a transition

temperature of tens of degrees kelvin. This schematic picture can be refined to obtain

a very rich phase structure with coexisting magnetic and pairing correlations and a

variety of complex phenomena including stripes and pseudogaps [12, 13, 14, 15, 16, 17].

The basic mechanism for pairing is not well understood, and identifying the manner in

which AF and SC phases dominate or coexist in the competition for the same electrons

may be helpful in eliminating certain scenarios [18, 19, 20, 21].

Both QCD and high-Tc materials are characterized by strong correlations among

their microscopic constituents, and there is no indication in either case of a suitable

“small parameter” that could lead to a meaningful perturbative description. Both

systems would appear to be too complicated to permit analytic descriptions. Even

numerical approaches are either extremely challenging or impossible as a consequence

of the fundamental fermion sign problem (e.g., See [12, 22, 23, 24]). For each of these

systems, numerical investigations yield highly oscillatory integrals that can prevent their

simulation using techniques based on importance sampling. Given this situation, it may

be useful to begin from the observation that these phase transitions are associated with

the breaking of a symmetry (e.g., the staggered magnetization of AF breaks the spin

rotational symmetry of the system).

In this Key Issue, we describe how an approach based on random matrix theory

(RMT) can provide useful information regarding the possible phase diagrams for a

variety of systems. Central to this approach is the identification of relevant symmetries

and their consequences for the macroscopic properties of the system.

The basic ideas of random matrix theory (RMT) were introduced by Wigner when

studying the complex spectra of intermediate and heavy nuclei [25, 26, 27]. His rationale

can be summarized as follows: Although the detailed properties of the lowest energy

states of nuclei could be understood by means of model Hamiltonians, there was no hope

that this approach could explain the excited resonances observed with neutrons of energy

up to several hundred eV. These states were far too numerous and too closely spaced

to permit detailed modelling. It was deemed to be both possible and more meaningful
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to determine the statistical properties of an ensemble of states, such as their density in

a given energy interval or the distribution of their energy spacings and widths. This

was achieved by constructing Hamiltonians with a structure that was directly dictated

by the quantum physics of nuclei, but which otherwise contained matrix elements that

were drawn at random on an appropriate distribution. The statistical properties of the

highly excited resonances were then obtained by performing suitable ensemble averages

analytically.

The central elements of this construction were the random and the deterministic

parts of the Hamiltonians. Here, the random part of the Hamiltonian was not intended

to describe randomly fluctuating processes or statistical disorder. Randomness was

rather used as a statistical instrument: One considered a large ensemble of nuclei, each

having a different Hamiltonian, and determined the properties of a group of nuclei

by computing ensemble averages. The deterministic part of the Hamiltonian provided

constraints on the resulting statistical properties. Initially, this deterministic structure

was that dictated by the time-reversal symmetry of the strong interaction, which implies

that the Hamiltonian can be written as a real symmetric matrix. By choosing statistical

distributions so that ensemble averages were representative of the vast majority of the

nuclei considered, the resulting properties were shown to be independent of the detailed

dynamics of the nuclear interactions. Only the underlying symmetries were important.

These early ideas have evolved considerably since, and random matrix theory is

now applied in many branches of nuclear, condensed matter, and particle physics. Still,

in each case, symmetry plays a central role. This Key Issue will focus on the application

of random matrix theory to the study of phase diagrams in systems where different

symmetries compete thermodynamically. As in the early work of Wigner, random

matrix theory is well suited for this task when the considered systems exhibit many

intermixing energy states whose detailed properties are largely unknown or very difficult

to determine. Starting from model Hamiltonians constrained by symmetries and generic

mechanisms, the results are expected to be broadly representative of an ensemble of

systems respecting these constraints. Ensemble averaging will eliminate details specific

to individual Hamiltonians, and the features of the resulting phase diagram should thus

be sufficiently robust that they will emerge in “almost all” specific cases.

Before considering this specific application, we wish to clarify the context in

which it has been developed. Nowadays, random matrix theory encompasses a vast

domain of research which has been reviewed in many works. (A non-exhaustive list is

available in [28, 29, 30].) The consequences of symmetry constraints can be studied

at two different levels — microscopic and macroscopic. Microscopic investigations deal

with the correlations of the eigenenergies of the system on the scale of the average

spacing. Examples of RMT predictions at this level include the spectral properties of

nuclear resonances, atomic energy levels, sound waves in quartz crystals, transmission

modes in quantum dots, and the eigenvalues of the QCD Dirac operator. One of the

most important microscopic results is universality. When RMT applies, eigenvalue

correlations are not only dictated by the symmetries of the system but are also
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independent of the details of the statistical distributions used to generate the ensemble

averages. (See, e.g., section 7 of [29]).

The second, macroscopic level of description deals with the consequences of the

underlying symmetries on the global state of the random matrix system. This is the

level of the models considered below. Here, the central quantity is the partition function,

from which the phase competition can be determined as a function of the variables of

the theory such as temperature or chemical potential. The resulting phase diagram is a

direct consequence of the symmetries of the system, and it is of interest to study their

robustness with respect to variations of the coupling constants of the theory. At this

stage, it is useful to note one detail of the random matrix approach: Matrix elements

are drawn independently in such a way that all basis states are treated equally. Such

‘democratic treatment’ naturally implies that random matrix models are mean-field

models.

These two levels of description are closely related to one another. For instance, in

QCD with two massless flavors, it is observed that the smallest eigenvalues of the Dirac

operator in vacuum accumulate near the origin of the spectrum. This accumulation is

directly related to the spontaneous breaking of the chiral symmetry, as expressed by

the Banks-Casher relationship which provides a direct connection between the average

spectral density near the origin and the chiral order parameter [31]. Another strong

relationship can be seen in the fact that many macroscopic properties are ‘inherited’

from symmetry constraints imposed at the microscopic level. As will be shown below,

the random matrix partition function near the critical lines can be expanded as a power

series in the order parameters. In this sense, RMT bears a strong resemblance to

Ginsburg-Landau theory. In contrast to the Ginsburg-Landau approach, however, the

coefficients in the random matrix expansion cannot be freely chosen but must satisfy

relationships resulting from the form of the microscopic random matrix interactions.

These constraints can preclude the occurrence of some symmetry breaking patterns.

Thus, RMT can be used to determine the minimum number of symmetries which must

be imposed at the microscopic level in order to reproduce a given phase structure.

In this Key Issue, we describe the basic steps required to construct random matrix

models for phase diagrams. In the interests of readability, we have not attempted

to provide technical details. Emphasis is rather placed on the ongoing simplification

that arises in this construction, from the many variance parameters and complicated

block structure needed to describe the random matrix interactions at the microscopic

level to the few parameter ratios and elementary functional forms that characterize the

thermodynamic potential.

We start with two basic models in section 2. The first describes chiral symmetry

breaking in QCD, which is related to a quark-antiquark order parameter of the

form 〈ψ†ψ〉 (in Euclidean conventions). The second is the case of an attractive

phonon-like interaction, which produces pairing states with an order parameter of

the form 〈ψψ〉. In section 3, we summarize our previous work on QCD and high-

Tc superconductivity [32, 33, 34, 35, 36, 37]. Although different in nature, these
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systems exhibit phase structures with striking similarities in their symmetry breaking

patterns. In particular, we discuss the conditions required for the occurrence of either

a tetracritical or a bicritical point, corresponding respectively to the presence or the

absence of a phase with mixed broken symmetries. In section 4, this discussion is

extended to a tentative model for iron arsenide compounds with an s± order parameter,

and we discuss the possibility that this system can have a state with coexisting magnetic

and superconducting correlations. Section 5 presents final remarks regarding the random

matrix approach to phase diagrams as well as a selected list of open problems.

