Pseudo-Boolean Functions and Nonlinear 0-1 Optimization

Yves Crama

HEC Management School University of Liège

Francqui Lecture, KUL, April 2010

Boolean and Pseudo-Boolean Functions

- Boolean and Pseudo-Boolean Functions
- 2 MAX CUT

- Boolean and Pseudo-Boolean Functions
- MAX CUT
- MAX SAT

- Boolean and Pseudo-Boolean Functions
- 2 MAX CUT
- MAX SAT
- Nonlinear 0-1 optimization algorithms

Focus:

Focus:

basic facts about pseudo-Boolean functions

Focus:

- basic facts about pseudo-Boolean functions
- some representative applications

Focus:

- basic facts about pseudo-Boolean functions
- some representative applications
- including nice proofs!

Focus:

- basic facts about pseudo-Boolean functions
- some representative applications
- including nice proofs!

Largely based on

BOOLEAN FUNCTIONS
Theory, Algorithms, and Applications

Yves CRAMA and Peter L. HAMMER Cambridge University Press Due to appear: December 2010

- Boolean and Pseudo-Boolean Functions
- MAX CUT
- MAX SAT
- 4 Nonlinear 0-1 optimization algorithms

Boolean functions

A Boolean function is a mapping $\varphi : \{0,1\}^n \to \{0,1\}$

Boolean functions

A Boolean function is a mapping $\varphi : \{0,1\}^n \to \{0,1\}$

Pseudo-Boolean functions

A pseudo-Boolean function is a mapping $f: \{0,1\}^n \to \mathbf{R}$

Examples

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	φ	f
0	0	0	0	4
0	0	1	1	2
0	1	0	0	-1
0	1	1	1	3
1	0	0	0	-5
1	0	1	0	6
1	1	0	1	3
1	1	1	1	7

Set functions

Set functions:

Boolean and pseudo-Boolean functions on $\{0,1\}^n$ can also be viewed as *set functions*, that is, functions defined on subsets of $\{1,2,\ldots,n\}$.

<i>X</i> ₁	<i>X</i> ₂	<i>x</i> ₃	S	φ	f
0	0	0	Ø	0	4
0	0	1	{3 }	1	2
0	1	0	{2 }	0	-1
0	1	1	$\{2,3\}$	1	3
1	0	0	{1 }	0	-5
1	0	1	{1,3}	0	6
1	1	0	{1,2}	1	3
1	1	1	$\{1, 2, 3\}$	1	7

Literals

A Boolean *literal* is a variable x_i or its negation (complementation) $\overline{x}_i = 1 - x_i$.

Literals

A Boolean *literal* is a variable x_i or its negation (complementation) $\overline{x}_i = 1 - x_i$.

Terms

A Boolean term (conjunction, AND) is a product of literals:

$$\overline{x}_1\overline{x}_2x_3, \ \overline{x}_1x_2x_3, \ \overline{x}_2x_3, \ \text{etc.}$$

Literals

A Boolean *literal* is a variable x_i or its negation (complementation) $\overline{x}_i = 1 - x_i$.

Terms

A Boolean term (conjunction, AND) is a product of literals:

 $\overline{x}_1\overline{x}_2x_3$, $\overline{x}_1x_2x_3$, \overline{x}_2x_3 , etc.

Note that $\overline{x}_1 \overline{x}_2 x_3 = 1$ exactly when $x_1 = 0$, $x_2 = 0$, $x_3 = 1$.

Literals

A Boolean *literal* is a variable x_i or its negation (complementation) $\overline{x}_i = 1 - x_i$.

Terms

A Boolean *term* (conjunction, AND) is a product of literals: $\overline{X}_1 \overline{X}_2 X_3$, $\overline{X}_1 X_2 X_3$, $\overline{X}_2 X_3$, etc.

Note that $\overline{x}_1 \overline{x}_2 x_3 = 1$ exactly when $x_1 = 0$, $x_2 = 0$, $x_3 = 1$.

DNFs

A disjunctive normal form (DNF) is a disjunction (OR) of terms.

A DNF takes value 1 if at least one of its terms takes value 1.

Example: $\overline{x}_1\overline{x}_2x_3 \vee \overline{x}_1x_2x_3 \vee \overline{x}_2x_3$.

Representation by DNFs

DNFs:

Every Boolean function can be represented – in many ways – by a disjunctive normal form (DNF).

Representation by DNFs

DNFs:

Every Boolean function can be represented – in many ways – by a disjunctive normal form (DNF).

