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Objectives:

recall some challenging combinatorial problems from
previous lectures
introduce a couple of new ones
difficulty: worth a variable number of bottles of wine
(scale: from 1 to∞).
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Setup minimization

Tool setup in automated manufacturing:

limited size of the tool magazine (say, 10 to 120 tools)

many more tools may be stored in a central storage area
transferred to the machines as required
costly, slow, error-prone operations

One-machine scheduling with tooling decisions:

Simultaneously
sequence parts to be processed and
allocate tools required to the machine

so as to minimize tool setup costs.
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Setup minimization

Various models for setup minimization.

Common data
M: number of tools;
N : number of parts;
A : M × N tool-part matrix:

aij = 1 if part j requires tool i , 0 otherwise;
C : capacity of the tool magazine ( = number of tool slots)

Feasible batch
A batch of parts is feasible if it can be carried out without tool
switches, i.e., if it requires at most C tools.
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Example

Capacity: C = 3

Parts
Tools P1 P2 P3 P4 P5

T1 1 0 1 0 1
T2 1 0 0 1 0
T3 0 1 1 1 0
T4 0 1 0 0 1
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Batch selection model

Batch selection
Find a feasible batch of maximum cardinality.

Equivalently:

Batch selection
Find a largest subset of columns of the tool-part incidence
matrix such that the submatrix induced by this subset has at
most C nonzero rows.

or...

Batch selection
Given a hypergraph, find a subset of C vertices that contains
the largest possible number of hyperedges.
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Pseudo-Boolean formulation

define : xi = 1 if tool i is selected, xi = 0 otherwise

part j can be processed if and only if xi = 1 for all tools i
such that aij = 1
equivalently: part j can be processed if and only if∏

i:aij=1 xi = 1

So:

Nonlinear knapsack
Batch selection is equivalent to the nonlinear (supermodular)
knapsack problem

max
∑N

j=1
∏

i:aij=1 xi

subject to
∑M

i=1 xi ≤ C, (x1, ..., xM) ∈ {0, 1}M
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Complexity

Theorem
Batch selection is NP-hard.

Generalization of maximum clique.

Many papers on this problem:
integer programming
heuristics
special “graphical” case
subproblem for part grouping problem: partition parts into
small number of feasible batches (minimize setups).
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Worst-case ratio

From a theoretical point of view, one may ask:

Worst-case ratio
What is the (theoretical) worst-case ratio of heuristics for the
batch selection problem, where:

wcr =
optimal value
heuristic value

?
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Analysis

Crama and van de Klundert (1999) proved:

Theorem
If there is a polynomial-time approximation algorithm with
constant worst-case ratio for batch selection, then there is also
a polynomial-time approximation scheme for this problem.

... meaning roughly that the optimal value can be approximated
arbitrarily closely in polynomial time.
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Conjectures

Conjecture
There exists no polynomial-time approximation algorithm with
constant worst-case ratio for batch selection, unless P = NP.
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Conjectures

Perhaps even true:

Conjecture
There exists no polynomial-time approximation algorithm with
worst-case ratio O(poly(C)) for batch selection, unless P = NP.
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Circular robotic cell
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Robotic cell flowshops

m machines in line (or on a circle), without buffer space:
M1, M2, . . . , Mm

loading station M0 and unloading station Mm+1

set of parts to be produced by the line
a unique robot loads and unloads the parts

Robotic cell scheduling
Determine

a sequence of parts,
a robot activity sequence,
a production schedule (start/end times),
so as to minimize cycle time (maximize throughput).
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Assumptions

We concentrate here on:

repetitive production of identical parts
no intermediate buffers
additive robot travel times.
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1-Unit cycles

1-Unit cycles
A 1-unit cycle is a sequence of activities which unloads exactly
one part in the output buffer and which returns the cell to its
initial state.

(In particular, every activity is performed exactly once and the
cycle can be repeated indefinitely.)

Crama and van de Klundert (1997) proved:

Theorem
For a robotic cell with m machines, a 1-unit cycle that minimizes
the average cycle time can be computed in O(m3) time.
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Optimality of 1-unit cycles

But... 1-unit cycles do not necessarily minimize the cycle time.

k -Unit cycles
A k -unit cycle is a sequence of activities which unloads exactly
k parts in the output buffer and which returns the cell to its
initial state.

Note: For some k , some k -unit cycle is optimal.
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Open question

Main open question:

Complexity
What is the complexity of computing an optimal (cyclic) robot
move sequence?

Conjecture
Computing an optimal (cyclic) robot move sequence is NP-hard.
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Definitions

Recall

Boolean functions
A Boolean function is a mapping ϕ : {0, 1}n → {0, 1}. Function
ϕ is positive (monotone, isotone) if

X ≤ Y ⇒ ϕ(X ) ≤ ϕ(Y ).

Set functions:
Boolean functions on {0, 1}n can also be viewed as set
functions, that is, functions defined on subsets of {1, 2, . . . , n}.
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Example

x1 x2 x3 S ϕ

0 0 0 ∅ 0
0 0 1 {3} 1
0 1 0 {2} 0
0 1 1 {2, 3} 1
1 0 0 {1} 0
1 0 1 {1, 3} 1
1 1 0 {1, 2} 1
1 1 1 {1, 2, 3} 1
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Simple games

A positive Boolean function ϕ defines a simple game or
voting game.
Interpretation: ϕ describes the voting rule which is adopted
by the players when a decision is to be made.
If S is a subset of players, then ϕ(S) is the outcome of the
voting process when all players in S say “Yes”.
Positivity means:

S ⊆ T ⇒ ϕ(S) ≤ ϕ(T ).
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Mimimal true points