2. Two basic models

2.1. Chiral symmetry breaking in QCD

As a first illustration of the random matrix approach, we consider a model for chiral

symmetry breaking in QCD with two light flavors, leading to an order parameter of the

form 〈ψ†ψ〉. Working in Euclidean space and assuming a zero vacuum angle, the QCD

partition function for fixed quark chemical potential, µ, and temperature, T , is given as

Z(µ, T ) = e−Ω(µ,T )/T =
∫

Dψ†DψDA e−SE , (2.1)

where SE is the Euclidean action

SE =
∫ 1/T

0
dx0

∫

d3x





1

2g2
TrF 2

µν −
Nf
∑

f=1

ψ†
f (DQCD +mf + µγ0)ψf



 . (2.2)

Here, ψf and ψ†
f describe quark and antiquark fields of mass mf and Nf = 2 is the

number of flavors. Quarks interact via the exchange of gluon fields,

Aµ =
3
∑

a=1

TaAµa, (2.3)

where Ta are the generators of the SU(Nc) color algebra (with Nc = 3 throughout this

section), and the coupling arises via the Euclidean Dirac operator

DQCD = γµ(∂µ + iAµ), (2.4)

where the γµ are hermitean. (γ0 is the matrix coupled to the time derivative ∂0.) The

dynamics of the gluon fields is contained in the quadratic term, TrF 2
µν/(2g

2), where

Fµν = ∂µAν − ∂νAµ + i [Aµ, Aν ] , (2.5)

the trace is carried over colors, and g is a coupling constant. As described in the

introduction, the resulting interactions are too complex to be solved exactly, and one

must resort to approximations.

The random matrix approach starts from symmetry considerations: In the chiral

limit, mf → 0, the QCD partition function is invariant under SU(Nf )×SU(Nf ).

Nevertheless, chiral symmetry is spontaneously broken to SUV (Nf) in the vacuum [38].

In the early 90’s, it was discovered that chiral symmetry breaking could be seen in the

dynamics of the small eigenvalues of the Dirac operator under fluctuations of the gauge
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field configurations. It was already known from the work of Banks and Casher [31]

that the chiral order parameter, 〈ψ†ψ〉, can be expressed as an accumulation of the

eigenvalues near zero virtuality. (The actual relationship will be made explicit below

in equation (2.8).) In 1992, Leutwyler and Smilga derived further sum rules for the

spectrum of the Dirac operator, which are dominated by the eigenvalues near zero

virtuality [39]. In 1993, Shuryak and Verbaarschot [40] introduced a random matrix

model for chiral symmetry breaking, where the QCD partition function in vacuum is

approximated as

ZRMT(µ = 0, T = 0) =
∫

DW
Nf
∏

f=1

Dψ∗
f Dψf exp





Nf
∑

f=1

ψ∗
f (DRMT +mf )ψf





× exp
(

− nΣ2 Tr[WW †]
)

. (2.6)

In this approach, it is expected that the spectrum of the Dirac operator, DRMT, has the

same properties as DQCD provided the model satisfies the same global symmetries as

QCD. In particular, in the chiral limit mf = 0 the Dirac operator should anticommute

with γ5. Working in the basis of the eigenstates of γ5, D must therefore have the block

structure

DRMT = i

(

0 W

W † 0

)

, (2.7)

where W is an n×n complex matrix which models the QCD interactions. The choice of

complex elements corresponds to the chiral unitary ensemble (chGUE), which is relevant

for fermions in the fundamental representation. There exists two other ensembles,

the chiral orthogonal (chGOE) and chiral symplectic (chGSE) ensembles, which are

discussed in [41].

The dynamics of the interactions are now materially simplified. The quadratic

term ∼ F 2
µν in the action (2.2) is replaced by drawing the matrix elements of W on

a Gaussian distribution with zero mean and inverse variance Σ. Hence, an ensemble

average is made over gauge field configurations. The corresponding number of degrees

of freedom is proportional to n, which serves as the volume of the system and is to be

taken to infinity at the end of the calculations (i.e., the thermodynamic limit). Note

that the matrix elements Wij are drawn on the same distribution for all i and j. In other

words, the random matrix interactions are independent of the choice of basis states. As

a result, no spatial range can be specified. The only scale introduced is that of the

interaction strength, ∼ 1/Σ.

Given the form of equation (2.7), the spectrum of DRMT has the desired properties.

Because the Dirac operator anticommutes with γ5, eigenvalues occur in pairs ±iλ with

eigenstates ui and γ5 ui, so that the spectrum is symmetric about λ = 0. Chiral

symmetry is however spontaneously broken in the ground state. The chiral order

parameter can be obtained from the Banks-Casher relationship [31] as

|〈ψ†ψ〉| = lim
λ→0

lim
mf→0

lim
n→∞

πρ(λ)

2n
, (2.8)
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where

ρ(λ) =

〈

∑

i

δ(λ− λi)

〉

(2.9)

is the average spectral density. Note that the different limits in (2.8) do not commute.

They must be taken in the order indicated since eigenvalues accumulate near λ = 0

as n is taken to infinity. (In particular, it can be seen that reversing the λ → 0 and

n → ∞ limits would give zero, since ρ(0) = 0 for any finite n as a consequence of the

±λ symmetry noted above.)

Further properties of the spectrum were shown to match those of QCD (for

eigenenergies λ ≪ ΛQCD). First, the model of equations (2.6) and (2.7) was shown

to obey the QCD Leutwyler-Smilga sum rules [39, 42]. Second, direct comparisons with

data from numerical simulations of QCD on a lattice showed that the spectrum of the

Dirac operator simulated at the scale of the average energy spacing (the ‘microscopic

level density’) agrees with the random matrix predictions within computational

uncertainties [43, 44, 45, 46, 47, 48]. All together, these results demonstrated that

the eigenvalue correlations near λ = 0 are a direct consequence of the underlying chiral

symmetry and do not depend on the specifics of the interactions. In that sense, the

correlations are universal. Of course, QCD could have been an “exceptional” theory

with spectral correlators different from the ensemble average. The fact that it is not the

case provides encouragement that random matrix arguments can also offer insight into

its macroscopic properties.

Chiral symmetry breaking can be studied at a macroscopic level with the aid of the

thermodynamic potential. The chiral random matrix model can be solved exactly by

standard methods. There are three steps. First, the matrix elements Wij are integrated

over to give [49]

ZRMT(0, 0) =
Nf
∏

i=1

Dψ†
i Dψi eY , (2.10)

where Y is an effective quartic interaction potential given as

Y = − 1

nΣ2

∑

f,g,i,k

ψf†Lkψ
f
Riψ

g†
Riψ

g
Lk +

∑

f,i

mf (ψ
f†
Liψ

f
Li + ψf†Riψ

f
Ri), (2.11)

Second, each fermion bilinear is expressed as combinations of squares which can then

be linearized by means of a Hubbard-Stratonovitch transformation

eAQ
2 ∼

∫

dx exp

(

− x2

4A
−Qx

)

, (2.12)

which introduces an auxiliary variable, x. Focusing on the term relevant for chiral

condensation, only one such auxiliary variable, σ, is considered, and the partition

function becomes

ZRMT(0, 0) ∼
∫

dσ e−2nNf Ω(σ), (2.13)

with a thermodynamic potential

Ω(σ) =
Σ2 σ2

2
− log(|σ +m|), (2.14)
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where we have assumed m1 = m2 = m for simplicity. Interestingly, the function Ω(σ)

is even in the limit m = 0, reflecting chiral symmetry. For the final step, the integral

on the right side of equation (2.13) can be solved exactly in the thermodynamic limit

n → ∞ by the saddle-point method, as limn→∞(1/2nNf) logZRMT = −minσ Ω(σ). In

the chiral limit m→ 0, the minimum of Ω(σ) is simply given as

σ0 = 1/Σ. (2.15)

The corresponding chiral condensate in vacuum is then

〈ψ†ψ〉 = lim
m→0

lim
n→∞

1

2nNf

∂ logZ

∂m
= Σ. (2.16)

Note again that the thermodynamic limit must be taken first to produce a meaningful

result. In conclusion, the vacuum state has a non-zero order parameter as a result of

the spontaneous breaking of chiral symmetry.

This analysis can be extended to finite temperature and density in order to

describe the complete phase diagram. Technically, T and the chemical potential, µ,

are introduced in the Dirac operator by the fermion Matsubara frequencies ωn =

µ+(2n+1)iπT (where n is an integer). In other words, D is replaced by D+γ0ωn, and

the partition function is summed over the ωn’s [49, 2]. The thermodynamic potential

can again be determined by following the procedure described above. The result is

simply

Ω(σ) = Aσ2 −
∑

n,±

log
(

(±(σ +m) − µ)2 + (2n+ 1)2π2T 2
)

, (2.17)

where A is a constant proportional to Σ2. Note the structure of the logarithm term,

which can be rewritten as
∑

n,± log(E2
± + (2n + 1)2π2T 2), where E± = ±(σ + m) − µ

represent the quark (+) and antiquark (−) single quasiparticle energies in a fixed

auxiliary field, σ.