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	φ	Terms	DNFs
0	0	0	0		
0	0	1	1	$\overline{X}_1\overline{X}_2X_3$	
0	1	0	0		
0	1	1	1	$\overline{X}_1 X_2 X_3$	$\varphi = \overline{X}_1 \overline{X}_2 X_3 \vee \overline{X}_1 X_2 X_3 \vee X_1 X_2 \overline{X}_3 \vee X_1 X_2 X_3$
1	0	0	0		$= x_1x_2 \vee x_2x_3 \vee \overline{x}_1x_3$
1	0	1	0		
1	1	0	1	$X_1X_2\overline{X}_3$	
1	1	1	1	X ₁ X ₂ X ₃	

Representation by ANFs

ANFs:

Every pseudo-Boolean function can be represented – in many ways – by an *arithmetic normal form* (ANF), that is, a polynomial in its literals.

Representation by ANFs

ANFs:

Every pseudo-Boolean function can be represented – in many ways – by an *arithmetic normal form* (ANF), that is, a polynomial in its literals.

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	f	Terms	ANFs
0	0	0	4	$\overline{X}_1\overline{X}_2\overline{X}_3$	
0	0	1	2	$\overline{X}_1\overline{X}_2X_3$	
0	1	0	-1	$\overline{X}_1 X_2 \overline{X}_3$	$f = 4\overline{x}_1\overline{x}_2\overline{x}_3 + 2\overline{x}_1\overline{x}_2x_3 - \overline{x}_1x_2\overline{x}_3$
0	1	1	3	$\overline{x}_1 x_2 x_3$	$+3\overline{x}_1x_2x_3-5x_1\overline{x}_2\overline{x}_3+6x_1\overline{x}_2x_3$
1	0	0	-5	$x_1\overline{x}_2\overline{x}_3$	$3x_1x_2\overline{x}_3 + 7x_1x_2x_3$
1	0	1	6	$X_1\overline{X}_2X_3$	
1	1	0	3	$X_1X_2\overline{X}_3$	
1	1	1	7	$X_1 X_2 X_3$	

Substituting each \overline{x}_i by $1 - x_i$ yields a polynomial representation.

Substituting each \overline{x}_i by $1 - x_i$ yields a polynomial representation.

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	f	Terms	ANFs
0	0	0	4	$\overline{X}_1\overline{X}_2\overline{X}_3$	
0	0	1	2	$\overline{X}_1\overline{X}_2X_3$	
0	1	0	-1	$\overline{X}_1 X_2 \overline{X}_3$	$f = 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2$
0	1	1	3	$\overline{X}_1 X_2 X_3$	$+ 13x_1x_3 + 6x_2x_3 - 13x_1x_2x_3$
1	0	0	-5	$X_1\overline{X}_2\overline{X}_3$	
1	0	1	6	$X_1\overline{X}_2X_3$	
1	1	0	3	$X_1X_2\overline{X}_3$	
1	1	1	7	<i>X</i> ₁ <i>X</i> ₂ <i>X</i> ₃	

Polynomials:

Every pseudo-Boolean function can be represented – in a unique way – by a *multilinear polynomial* in its variables.

Polynomials:

Every pseudo-Boolean function can be represented – in a unique way – by a *multilinear polynomial* in its variables.

Extensions:

Note: every polynomial like

$$f = 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2 + 13x_1x_3 + 6x_2x_3 - 13x_1x_2x_3$$

defines

• a pseudo-Boolean function on $\{0, 1\}^n$;

Polynomials:

Every pseudo-Boolean function can be represented – in a unique way – by a *multilinear polynomial* in its variables.

Extensions:

Note: every polynomial like

$$f = 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2 + 13x_1x_3 + 6x_2x_3 - 13x_1x_2x_3$$

defines

- a pseudo-Boolean function on {0, 1}ⁿ;
- a function on $[0, 1]^n$.

Polynomials:

Every pseudo-Boolean function can be represented – in a unique way – by a *multilinear polynomial* in its variables.

Extensions:

Note: every polynomial like

$$f = 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2 + 13x_1x_3 + 6x_2x_3 - 13x_1x_2x_3$$

defines

- a pseudo-Boolean function on {0, 1}ⁿ;
- a function on $[0, 1]^n$.