A positive Boolean function ϕ, or a simple game, is
completely defined by the list of its mimimal true points,
that is, minimal subsets of players S1, S2, ..., Sm such that
ϕ(Si) = 1 for i = 1, 2, ..., m.
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Example

x1 x2 x3 S ϕ MTP
0 0 0 ∅ 0
0 0 1 {3} 1 S1
0 1 0 {2} 0
0 1 1 {2, 3} 1
1 0 0 {1} 0
1 0 1 {1, 3} 1
1 1 0 {1, 2} 1 S2
1 1 1 {1, 2, 3} 1
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Maximal false points

A positive Boolean function ϕ, or a simple game, is
completely defined by the list of its mimimal true points,
that is, minimal subsets of players S1, S2, ..., Sm such that
ϕ(Si) = 1 for i = 1, 2, ..., m.
Similarly, ϕ is completely defined by the list of its maximal
false points, that is, maximal subsets of players
T1, T2, ..., Tk such that ϕ(Tj) = 0 for j = 1, 2, ..., k .
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Example

x1 x2 x3 S ϕ MTP MFP
0 0 0 ∅ 0
0 0 1 {3} 1 S1
0 1 0 {2} 0 T1
0 1 1 {2, 3} 1
1 0 0 {1} 0 T2
1 0 1 {1, 3} 1
1 1 0 {1, 2} 1 S2
1 1 1 {1, 2, 3} 1
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Dualization

A fundamental algorithmic problem:

Dualization
Input: the list of minimal true points of a positive Boolean
function.
Output: the list of maximal false points of the function.

(or conversely)

Problem investigated in Boolean theory, game theory, integer
programming, electrical engineering, artificial intelligence,
reliability, combinatorics, etc.
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Dualization

Dualization amounts to generating

all minimal transversals of a hypergraph (V , E),
E = (E1, . . . , Em), Ei ⊆ V (in particular: all maximal stable
sets of a graph);
all minimal solutions of a set covering problem:∑

j∈Ei

xj ≥ 1 (i = 1, ..., m);

xj ∈ {0, 1} (j = 1, ..., n).
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Complexity

Note: the output is uniquely defined, but its size can be
exponentially large in the size of the input.

(Lawler, Lenstra, Rinnooy Kan 1980; Johnson, Papadimitriou,
Yannakakis 1988; Bioch, Ibaraki 1995; etc.)
Can positive Boolean functions be dualized in total polynomial
time, that is, in time polynomial in the combined size of the
input and of the output?
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Equivalent problem

Dualization is “polynomially equivalent” to the problem:

Test Dual
Input: the MTPs of a Boolean function ϕ, and a list L of
points.
Question: is L the list of MFPs of ϕ ?

Dualization can be solved in total polynomial time if and
only if Test Dual can be solved in polynomial time.
Test Dual does not require exponential outputs.
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Quasi-polynomial algorithm

Fredman and Khachiyan have shown

Fredman and Khachiyan (1996)

Dualization can be solved in time O(mlog m), where m is the
combined size of the input and of the output of the problem.

Several generalizations of this result have been obtained
by Boros, Elbassioni, Gurvich, Khachiyan, Makino, etc.
But the central questions remain open:
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Open problems

Complexity of Dualization
Can dualization be solved in total polynomial time?

Complexity of Test Dual
Can Test Dual be solved in polynomial time? Is it NP-hard
(unlikely)?
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1 Combinatorial models in manufacturing
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Robotic cells
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Weighted majority games

Weighted majority games

A simple game ϕ is a weighted majority game if
each player i carries a voting weight wi

there is a voting threshold q
ϕ(S) = 1⇐⇒

∑
i∈S wi > q

In Boolean theory, a weighted majority game is called a
threshold function.
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Applications

Numerous applications:
game theory (weighted voting)
electrical engineering (gates)
optimization (knapsack)
neural networks (perceptrons)
databases (concurrent access)
etc.
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Threshold recognition

A fundamental algorithmic problem:

Threshold recognition

Input: the list of minimal true points of a positive Boolean
function ϕ.
Question: is ϕ a threshold function (weighted majority
game)?

Peled and Simeone (1985)
Threshold recognition can be solved in polynomial time.
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Generic approach

Observations:
every threshold function ϕ is regular: up to a permutation
of its variables, ϕ(. . . 0 . . . 1 . . .) ≤ ϕ(. . . 1 . . . 0 . . .)

regular functions can be recognized and dualized in
polynomial time (Peled-Simeone 1985, Crama 1989, etc.)
recall: dualizing amounts to generating all maximal 0s from
all minimal 1s.
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Generic approach

Recognition procedure:

test whether ϕ is regular
if so, dualize ϕ

solve the linear programming problem (in w1, . . . , wn):

w1x1 + w2x2 + . . . + wnxn ≤ q if ϕ(x1, . . . , xn) = 0

w1x1 + w2x2 + . . . + wnxn > q if ϕ(x1, . . . , xn) = 1

Complexity

O(n2m) to test regularity and to dualize
complexity of linear programming for separation
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Open problem

Purely combinatorial recognition procedure

Can we avoid to solve an LP in order to recognize threshold
functions?

Some failed attempts in that direction in the 60’s (Chow,
Winder, Dertouzos, etc.)
Question could be taken up again in the light of advances
in complexity theory and optimization.
Recent attempts by Smaus (incomplete?)
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Conclusion

Combinatorial Models and Complexity in Management Science

Many nice, challenging problems at the interface of
applications and combinatorial mathematics.

Many more to be found in
Y. Crama and P.L. Hammer, Boolean Functions: Theory,
Algorithms, and Applications, Cambridge University Press,
New York, to appear.
Y. Crama and P.L. Hammer, eds., Boolean Models and
Methods in Mathematics, Computer Science and
Engineering, Cambridge University Press, New York, 2010.
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Thank you for your presence and for your attention!!
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