A simplified potential can be obtained by restricting the frequency sum to the two

smallest frequencies, µ + iπT and µ − iπT [49]. The resulting potential can then be

minimized analytically and gives a polynomial gap equation for σ0(µ, T ),

Aσ0 =
∑

±

σ0 +m± µ

(σ0 +m± µ)2 + π2T 2
, (2.18)

which can be solved exactly in order to describe the phase diagram in the (µ, T ) plane.

The resulting phase diagram is shown in figure 1 (a) in the chiral limit m → 0.

(The other phase structures will be discussed in section 3.) In vacuum, σ0 6= 0 and chiral

symmetry is spontaneously broken. For small values of µ, chiral symmetry is restored

at a finite temperature via a continuous (second-order) phase transition. By contrast,

chiral symmetry restoration along the zero temperature axis is realized by means of a

first-order phase transition, with discontinuities in both the pressure and the density of

the system. In this respect QCD bears a strong analogy to an antiferromagnet, where

an increase of the applied magnetic field induces an abrupt vanishing of the staggered

magnetization of the ground state. In QCD, the chemical potential is an intensive

quantity whose increase leads to a variation of the baryon density 〈ψ†γ0ψ〉. However,



Random matrix models for phase diagrams 9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

t

CB

CS

T/Tc

µ/σ0

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

T/Tc

µ/σ0

t

CB

CS

SC

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

t

CB

CS

SC

CB+SC

T/Tc

µ/σ0
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

b

T/Tc

µ/σ0

CS

SC

CB+SC

CB

(c) (d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

t

t4

µ/σ0

CS

CB

SC

T/Tc

CB+SC

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

CB+SC

SC

CS

µ/σ0

T/Tc

t

(e) (f)

Figure 1. Figure (a) shows the phase diagram for the chiral symmetry breaking

model of section 2. This phase structure also shows one of the six topologies that can

be realized in the random matrix model for the competition between chiral symmetry

breaking and quark pairing, see section 3. CB is the chiral broken phase, CS the

chiral symmetric one, SC the superconducting phase, and CB+SC the mixed broken

symmetry phase. (This is a phase with an homogeneous coexistence of the two orders.)

First- and second-order transitions are depicted by thick and thin lines, respectively.

t denotes a tricritical point, t4 a tetracritical point, and b a bicritical one. For the

diagrams (a)-(e), Tc is the transition temperature at µ = 0 and σ0 is the value of the

chiral field in vacuum. For diagram (f), Tc and σ0 assume the same expressions (i.e.,

Tc = σ0 =
√

3/B) even though they no longer correspond to a transition temperature

or a chiral condensate. From top left to bottom right, the panels correspond to α = 0.3,

α = 0.75, α = 1.054, α = 1.1, α = 1.4, and α = 1.8. Note that the phase structure (c)

contains a small wedge of mixed broken symmetry which is separated from CB by a

second-order line and from SC by a first-order line. The figures are adapted from [33].
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increasing µ also causes reduction of the chiral order parameter, 〈ψ†ψ〉. Similar to

the abrupt vanishing of the staggered magnetization under an applied magnetic field,

〈ψ†ψ〉 → 0 through a first-order transition. The rest of the phase diagram must be

continuously related to the transitions observed at T = 0 and µ = 0. As shown in

figure 1 (a), the second-order line starting from the µ = 0 axis continuously joins the

first-order line starting from the T = 0 axis. The two lines meet at a tricritical point, t,

located at finite values of T and µ.

The macroscopic results are clearly of a different nature from those obtained at the

microscopic level. It is important to understand the role played by the global symmetries

at the macroscopic level. How good are the random matrix predictions for the phase

diagram? Do they have a universal character? To answer these questions, two regions

must be distinguished — near the critical lines and away from them.

In the critical regions, the random matrix potential of equation (2.17) resembles

that typically obtained in a Ginsburg-Landau approach. Along the second-order critical

line, Ω(µ, T ) can be expanded as a series of powers of σ to give

Ω(µ, T ) = Ω0(µ, T ) + a(µ, T ) σ4 + b(µ, T ) σ6 + . . . , (2.19)

where a(µ, T ) and b(µ, T ) are known functions of µ and T . In this form, random

matrix theory resembles a mean-field φ4 theory. Furthermore, the coefficient a(µ, T )

vanishes at the tricritical point, and the theory exhibits the critical exponents of a

mean-field φ6 theory. This result would also have been obtained by a more traditional

Ginsburg-Landau approach. It is important, however, to recognize that the construction

of the random matrix model at the deeper microscopic level of the interactions fixes the

coefficients a(µ, T ) and b(µ, T ) uniquely. This is not the case in Ginsburg-Landau theory.

This fact has consequences on the thermodynamic competition between different phases

and will be discussed further in section 3.

Away from the critical regions, the shape of the phase diagram must be interpreted

with care. The phase structure was established on the basis of a severely truncated sum

over Matsubara frequencies. This is a rough approximation, which was shown to be

equivalent to a mere rescaling of the temperature through a monotonic function [34].

(Note that this truncation is not necessary if the phase diagram is to be considered

numerically.) Such a transformation shifts the phase boundaries and the critical points

in the (µ, T ) plane, but it preserves the overall shape of the phase diagram. Hence,

the topology of the phase diagram — the relative positions of the different phases —

is a direct consequence of the underlying symmetry and is a robust prediction. The

predicted order of a given phase transition is more delicate to assess. As stressed earlier,

the random matrix approach ignores most of the dynamics of the interactions. A more

detailed description can affect the energy balance between the different states of the

system and lead to local modifications of the order of a phase transition, e.g. change

a second-order line into a weak first-order one. This level of approximation is however

perfectly acceptable as such corrections are to be expected in any mean-field approach.

Indeed, the order parameter is weak in the critical regions, and it is thus fairly sensitive
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to the inclusion of additional thermal or quantum fluctuations.

2.2. Phonon mediated superconductivity

As a second example, we consider a random matrix model for a system of electrons

with a longitudinal phonon interaction leading to a pairing condensate ∼ 〈ψψ〉. This

model will be compared to results expected from mean-field approaches based on the

BCS theory in order to illustrate the method and to highlight differences with respect

to the more complete microscopic approach. The random matrix model was motivated

by a more extensive study including antiferromagnetism and superconductivity [37], the

results of which will be discussed in section 3. Once again, some calculational details

have been omitted in order to focus on the basic structure of the model.

We wish to reproduce the basic structure of the partition function

Zph(µ, T ) =
∫

DφDψ†Dψ e−
∫

1/T

0
dx0(H0−el−µN+H0−ph+Hint), (2.20)

where φ(x) is a real field describing longitudinal phonons, ψ describe electrons,

H0−el − µN is their free energy, H0−ph is the Hamiltonian of free phonons, and the

electron-phonon coupling is given as (see, e.g., [50])

Hint = g
∑

α

∫

d3xψ†
α(x)ψα(x)φ(x), (2.21)

with α the spin index and g a real coupling constant. It is implicitly assumed that the

phonon interaction decreases sufficiently rapidly with distance to justify the contact form

of Hint. The phonon interaction is attractive and competes with Coulomb repulsion; for

electrons near the Fermi surface, the phonon interaction dominates and tends to produce

s−wave electrons pairs with an order parameter

mSC−s =

〈

∑

p,ωn,α,β

ψα(p, ωn)(iσ2)α,βψβ(−p,−ωn)
〉

, (2.22)

where iσ2 is the antisymmetric spin matrix. Pairing leads to a reorganisation of the

ground state of the system, and in particular, leads to the opening of a gap in the

quasiparticle spectrum. The gap, ∆, obeys the equation

∆ =
|λ|T
(2π)3

∑

n

∫

d3p
∆

((2n+ 1)πT )2 + (ε(p) − µ)2 + ∆2
, (2.23)

where |λ| ∼ g2, n are integers, and ε(p) − µ ≈ v(p− pF ) is the energy of a single non-

interacting electron near the Fermi surface. In this construction, it is implicitly assumed

that the relevant states are centered around the Fermi energy, µ, in a narrow shell with

an energy width ∼ 2ωD where ωD is the Debye energy for longitudinal phonons.