Example:
$$f(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) = \frac{19}{8}$$

Game theory

Game theory

• Simple (voting) games are Boolean functions

Game theory

- Simple (voting) games are Boolean functions
- Cooperative games in characteristic form are pseudo-Boolean functions: f(S) = value that can be obtained by coalition S

Game theory

- Simple (voting) games are Boolean functions
- Cooperative games in characteristic form are pseudo-Boolean functions: f(S) = value that can be obtained by coalition S
- The polynomial expression of f is called its *multilinear* extension (viewed as function on $[0, 1]^n$).

Game theory

- Simple (voting) games are Boolean functions
- Cooperative games in characteristic form are pseudo-Boolean functions: f(S) = value that can be obtained by coalition S
- The polynomial expression of f is called its *multilinear* extension (viewed as function on $[0, 1]^n$).

Numerous applications in artificial intelligence, operations research, combinatorics, algebra, etc.

Pseudo-Boolean optimization

Complexity

Given a pseudo-Boolean function f in multilinear polynomial form, it is NP-hard to find the maximum of f.

Pseudo-Boolean optimization

Complexity

Given a pseudo-Boolean function f in multilinear polynomial form, it is NP-hard to find the maximum of f.

A useful property:

Rosenberg

The maximum of a multilinear polynomial on $[0,1]^n$ (continuous maximizer) is attained at a 0-1 point (discrete maximizer):

$$\max_{X \in \{0,1\}^n} f(X) = \max_{X \in [0,1]^n} f(X).$$

Rosenberg

The maximum of a multilinear polynomial on $[0,1]^n$ is attained at a 0-1 point:

$$\max_{X \in \{0,1\}^n} f(X) = \max_{X \in [0,1]^n} f(X).$$

Rosenberg

The maximum of a multilinear polynomial on $[0,1]^n$ is attained at a 0-1 point:

$$\max_{X \in \{0,1\}^n} f(X) = \max_{X \in [0,1]^n} f(X).$$

$$f = 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2 + 13x_1x_3 + 6x_2x_3 - 13x_1x_2x_3$$

Rosenberg

The maximum of a multilinear polynomial on $[0,1]^n$ is attained at a 0-1 point:

$$\max_{X \in \{0,1\}^n} f(X) = \max_{X \in [0,1]^n} f(X).$$

Sketch of proof: for

$$f = 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2 + 13x_1x_3 + 6x_2x_3 - 13x_1x_2x_3;$$

• consider any point $(x_1^*, x_2^*, x_3^*) \in [0, 1]^3$

Rosenberg

The maximum of a multilinear polynomial on $[0,1]^n$ is attained at a 0-1 point:

$$\max_{X \in \{0,1\}^n} f(X) = \max_{X \in [0,1]^n} f(X).$$

$$f = 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2 + 13x_1x_3 + 6x_2x_3 - 13x_1x_2x_3;$$

- consider any point $(x_1^*, x_2^*, x_3^*) \in [0, 1]^3$
- fix (x_1^*, x_2^*) in f: the resulting function $g(x_3)$ is linear

Rosenberg

The maximum of a multilinear polynomial on $[0,1]^n$ is attained at a 0-1 point:

$$\max_{X \in \{0,1\}^n} f(X) = \max_{X \in [0,1]^n} f(X).$$

$$f = 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2 + 13x_1x_3 + 6x_2x_3 - 13x_1x_2x_3$$

- consider any point $(x_1^*, x_2^*, x_3^*) \in [0, 1]^3$
- fix (x_1^*, x_2^*) in f: the resulting function $g(x_3)$ is linear
- maximize $g(x_3)$ for x_3 : this yields a 0-1 maximizer \hat{x}_3

Rosenberg

The maximum of a multilinear polynomial on $[0,1]^n$ is attained at a 0-1 point:

$$\max_{X \in \{0,1\}^n} f(X) = \max_{X \in [0,1]^n} f(X).$$

$$f = 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2 + 13x_1x_3 + 6x_2x_3 - 13x_1x_2x_3;$$

- consider any point $(x_1^*, x_2^*, x_3^*) \in [0, 1]^3$
- fix (x_1^*, x_2^*) in f: the resulting function $g(x_3)$ is linear
- maximize $g(x_3)$ for x_3 : this yields a 0-1 maximizer \hat{x}_3
- $f(x_1^*, x_2^*, \hat{x}_3) \geq f(x_1^*, x_2^*, x_3^*)$

Rosenberg

The maximum of a multilinear polynomial on $[0,1]^n$ is attained at a 0-1 point:

$$\max_{X \in \{0,1\}^n} f(X) = \max_{X \in [0,1]^n} f(X).$$

$$f = 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2 + 13x_1x_3 + 6x_2x_3 - 13x_1x_2x_3;$$

- consider any point $(x_1^*, x_2^*, x_3^*) \in [0, 1]^3$
- fix (x_1^*, x_2^*) in f: the resulting function $g(x_3)$ is linear
- maximize $g(x_3)$ for x_3 : this yields a 0-1 maximizer \hat{x}_3
- $f(x_1^*, x_2^*, \hat{x}_3) \geq f(x_1^*, x_2^*, x_3^*)$
- repeat for x_1, x_2 .