A random matrix formulation would naturally start with a partition function of

the form

ZRM−ph(µ, T ) =
∫

Dψ†DψDHintP [Hint] e
−ψ†Hψ, (2.24)

where H = H0 − µN + Hint is the sum of the single-electron Hamiltonian and an

hermitean term Hint describing the exchange of phonons. This term is chosen diagonal
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in spin space. The term P [Hint] describes the dynamics of the phonon fields. In

order to construct an order parameter of the form of equation (2.22), the following

parametrization is introduced: the full set of states is divided in two complementary

subsets {1, α, i} and {2, α, i} where the index i denotes (p, ωn) in the first subset and

(−p,−ωn) in the second. With this parametrisation, the random matrix version of the

order parameter assumes the form

mSC−s =

〈

∑

i,α,β

ψ1,i,α(iσ2)α,βψ2,i,β

〉

. (2.25)

The interactions Hint are constrained by time-reversal symmetry. In coordinate

representation, the phonon field is real since it carries no electric charge. In momentum

representation, we thus require that the Fourier components of the matrix elements

satisfy the complex conjugation constraint

(p, ωn|Hint|q, ωm) = (−p,−ωn|Hint| − q,−ωm)∗. (2.26)

Using the parametrization just introduced, it can be shown that this is equivalent to

imposing the following block structure [37] :

Hint = 1spin

(

B C

C∗ B∗

)

, (2.27)

where the hermiticity of Hint requires that C is complex symmetric and B is Hermitean.

Because the form of the time-reversal operator depends on the basis of states used, the

block structure of the random matrix Hint is associated with a specific choice of basis of

states (i.e., states in the momentum representation related by time-reversal symmetry).

As in our first example from QCD, we wish to explore the consequences of the

block symmetry in equation (2.27) while considerably simplifying the dynamics of the

phonon interactions. First, we assume that the important states are those for which

phonon exchange dominates Coulomb repulsion, as in the microscopic theory. As a

second approximation, we note that the detailed theory of equation (2.20) contains a

free phonon term H0−ph which is a bilinear function of the field φ. As in QCD, we

replace this term by a random matrix with elements drawn on a Gaussian distribution

with zero mean and fixed inverse variances, Σ2
B and Σ2

C . This gives

P [Hint] =
∫

DBDC exp
(

−N(Σ2
BTrBB† + Σ2

CTrCC†)
)

, (2.28)

where N represents the total number of states (over the two subsets) and will be taken

to infinity at the end of the calculations. This form introduces the possibility of having

different strengths associated with scatterings from a region to itself (ΣB) and between

different regions (ΣC). A particular choice can be made that reflects the known nature of

the phonon interaction for any given material, but this is not essential for what follows.

Except for this difference, no other scale is introduced. With the parametrization

introduced above, the resulting interaction has an infinite range in momentum space

and is thus a contact interaction in coordinate representation, as in equation (2.21).
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To proceed, we again restrict the sum over Matsubara frequencies to the two lowest

terms, ±πT . The free energy term becomes

ψ†(H0 − µN)ψ =
∑

±,i,α

(

(±iπT − µ)ψ†
1,±,i,αψ1,±,i,α + (∓iπT − µ)ψ†

2,±,i,αψ2,±,i,α

)

, (2.29)

where, consistent with the parametrisation introduced above, states in {1} and {2}
have opposite Matsubara frequencies. (Here, the Matsubara index ± is written out

explicitly.) The random matrix model is solved following the three-step procedure

described above: First, the interaction matrix elements are integrated over, yielding

an effective potential Y with quartic terms of the form ∼ ψ†
iψjψ

†
jψi and ∼ ψ†

iψjψ
†
iψj .

(Here, only the random matrix indices are shown.) The second set of terms, which

describe an attractive interaction favoring the formation of pairing condensates 〈ψiψi〉,
are of particular interest. Second, the quartic terms are linearized by means of Hubbard-

Stratonovich transformations. Third, a thermodynamic potential is calculated exactly

in the thermodynamic limit N → ∞. The minimum of this potential describes the

thermodynamic state of the system as a function of T and µ. The entire procedure is

described in detail in [37]. Concentrating on the pairing channels, we find

Zph−RM ∼
∫

d∆d∆∗ exp(−2NΩ) (2.30)

with

Ω(∆) = A|∆|2 − 1

2
log(µ2 + |∆|2 + π2T 2), (2.31)

where the auxiliary field ∆ is complex and is associated with the order parameter of

equation (2.25) while the constant A is given as

A =
1

Σ−2
B + Σ−2

C

. (2.32)

Note the structure of Ω(∆), which is similar to that found for QCD in equation (2.17).

It contains a quadratic term A|∆|2 which represents the energy cost for creating a

condensate and a logarithmic term which can be rewritten as
∑

± log(E2
± +π2T 2) where

E± = ±(µ2 + |∆|2)1/2. This expression is reminiscent of the quasiparticle energies in the

microscopic theory, ±((εp − µ)2 + |∆|2)1/2 with εp taken to zero. It is hardly surprising

to see this limit emerge in the random matrix framework since no electron energy was

introduced in the single-electron Hamiltonian H0.

It is also interesting to consider the gap equation, which is given in the random

matrix model as
∂Ω

∂∆∗
= 0 =⇒ A∆ =

∆

2(µ2 + |∆|2 + π2T 2)
. (2.33)

Comparison with the gap equation (2.23) of the microscopic theory shows evident

similarities, but (2.33) is polynomial and can thus be solved exactly: A paired state with

∆ 6= 0 is found for µ2 + π2T 2 ≤ 1/(2A), and the system is unpaired (∆ = 0) otherwise.

As a result, at a given density (i.e., at some fixed µ), the system undergoes a continuous

transition from a paired to an unpaired state at T = Tc = π−1(1/(2A)−µ2)1/2. For small

gaps, Ω can be expanded as Ω(∆) ≈ Ω(0)+a(µ, T )|∆|2 +b(µ, T )|∆|4, where a(µ, T ) and
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b(µ, T ) are known functions. Near Tc, we have a ∼ (T − Tc), so that the theory gives

the critical exponents of a mean-field φ4 theory.

The reader may be surprised that the random matrix gap equation (2.33) does not

share a well-known feature with the BCS gap equation: In the zero temperature limit

and for ∆ → 0, the right side of (2.23) contains a logarithmic singularity for ε(p) near

the Fermi surface. As a result, a solution with ∆ 6= 0 exists no matter how weak the

strength λ. In contrast, the random matrix gap equation admits a paired solution only

if µ2 + π2T 2 ≤ 1/(2A). It follows that weak interactions, corresponding to large inverse

variances Σ2
B and Σ2

C as well as a large value of A, favor a paired state in only a restricted

region of the (µ, T ) plane and a vanishing gap in the rest of the phase diagram.

Comparing (2.23) and (2.33), the absence of a logarithmic singularity in the random

matrix approach can be attributed to two factors: First, the truncation of the Matsubara

sum, which prevents the construction of a Fermi-Dirac distribution, and second, the

lack of an explicit reference to momentum in the right side of equation (2.33), which

prevents the construction of a density of states over a range of energies. As a result,

for fixed ∆, the random matrix model contains only two energy states, E±, where a

microscopic model would have energies ε(p) continuously distributed near the Fermi

surface µ. The gap equation is then polynomial and does not contain the logarithmic

singularity. The discrepancy with the BCS approach should not be considered as a

weakness. The vanishing of the random matrix gap occurs in regions of parameter

space where the condensate would otherwise be weak and fragile against the inclusion

of additional fluctuations (either quantum or thermal). Determining the fate of the gap

in these cases clearly requires going beyond mean-field, even in a BCS approach. The

level of approximation offered by the random matrix approach thus appears reasonable.

3. Phase diagrams in QCD and in high-Tc materials

The nature of the correlations that arise when different symmetries compete for the

same degrees of freedom and the macroscopic manifestations of this competition are

matters of primary concern in condensed matter systems. The result is often a rich

phase structure that can depend sensitively on the coupling parameters of the theory.

We will now show how random matrix theory can be used to address these questions by

considering two apparently different systems — QCD at finite temperature and density

and high-Tc superconductors and d−wave pairing as found in the cuprates.

For QCD, we consider the thermodynamics competition between chiral symmetry

breaking, described in 2.1, and quark pairing, which is analogous to the electron pairing

discussed in 2.2. Quark pairing might occur in dense and cold quark matter as a

result of the attraction provided by the strong interaction in the color antitriplet

channel [3, 4, 5, 6, 7]. The formation of quark pairs might lead to energy gaps as

large as ∆ ∼ 100 MeV for quark chemical potentials of the order of 300 MeV and have

direct consequences on the phase structure of nuclear matter at high density. In the

following, we consider the case of QCD with two light flavors, for which the dominant
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pairing order parameter is given as
〈

ψfασ(p)ψgβσ′ (−p)
〉

= φ(p2) εfg εαβ3 εσσ′ , (3.1)

where p is a four-momentum, f and g are flavors, α and β denote colors, while σ and

σ
′

are spins. The tensors ε impose antisymmetric combinations of the various indices.

This order parameter breaks color symmetry from SU(3) to SU(2) while preserving the

SUL(2) × SUR(2) flavor symmetry.

For high-Tc materials, we consider a two-dimensional system of electrons on a

square lattice. There is a vast literature reporting a rich and complex phase structure

arising from the competition between magnetic and pairing correlations [12, 13, 14].

Proposed order parameters include d−wave pairing (see [51, 52] and references therein),

stripes [15], or correlations arising from the pseudogap phenomenon [53, 54]. Here,

we investigate the competition between two of these possibilities. The first one is

antiferromagnetism with an order parameter of the form

mAF =

〈

∑

pωnαβ

ψ†
α(p + Q, ωn) σαβ ψβ(p, ωn)

〉

, (3.2)

where p are momenta in the first Brillouin zone, Q = (πh̄/a, πh̄/a) is the AF ordering

vector (a is the lattice spacing), ωn = (2n+ 1)πT are fermion Matsubara frequencies, α

and β are spin indices, σ are the spin Pauli matrices, and 〈. . .〉 = Tr(. . . e−βH) denotes

a thermal average. The second order parameter is associated with d-wave pairing and

is given as

mSC−d =

〈

∑

p,ωn

g(p)ψ↑(p, ωn)ψ↓(−p,−ωn)
〉

, (3.3)

where

g(p) = cos
(

pxa

h̄

)

− cos
(

pya

h̄

)

(3.4)

is the d-wave form factor. Both theoretical and numerical lattice models indicate that

the richness of the phase diagram results from a very delicate energy balance between

the competing phases and is highly sensitive to the parameters of the theory and to

external variables (e.g., temperature and doping) [13, 55].

Despite the differences in the nature and the scale of their interactions, QCD and

high-Tc materials resemble each other in significant ways. We already stressed that

chiral symmetry is restored abruptly as the quark chemical potential is increased just as

antiferromagnetic order vanishes in the presence of a sufficiently strong magnetic field.

In each case, the varying external field is not coupled to the order parameter directly

but rather ’exhausts’ enough degrees of freedom to destroy the initial order. For each of

these systems, we allow for the additional possibility of a thermodynamic competition

between pairing and chiral/antiferromagnetic order. A major distinction between these

two systems is that only two colors participate in the pairing state of QCD while all

spins contribute to the d−wave order parameter of high-Tc materials.

Random matrix models can be constructed as indicated in section 2, starting with

the identification of the relevant symmetries and a construction of the interactions.
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For QCD, the additional color and spin symmetries need to be included in the matrix

elements: The block matrix W in equation (2.7) acquires an expanded color and spin

block structure and becomes

W =
3
∑

µ=0

8
∑

a=1

λa ⊗ σµ ⊗Aµa, (3.5)

where σµ = (1, iσ) with σ the spin Pauli matrices, λa are the generators of the color

SU(3) algebra, while Aµa are real matrices representing single-gluon exchange. As

before, ensembles averages are carried over the gluon field configurations; the matrix

elements of Aµa are drawn on a Gaussian distribution with zero mean. To respect

Lorentz and color invariances in vacuum, the inverse variance is chosen to be independent

of both indices µ and a [32, 33].

The model for high-Tc superconductivity is constructed in a manner similar to

the phonon-exchange model of section 2.2. First, a parametrization is introduced

that partitions the first Brillouin zone into states related by momentum reversal. In

order to accommodate correlations induced by the AF state of equation (3.2), a further

division is made between states that are related to one another by a momentum shift

of Q = (π/a, π/a). Overall, this gives a total of four momentum regions, (p, ωn),

(p + Q, ωn), (−p,−ωn), and (−p−Q,−ωn), which partition the first Brillouin zone in

four equal parts [37]. With this parametrization, the AF order parameter is written as

mAF =

〈

4
∑

r,s=1

M
∑

i,j=1

∑

α,β=↑,↓

ψ†
r,i,ασαβ (ΓAF )r,s δij ψs,j,β

〉

, (3.6)

where r and s are region indices and ΓAF is the matrix

ΓAF =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0













. (3.7)

In constructing the superconducting order parameter, we choose to replace the exact

form factor g by the low-energy approximation

φd(p) = sign (g(p)) , (3.8)

which neglects the detailed momentum dependence of g but retains its d−wave character

by changing sign for every 90 degree rotation of p. The partition of the first Brillouin

zone can be chosen so that g is constant in each region [37]. The SC order parameter

can then be written as

mSC−d =

〈

4
∑

r,s=1

M
∑

i,j=1

ψr,i,↑ (ΓSC−d)r,s δij ψs,j,↓

〉

(3.9)

where the d−wave form factor is given as

ΓSC−d =













0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0













. (3.10)
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The construction of the random matrix interactions is not as straightforward as in

QCD, because there is no microscopic theory which formulates the problem in a form

similar to that of the Yang-Mills action of equation (2.2). The problem could then be

approached by writing an effective two-body potential at the level of the quartic term

Y of equation (2.11). The question is to identify the most effective two-body potential

which accurately describes the interactions between the lowest-lying degrees of freedom

in the system. This is for instance the approach followed by the Hubbard or the t-J

model. We adopted a quite different approach by starting at the deeper microscopic level

of the action, where we postulated the existence of a generic interaction carried by the

exchange of either density or spin fluctuations. In some sense, this would describe a ’glue’

interaction where Lorentz invariance is broken but rotational symmetry is preserved.

Following the spirit of the models discussed above, no further specifications are made

on the dynamics of interactions, whose matrix elements are drawn again on Gaussian

distributions. A last, but not essential, element of the construction is the addition in

the action of a spin-independent term ψ†Γtψ with

Γt = diag(t,−t) ⊗













1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1













, (3.11)

which mimics nearest neighbor hopping. Diagonal terms can be positive or negative,

as are the free electron energies ε(p) = −2t0(cos(pxa/h̄) + cos(pya/h̄)). Similar to the

nesting condition ε(p + Q) = −ε(p), the elements of Γt change sign under a change of

region corresponding to a momentum shift Q [37].

As constructed, the QCD and high-Tc models can be solved exactly in the

thermodynamic limit by following the methods described in section 2. Not surprisingly,

the associated thermodynamic potentials have a very similar structure. Working again

with the smallest Matsubara terms, we find the generic form

Ω(σ,∆) = A|∆|2 +Bσ2 −
∑

ℓ,±

log(E2
ℓ± + π2T 2), (3.12)

This result is quite remarkable: Even though underlying microscopic physics is very

different in each system, the resulting potentials share a common structure. In fact,

the models simplify greatly as the calculations proceed. Starting from a complicated

block structure and many different variances at the level of the action, the final

result depends only on the two constants A and B, which scale linearly with the

variances [32, 33, 37]. In equation (3.12), ∆ are pairing fields while σ denotes

either the chiral or the AF field. The Eℓ± are the quasifermion energies in a fixed

background of σ and ∆. In QCD, the sum over ℓ is carried over the three colors.