Rosenberg

The maximum of a multilinear polynomial on $[0,1]^n$ is attained at a 0-1 point:

$$\max_{X \in \{0,1\}^n} f(X) = \max_{X \in [0,1]^n} f(X).$$

$$f = 4 - 9x_1 - 5x_2 - 2x_3 + 13x_1x_2 + 13x_1x_3 + 6x_2x_3 - 13x_1x_2x_3;$$

- consider any point $(x_1^*, x_2^*, x_3^*) \in [0, 1]^3$
- fix (x_1^*, x_2^*) in f: the resulting function $g(x_3)$ is linear
- maximize $g(x_3)$ for x_3 : this yields a 0-1 maximizer \hat{x}_3
- $f(x_1^*, x_2^*, \hat{x}_3) \geq f(x_1^*, x_2^*, x_3^*)$
- repeat for x_1, x_2 .

Rosenberg

The maximum of a multilinear polynomial on $[0,1]^n$ is attained at a 0-1 point:

$$\max_{X \in \{0,1\}^n} f(X) = \max_{X \in [0,1]^n} f(X).$$

Rosenberg

The maximum of a multilinear polynomial on $[0,1]^n$ is attained at a 0-1 point:

$$\max_{X \in \{0,1\}^n} f(X) = \max_{X \in [0,1]^n} f(X).$$

Observe: the proof actually shows that, given any point $X^* \in [0, 1]^n$, a better point $\hat{X} \in \{0, 1\}^n$ can be found in polynomial time.

Outline

- Boolean and Pseudo-Boolean Functions
- 2 MAX CUT
- MAX SAT
- Monlinear 0-1 optimization algorithms

Cuts

- undirected graph G = (N, E) with $N = \{1, 2, ..., n\}$
- capacities $c: E \to \mathbf{R}^+$ on edges
- for S ⊆ N, the cut δ(S) is the set of edges having exactly one endpoint in S;
- the capacity of cut $\delta(S)$ is $\sum_{(i,j)\in\delta(S)} c(i,j)$.

Cuts

- undirected graph G = (N, E) with $N = \{1, 2, ..., n\}$
- capacities $c: E \to \mathbf{R}^+$ on edges
- for $S \subseteq N$, the *cut* $\delta(S)$ is the set of edges having exactly one endpoint in S;
- the capacity of cut $\delta(S)$ is $\sum_{(i,j)\in\delta(S)}c(i,j)$.

MAX CUT problem

Find a cut of maximum capacity in G.

Cuts

- undirected graph G = (N, E) with $N = \{1, 2, ..., n\}$
- capacities $c: E \to \mathbf{R}^+$ on edges
- for $S \subseteq N$, the *cut* $\delta(S)$ is the set of edges having exactly one endpoint in S;
- the capacity of cut $\delta(S)$ is $\sum_{(i,j)\in\delta(S)}c(i,j)$.

MAX CUT problem

Find a cut of maximum capacity in G.

Note: MAX CUT is NP-hard (as opposed to MIN CUT, which is polynomial).

Observe:

- let $x_i = 1$ if vertex i is in S, $x_i = 0$ otherwise;
- edge (i,j) is in the cut $\delta(S)$ if and only if $x_i \overline{x}_j + \overline{x}_i x_j = 1$.

Observe:

- let $x_i = 1$ if vertex i is in S, $x_i = 0$ otherwise;
- edge (i,j) is in the cut $\delta(S)$ if and only if $x_i \overline{x}_i + \overline{x}_i x_i = 1$.

Therefore,

MAX CUT problem

MAX CUT is equivalent to the maximization of the quadratic pseudo-Boolean function

$$f(x_1, x_2, \ldots, x_n) = \sum_{1 \leq i < j \leq n} c(i, j) (x_i \overline{x}_j + \overline{x}_i x_j).$$

MAX CUT and quadratic pseudo-Boolean optimization are closely related problems

Theorem

In every graph, there is a cut with weight at least $\frac{1}{2} \sum_{1 \le i < j \le n} c(i,j)$ (the sum of all weights).