As only two colors participate in pairing, we have two ungapped excitations of energy

E± = ±(σ + m) − µ (as before in equation (2.17)) and four gapped excitations of

energy E± = [((σ + m) ∓ µ)2 + |∆|2]1/2. For high-Tc, all excitations are gapped and

have an energy E± = [(
√
t2 + σ2 ∓ µ)2 + |∆|2]1/2. These expressions are similar to the
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quasiparticle energies that were found in the microscopic theory of Ref. [56], and which

can be written as E±(p) = [(
√

ε(p)2 + σ2 ∓ µ)2 + g(p)2|∆|2]1/2, where g(p) is the form

factor given in (3.4). Approximating ε(p) by ±t and g(p) by φd(p) as in (3.8), so that

g2 ≈ φ2 = 1, the quasiparticle energies of the microscopic theory reduce to those of the

random matrix theory.

The phase structures are readily derived from the two gap equations ∂Ω/∂σ = 0

and ∂Ω/∂∆ = 0, which are polynomial in σ and ∆ and can thus be solved exactly. It

is also interesting to note that it is possible to rescale all fields and external parameters

by a multiplicative constant, with the result that the phase topology depends only on

the single ratio of α = B/A. In QCD (high-Tc), small values of α favor chiral symmetry

breaking (AF order) and large ratios favor superconductivity.

For QCD, an interaction mediated by single-gluon exchange has a ratio B/A = 3/4.

The corresponding phase diagram is shown in figure 1-(b). In addition to the chiral

phase structure obtained in the model of section 2, a superconducting phase (SC) is

found at the low-temperature/high density end of the plot. The transition is first order

as the chiral broken (CB) and SC phases cannot be directly related to one another by a

continuous transformation. It also is interesting to see how the phase structure evolves

when α is varied away from the value α = 3/4 associated with QCD. In total, only

six different topologies can be realized as shown in figure 1 and the phase structure of

figure 1-(b) is found over a large range of values of α, i.e. 0.42 < α < 1.05. It can

thus be concluded that this phase structure, which we associated with QCD, is fairly

robust against moderate variations in the detailed description of the random matrix

interactions. The random matrix results are consistent with those of early microscopic

models of color superconductivity [6, 57]. Some microscopic models also found a wedge

of mixed broken symmetry extending over the small temperature end of the first-order

line, as shown in figure 1 (c) [58, 59]. Note, however, that this phase structure is observed

in the present model over a fairly small range of values of α, i.e. 1.05 < α < 1.06. It

thus appears to be more fragile than the structure of figure 1 (b). The robustness of

the coexistence phase is also discussed in the context of NJL models in [60].

A similar investigation can be performed for the high-Tc model. Here, in the absence

of a detailed theory at the level of the action, the value of α is not known a priori. In

order to restrict the size of the parameter space to be explored, we make a number of

assumptions [37]: First, an AF state is expected at half-filling µ = 0. This leads us to

force fluctuation exchanges to be stronger for spin than for density. Second, we consider

interactions that are attractive in the d−wave channel but repulsive for s−wave pairing.

This requires interactions that favor large momentum exchange of order ∼ Q. The two

desired properties can be realised simultaneously with an appropriate choice for the

variances of the random matrix interactions [37]. For a given material, the variances

must reflect the different strengths of the scattering elements between the four regions of

states in the first Brillouin zone. Once the two conditions above have been imposed, the

variances can still be varied over a continuous — but restricted — range of values. The

resulting phase structure depends on the single parameter ratio α, which can assume
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Figure 2. The four allowed topologies for the phase diagram of high-Tc models. AF

is the antiferromagnetic phase, PA the paramagnetic one, and SC the superconducting

phase. First- and second-order transitions are depicted by thick and thin lines,

respectively. t is a tricritical point and b is a bicritical one. Tc is the transition

temperature for µ = 0 and small α and σ0 is the AF field at zero µ. A hopping term

t = 0.5
√

2/B is assumed. From top left to bottom right, the panels correspond to

α = 0.07, α = 0.2, α = 0.8, and α = 1.1. The figures are adapted from [37].

any positive value. The many allowed possibilities for the variances reduce in this case

to only four distinct phase topologies, which are illustrated in figure 2.

How well do these phase structures compare to experiments? High-Tc cuprates

exhibit an insulating AF phase at half-filling (µ = 0), with an AF ordering that

weakens as a function of doping and eventually disappears in favor of an SC phase

with a domelike phase boundary (See, e.g., [14, 61, 62]). Figures 2 (b) and (c) already

exhibit the coarse structure of this picture. However, a closer analysis reveals several

discrepancies. First, the present random matrix approach does not distinguish electron-

from hole-doped materials. This can be traced back to the kinetic energy term, which

takes only nearest-neighbor hopping into account and exhibits the nesting property. As

a result, the thermodynamic potential is an even function of µ. In principle, next-

nearest neighbor and higher-order hopping terms could be added to the model by
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using a hopping matrix whose eigenvalues have a sign distribution that reproduces the

symmetries of the corresponding kinetic energies in the various regions of the Brillouin

zone. Although we have limited ourselves to nearest-neighbor terms here, we expect

that a model with a more elaborate hopping matrix would distinguish between electron

and hole dopings. The second discrepancy concerns the transition between AF and SC

phases, which is reported to occur either through phase separation, structured spin and

charge distributions, or via a mixed AF+SC phase. (E.g., see the discussion in [62] and

references therein.) Here, only the first scenario of a first-order transition is found in all

cases. A third discrepancy can be observed in the absence (for hole doped materials) of

a pseudogap region separating the AF and SC phases. We will make further comments

on the last two discrepancies in the end of this section.

Returning to the similarities between the random matrix models for QCD and high-

Tc materials, limitations regarding the extension of some phases can be found in both

cases. In QCD, a microscopic theory would contain the same logarithmic singularity as

that present in the right side of equation (2.23) so that the diquark phase would extend to

arbitrarily high µ. In the high-Tc model, a similar singularity exists in the gap equation

for AF [63, 64] and results in an antiferromagnetic phase that exists independent of the

hopping strength t. In the random matrix model, by contrast, t must be kept below a

threshold value for the AF to be realized [37]. As discussed earlier in subsection 2.2,

these discrepancies are acceptable in a mean-field approach as they concern situations

where the condensates are weak and thus fragile.

A striking difference can be observed in the thermodynamic competition between

the order parameters when comparing the diagrams in figures 1 and 2. Both types of

systems support the coexistence of different phases along a first-order line. The two

competing phases then coexist at a given temperature with different densities. They

form an inhomogeneous state whose detailed spatial structure depends on the energetic

cost of creating an interface. Clearly, such a description is beyond the simple approach

considered here. A completely different situation occurs for the quark systems only.

As α is increased in favor of color-superconductivity (with values that are no longer

representative of QCD), a tetracritical point — the meeting point of four different

continuous transition lines — appears. The transition from one phase to the other

then proceeds continuously through an intermediate phase of mixed broken symmetry,

where both orders coexist in a spatially homogeneous phase. For the high-Tc system,

such a mixed broken symmetry state is absent. At best, a bicritical point appears,

marking the end of a first-order line with its discontinuous transition.

The absence of a tetracritical point in the high-Tc case is a direct result of the

absence of ungapped excitations. The conditions for the observation of a tetracritical

point can be determined by expanding the thermodynamic potential of equation (3.12)

as a power series

Ω(σ,∆) ≈ Ω(0, 0) + a2σ
2 + b2|∆|2 + a4σ

4 + b4|∆|4 + c4σ
2|∆|2 + . . . ,(3.13)

where the coefficients are known functions of µ and T . The AF state makes a transition
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to a paramagnetic state along the line a2 = 0, whereas the superconducting gap vanishes

along the second-order line b2 = 0. A critical point arises at the crossing of those two

lines. A mixed broken symmetry phase (with non-zero values of both σ and ∆) can be

stable near this critical point provided that the coefficients of the quartic terms satisfy

the inequality ρ4 = 4a4b4 − c24 > 0 [37]. In this case, the critical point is a tetracrictical

one. In the opposite case, ρ4 < 0, the critical point is only bicritical. For the high-Tc
model, it can be shown that ρ4 < 0 for all values of α. If a small fraction, f , of the

excitations were forced to be ungapped, ρ4 would become positive for a range of values

of α near unity, and a tetracritical point would be present for those couplings.