Pseudo-Boolean proof:

Theorem

In every graph, there is a cut with weight at least $\frac{1}{2} \sum_{1 \le i < j \le n} c(i,j)$ (the sum of all weights).

Pseudo-Boolean proof:

• let
$$f(x_1, x_2, \dots, x_n) = \sum_{1 < i < j < n} c(i, j)(x_i \overline{x}_j + \overline{x}_i x_j)$$

Theorem

In every graph, there is a cut with weight at least $\frac{1}{2} \sum_{1 \le i < j \le n} c(i,j)$ (the sum of all weights).

Pseudo-Boolean proof:

• let
$$f(x_1, x_2, \dots, x_n) = \sum_{1 < i < j < n} c(i, j)(x_i \overline{x}_j + \overline{x}_i x_j)$$

•
$$f(\frac{1}{2},\ldots,\frac{1}{2}) = \sum_{1 \leq i < j \leq n} c(i,j)(\frac{1}{4} + \frac{1}{4}) = \frac{1}{2} \sum_{1 \leq i < j \leq n} c(i,j)$$

Theorem

In every graph, there is a cut with weight at least $\frac{1}{2} \sum_{1 \le i < j \le n} c(i,j)$ (the sum of all weights).

Pseudo-Boolean proof:

- let $f(x_1, x_2, \dots, x_n) = \sum_{1 \le i < j \le n} c(i, j) (x_i \overline{x}_j + \overline{x}_i x_j)$
- $f(\frac{1}{2},\ldots,\frac{1}{2}) = \sum_{1 \leq i < j \leq n} c(i,j)(\frac{1}{4} + \frac{1}{4}) = \frac{1}{2} \sum_{1 \leq i < j \leq n} c(i,j)$
- by Rosenberg's theorem, $\max_{X \in \{0,1\}^n} f(X) = \max_{X \in [0,1]^n} f(X) \ge f(\frac{1}{2}, \dots, \frac{1}{2}).$

Note: the large cut can be found in polynomial time.

Outline

- Boolean and Pseudo-Boolean Functions
- 2 MAX CUT
- MAX SAT
- 4 Nonlinear 0-1 optimization algorithms

DNF SATISFIABILITY

SAT problem:

- Input: a DNF $\varphi(x_1,\ldots,x_n) = \bigvee_{k=1}^m T_k$
- Output: "Yes" if there is a point $X^* = (x_1, \dots, x_n) \in \{0, 1\}^n$ such that $\varphi(X^*) = 0$; "No" otherwise.

DNF SATISFIABILITY

SAT problem:

- Input: a DNF $\varphi(x_1,\ldots,x_n) = \bigvee_{k=1}^m T_k$
- Output: "Yes" if there is a point $X^* = (x_1, \dots, x_n) \in \{0, 1\}^n$ such that $\varphi(X^*) = 0$; "No" otherwise.

Note: $\varphi(X^*) = 0$ iff X^* makes all terms T_k of φ equal to 0, or equivalently, iff X^* makes at least one literal equal to 0 in each term of φ .

For example, with

$$\varphi(x_1,x_2,x_3)=\overline{x}_1\overline{x}_2x_3\vee\overline{x}_1x_2x_3\vee x_1x_2\overline{x}_3\vee x_1x_2x_3,$$

we get: $\varphi(1,0,1) = 0$.

Cook's theorem

Cook's theorem

SAT is NP-complete even when each term contains at most 3 literals (3SAT).

What if there is no X^* such that $\varphi(X^*) = 0$ (i.e., if $\varphi \equiv 1$)?

What if there is no X^* such that $\varphi(X^*) = 0$ (i.e., if $\varphi \equiv 1$)?

Maximum Satisfiability

MAX SAT problem:

- Input: a DNF $\varphi(x_1,\ldots,x_n) = \bigvee_{k=1}^m T_k$
- Output: a point $X^* = (x_1, \dots, x_n) \in \{0, 1\}^n$ which maximizes the number of terms T_k such that $T_k(X^*) = 0$.

What if there is no X^* such that $\varphi(X^*) = 0$ (i.e., if $\varphi \equiv 1$)?