Although the mixed broken symmetry phase is never realized as a global minimum

of the thermodynamic potential of the high-Tc model, it is always an unstable solution

of the gap equations, i.e., a saddle-point of Ω(σ,∆). Further, the difference in energy

between this state and the global minimum of Ω(σ,∆) is small on the scale of the

inverse variance. This suggests that the existence of a mixed broken symmetry phase is

a delicate matter. It may well occur in specific dynamic models or in calculations more

detailed than those presented here, e.g., calculations beyond mean-field level, but the

demonstration that its appearance is robust may be challenging. This is an example of

useful information that can be obtained from a random matrix approach even though

a precise assessment of those effects requires more than the mean-field treatment of

random matrix theory.

A question related to the occurrence of critical points is whether the theory exhibits,

approximately or exactly, condensation patterns of higher symmetry near these points.

This would be the case, for instance, if the series expansion of Ω(σ,∆) could be expressed

as a polynomial in a single variable, i.e., a linear combination of σ2 and ∆2. In such

a case, the different phase transitions could be described as a rotation of a metavector

order parameter constructed with both σ and ∆, in the manner of the SO(5) theory

of superconductivity of Zhang [65] or the O(10) theories that have been proposed for

QCD [66]. We have found no indications of such higher symmetry in the vicinity of

a critical point for either the quark or the high-Tc systems described here. There is

one interesting case: In the high-Tc model in the limit µ = 0, the potential of equation

(3.12) becomes a function of the combination σ2 +∆2 provided that α = B/A = 1. This

higher symmetry is manifest only at µ = 0 and is broken for µ > 0 in favor of an SC

ground state.

We end this discussion with some comments on possible extensions of the model

for high-Tc superconductors. The present construction is based on only a few elements,

and we have shown how it can help in identifying symmetry-related results. At the

same time, the model cannot be expected to describe the entire spectrum of materials,

which can greatly differ in their detailed microscopic interactions. We have noted that

some of this variety can be encoded in the choices for the variances to be associated with

scattering processes between the different states of the first Brillouin zone. The strength

of these matrix elements can most likely be probed by two-point correlation functions

such as spin or density susceptibilities, which are experimentally accessible. Further
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work is needed in this direction. We also mentioned earlier the lack of a pseudogap

phase in the random matrix phase diagram. A pseudogap region is thought to arise as

a result either of correlations competing with the AF and SC orders or from preformed

Cooper pairs leading to large phase fluctuations in the pairing field [14]. We have not

attempted to model the pseudogap phenomenon here but can offer tentative indications

of the effort that would be required in this direction: The scenario of a competing order

could in principle be taken into account by decomposing the four-fermion random matrix

potential Y simultaneaously into the AF, SC, and the pseudogap channels (provided

one can make meaningful “sign approximations” similar to those of the SC channel)

and by constructing a new thermodynamic potential. The difficulties that could arise

in this approach would be the lack of a true density of states distributed around a

Fermi sea. This would make it difficult to obtain a faithful description of the Fermi arc

phenomenology but might still capture some of the interesting physics. The scenario of

phase fluctuations is less easily addressed in the present approach, since the degrees of

freedom associated with the fluctuations need to be introduced explicitly in the model.

4. Extension to a model for the ferropnictides

As an example of a possible extension of the models discussed so far, we turn

to the recently discovered ferropnictides, which constitute another class of type-II

superconducting materials exhibiting magnetic and superconducting correlations. A

current discussion of the iron arsenide compounds concerns the symmetry of the

pairing state and its relationship to the phase diagram. It has been claimed by

several authors [18, 19, 20, 21] that the occurrence of a mixed broken symmetry phase

would constitute an evidence for a pairing with an s+− symmetry, as opposed to the

conventional s++-wave. This claim relies on the observation that s+− pairing leads to a

mixed broken symmetry state if the two following conditions are met: The system has

a finite chemical potential breaking the particle-hole symmetry, and the electron band

is elliptic whereas the hole band is circular. In contrast, an s++ state meeting these two

conditions does not lead to a mixed broken symmetry state [18, 19].

The main elements of the corresponding microscopic theory are the following [67]:

The electronic structure of the system shows two hole pockets at the center of the first

Brillouin zone and electron pockets shifted at either ±(π, 0) or ±(0, π) (for a square

lattice with one Fe atom per cell). An AF state may develop with a form similar to

equation (3.2), where the sum over states {p} is now carried over one type of pocket,

whereas the corresponding {p + Q} states with Q = (π, 0) belong to the other type of

pocket. In the s+− pairing state, the gap function changes sign from the hole pockets to

the electron pockets, whereas an s++ gap function assumes the same sign in all pockets.

It is of interest to see how the model presented in the previous section should be

modified to describe such materials. Following [19], we assume two electronic bands

shifted by the momentum Q with respect to each other. One can easily partition the

first Brillouin in four equivalent regions related to one another by a shift in Q or by
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momentum reflection. The AF correlator then takes the same form given in equation

(3.7). Similarly, the sign change that is characteristic of an s±-wave state turns out

to be represented correctly by the matrix in (3.10). Finally, by collapsing each of the

electron and hole bands into a single energy term, e.g., t1 for electrons and −t1 for holes,

the corresponding single-fermion Hamiltonian is now described by a term ψ†Γtψ, where

Γt is given in (3.11) with the term diag(t,−t) replaced by a simple multiplicative factor,

t1.

By postulating random matrix interactions of the same form as in the model of the

previous section, the resulting thermodynamic potential is precisely that of equation

(3.12), for which all excitations are gapped. Thus, the phase diagrams are the same as

those for the cuprates, and the random matrix model would preclude the occurrence of

a mixed broken symmetry state. This is not inconsistent with the conclusions of [18, 19]

since only one of two required conditions are met by the random matrix interactions.

Here the model ignores the ellipticity of the electron bands. However, according to the

discussion of the previous section, a mixed broken symmetry state might arise if some

of the excitations do not participate in pairing, i.e. a fraction of the excitations are

ungapped.

Two more results can be derived: First, following [19] and assuming equal

coefficients for the quadratic terms of equation (3.12), i.e., A = B, one finds that the

critical point b is located on the µ = 0 axis and has a vanishing coefficent ρ4 = 4a4b4−c24.
This point is thus at the verge of becoming a tetracritical one. In contrast, assuming

an s++ state and fixing A = B yields a critical point which has ρ4 < 0 and is thus

bicritical. These results are consistent with the microsocopic model of [19].

The above findings demonstrate that the random matrix model already captures

many elements of the physics contained in the microscopic model of [19]. It will be

interesting to see whether the ellipticity of the electron states might also be mimicked

in the random matrix approach and how it might affect the results.

5. Conclusions

5.1. A summary

We have reviewed the construction of random matrix models for the phase diagrams

of a variety of systems. The general strategy starts at the level of the action with a

description of the interactions between fermions and exchange fluctuation fields. These

interactions assume the form of matrices with a global block structure dictated by the

symmetries of the theory. The detailed form of the interactions is simplified materially

by drawing matrix elements in the individual blocks at random. The result is a mean-

field model which is exactly soluble. The corresponding thermodynamic potential has

a simple structure involving only a minimal number of parameters and an explicit sum

over Matsubara frequencies. This form is perfectly suitable for numerical purposes, but

even greater simplification can be obtained by truncating this sum to a single term.
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While this truncation has quantitative consequences, it does not alter the topology of

the resulting phases for the cases considered.

Despite — or even because of — the many simplifying approximations made, we

believe that this approach to phase diagrams can be of value. In many calculations, it

can be difficult to distinguish between solid results that are protected by the underlying

symmetries of the problem and more tentative result that depend on the specific model

investigated. By performing an ensemble average over theories, the results of the random

matrix approach are dictated by symmetries alone. They can thus provide guidance

in identifying model-dependent and model-independent features. Similarly, they can

be useful in understanding the minimal number of symmetry constraints required

to reproduce specific phase structures. The great simplicity of the thermodynamic

potential obtained in these calculations makes it easy to check the robustness of

predictions with respect to variations in the description of the interaction. We also note

that near critical points, random matrix models bear strong similarities to Ginsburg-

Landau theories with the advantage of the presence of additional constraints, which are

inherited from the symmetries of the random matrix interactions. The freely-adjustable

parameters of Ginsburg-Landau theory are replaced by known functions of temperature

and chemical potential. As we have demonstrated above, these constraints can be

extremely helpful in ruling out certain topologies in the phase diagram.

Difficulties associated with the thermodynamic limit can be formidable when

calculating the phase diagram. The analysis in the previous sections showed that the

partition function is exponentially small in the volume of the system. Moreover, the

thermodynamic limit does not commute with other limits in the system. As a result, care

must be taken in cases where low-energy metastable states exist, as their contribution

to the partition function may be difficult to be distinguished from that of the ground

state. In such circumstances, a random matrix model can be useful in identifying the

metastable states. For systems with a finite fermion chemical potential, the situation

can be significantly worse. For example, the QCD Dirac operator is complex as a

consequence of the fermion sign problem, and numerical calculations with traditional

sampling methods are precluded. In such cases, random matrix methods represent one

of the few options available.

In the form presented here, random matrix models can be extended to any system

where the fermions are the main degrees of freedom, the symmetries of the interaction

are central to the problem, and the detailed dynamics of the exchange fields plays

a secondary role. The model can be realized in either of two ways: The simplest

approach consists of constructing the thermodynamic potential directly. This requires

the identification of the auxiliary fields to be associated with the order parameters of

the system and the determination of the single fermion energies in a fixed background of

those fields. The remaining parameters could then be chosen freely. The richer approach

adopted here is to start at the deeper level of the action. The reward for this extra effort

is insight regarding the constraints that are imposed as a consequence of the symmetries

of the interactions and their effect on the global properties of the system.
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5.2. Open questions

The various examples presented here indicate that a random matrices offer an interesting

approach to the construction of phase diagrams. However, a number of open question

remain:

• Fermion sign problem. Although the random matrix model can be solved at

finite chemical potential — using a saddle-point method which becomes exact

in the thermodynamic limit — numerical calculation of the same model are

plagued by the fermion sign problem. Difficulties present at the microscopic level

apparently disappear when working at a macroscopic level. The open question

is thus to understand the resolution of this apparent contradiction and to see

whether this mechanism can be exploited to ease the fermion sign problem.

Considerable work in this direction has been performed in a QCD context (see,

e.g., [68, 69, 70, 71, 72, 73]), where an interesting deterministic pattern in the sign

oscillations of the fermion determinant has been seen.

• The nature of the interactions at the microscopic level. The random matrix

model for high-Tc was inspired by earlier models for QCD. Given this background,

it was natural to identify the interactions at the more microscopic level as being

mediated by the exchange of density and spin fluctuations. Is this structure generic,

and can it represent other kinds of interactions, e.g., a static superexchange?

• Eigenvalue correlation for SC and AF states. In section 2.1 we noted

that correlations due to chiral symmetry in QCD could be analyzed either at the

microscopic level of the Dirac spectrum or at the level of the phase diagram. A

similar analysis has not been performed either for the pairing state in QCD or for

the AF and SC states in high-Tc superconductivity. It would be of interest to see if

the symmetries underlying these states induce similar microscopic correlations for

a suitable single particle operator. Such an analysis might require the construction

of an analogue of the Banks-Casher relationship.

• Summations over Matsubara frequencies. Since our primary concern has

been to determine the physically realizable topologies of phase diagrams, we were

willing to make simplifications in the thermodynamic potential which preserved

their topology. This led us to truncate the infinite sum over Matsubara frequencies

given by (2.17) by a single term. The resulting form, given by (2.18), is sufficiently

simple that it can be studied ‘by hand’, but it is quantitatively different from the

full result. It would be interesting to determine the extent to which the full random

matrix result of (2.17) can provide a quantitative description of model systems for

which the phase diagram can be constructed reliably. A related question is whether

the inequality ρ4 ≤ 0 for all α, found for both high-Tc and iron arsenide materials,

holds for the full result. A direct comparison with the microscopic theory of [19]

shows that ρ4 has the same sign in both the random matrix approach and in the

microscopic theory when α is near 1. It would be interesting to see if this result

remains valid in other cases.
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• Why do random matrix models work? We end this discussion by offering some

admittedly speculative suggestions about the origin of the success of random matrix

theory. Consider a real gas that obeys the ideal gas law. Interactions between its

molecules are strong, but their role is strictly limited to the establishment of a

statistical population of the states. The properties of the gas then follow from

purely statistical arguments that are independent of the nature of the underlying

molecular interactions. (Clearly, no one would consider attempting to determine

the details of the molecular interaction from the ideal gas law.) Similar ideas

form the basis of Niels Bohrs’ compound nucleus model [74]. It is presumed that

the energy of an incoming particle is rapidly distributed statistically among the

constituent nucleons. The description of the eventual decay of the excited state is

determined solely by this statistical distribution and is independent of the details of

the formation process. This is directly related to Wigner’s ideas that random matrix

theory should apply whenever single-particle energy levels are strongly intermixed

and contribute in an equilibrated or ‘democratic’ way to physical observables. To

the extent that these notions can be extended to encompass the thermodynamic

properties of QCD or high-Tc materials, the decision to replace the exact action

by an ensemble average should be legitimate. The phase diagram inherits only the

symmetries of the underlying action and is independent of its detailed properties.

Two additional clues point to the importance of strong energy level mixing. In

1984, Bohigas, Giannoni, and Schmit observed that the level correlations of the

Sinai billiard — a quantum system with a chaotically behaved classical analog —

were consistent with the predictions of RMT (in this case, those of the Gaussian

orthogonal ensemble). They further conjectured that RMT should correctly predict

the spectral correlators of any system whose classical analog is chaotic [76]. Here,

QCD and high-Tc superconductivity are both described by non-linear field theories.

The corresponding classical theories, and even more so the quantum many-body

theories, are expected to be chaotic (i.e., ergodic) in nature.

A second indication for the need for energy mixing comes from observed limitations

on the range of validity of the RMT description of spectral correlators. In principle,

RMT is expected to provide an exact description of all spectral correlators on

an energy scale which is vanishingly small compared to the full support of the

spectrum. In practice, RMT predictions for many systems (including QCD) agree

for eigenvalues with are smaller than the so-called Thouless energy, ETh (e.g.,

see [29]). This scale can be determined using ideas from localization theory, where

ETh is inversely proportional to the time required for a particle to diffuse across

the system. For energies greater than ∼ ETh, a particle crosses the system in a

time that is too short to resolve individual states. Given that the reflections at

boundaries scatter the particle to other energy states, a large number of individual

energy states end up contributing to the wave function, thus yielding the apparent

’democracy’ underlying the RMT description.

Ultimately, a strong argument for the value of the random matrix approach to phase
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diagrams should rely on clues for universality on both microscopic and macroscopic

scales. For a chiral random matrix model of QCD at zero µ and with a temperature

dependence given by the two lowest Matsubara frequencies, it was shown that the

thermodynamic approach and the Banks-Casher relationship yield exactly the same

chiral condensate as a function of temperature [75]. These results strongly suggest

that the physical content of the thermodynamic approach is actually dominated by

the microscopic spectral density — which we believe to be universal. For µ > 0

and T = 0, it was strongly argued that a random matrix model with the global

symmetries of QCD yield a microscopic spectral density of the same form as that

of the QCD Dirac operator [77, 78]. If similar connections can be established over

most the (µ,T ) plane and extended to a temperature dependence that includes

all Matsubara frequencies, then one can expect that the phase diagrams that we

constructed can be justified on the basis of the universality of the corresponding

microscopic correlators. It would be of particular interest to see if there is a relation

between the inequality for ρ4 identified for the phase diagrams of superconducting

materials and the properties of the microscopic correlators. This also indicates

that there is considerable interest in studying the microscopic spectral properties

of condensed matter systems!

One final open question remains: Why is the random matrix approach described

here so rarely used in the study of phase diagrams? The answer probably lies in the

fact that the starting form of the random matrix can be dauntingly complicated. For

example, the block form of the random matrix appropriate for the description of the

color and spin symmetries of QCD (3.5) is 6×6 and contains 32 component matrices. As

we have attempted to explain, these complications disappear step-by-step as one follows

the relatively direct path towards the thermodynamic potential of (2.17) and the even

simpler (but topologically equivalent) form of (2.18). Given the model-independence of

the final phase diagram and the merits of this approach relative to Ginsburg-Landau

theory as noted above, we believe that the initial investment in constructing the random

matrix is richly rewarded and can be recommended.
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