Maximum Satisfiability

MAX SAT problem:

- Input: a DNF $\varphi(x_1,\ldots,x_n) = \bigvee_{k=1}^m T_k$
- Output: a point $X^* = (x_1, \dots, x_n) \in \{0, 1\}^n$ which maximizes the number of terms T_k such that $T_k(X^*) = 0$.

If SAT has a solution X^* , then X^* is optimal for MAX SAT.

What if there is no X^* such that $\varphi(X^*) = 0$ (i.e., if $\varphi \equiv 1$)?

Maximum Satisfiability

Max Sat problem:

- Input: a DNF $\varphi(x_1,\ldots,x_n) = \bigvee_{k=1}^m T_k$
- Output: a point $X^* = (x_1, \dots, x_n) \in \{0, 1\}^n$ which maximizes the number of terms T_k such that $T_k(X^*) = 0$.

If SAT has a solution X^* , then X^* is optimal for MAX SAT. In fact:

Theorem

MAX SAT is NP-hard even when each term contains at most 2 literals (MAX 2SAT).

Weighted version

Weighted Maximum Satisfiability

Weighted Max Sat problem:

- Input: a DNF $\varphi(x_1, \ldots, x_n) = \bigvee_{k=1}^m T_k$, weights $w_k \in \mathbf{R}^+$ for $k = 1, \ldots, m$.
- Output: a point $X^* = (x_1, ..., x_n) \in \{0, 1\}^n$ which maximizes the total weight of the terms canceled by X^* :

maximize
$$\sum_{k=1}^{m} \{ w_k \mid T_k(X^*) = 0 \}$$
 subject to $X^* \in \{0,1\}^n$.

Weighted version

Weighted Maximum Satisfiability

Weighted Max Sat problem:

- Input: a DNF $\varphi(x_1, \ldots, x_n) = \bigvee_{k=1}^m T_k$, weights $w_k \in \mathbf{R}^+$ for $k = 1, \ldots, m$.
- Output: a point $X^* = (x_1, ..., x_n) \in \{0, 1\}^n$ which maximizes the total weight of the terms canceled by X^* :

maximize
$$\sum_{k=1}^{m} \{ w_k \mid T_k(X^*) = 0 \}$$
 subject to $X^* \in \{0,1\}^n$.

MAX CUT problem

MAX SAT is equivalent to the maximization of the pseudo-Boolean function

$$f(x_1, x_2, ..., x_n) = \sum_{k=1}^m w_k (1 - T_k).$$

MAX CUT problem

MAX SAT is equivalent to the maximization of the pseudo-Boolean function

$$f(x_1, x_2, ..., x_n) = \sum_{k=1}^m w_k (1 - T_k).$$

Example: with equal weights and

$$\varphi(x_1,x_2,x_3)=\overline{x}_1\overline{x}_2x_3\vee\overline{x}_1x_2x_3\vee x_1x_2\overline{x}_3\vee x_1x_2x_3,$$

we get

$$f(x_1, x_2, x_3) = (1 - \overline{x}_1 \overline{x}_2 x_3) + (1 - \overline{x}_1 x_2 x_3) + (1 - x_1 x_2 \overline{x}_3) + (1 - x_1 x_2 x_3),$$

where $\overline{x}_i = (1 - x_i)$.

Pseudo-Boolean formulation allows:

- approaches by nonlinear (0-1) optimization
- approximation algorithms

Pseudo-Boolean formulation allows:

- approaches by nonlinear (0-1) optimization
- approximation algorithms

Recall

Approximation algorithm

An α -algorithm for MAX SAT is a polynomial-time algorithm which, for every instance, produces a solution \hat{X} with value at least α times the optimal value:

$$\sum_{k=1}^{m} \{ w_k \mid T_k(\hat{X}) = 0 \} \ge \alpha \text{ OPT}.$$

Pseudo-Boolean formulation allows:

- approaches by nonlinear (0-1) optimization
- approximation algorithms

Recall

Approximation algorithm

An α -algorithm for MAX SAT is a polynomial-time algorithm which, for every instance, produces a solution \hat{X} with value at least α times the optimal value:

$$\sum_{k=1}^{m} \{ w_k \mid T_k(\hat{X}) = 0 \} \ge \alpha \text{ OPT}.$$

Approximability of MAX SAT

Johnson 1974

There is a $(1-\frac{1}{2^d})$ -approximation algorithm for the restriction of MAX SAT to DNFs in which every term has degree at least d. In particular, there is a $\frac{1}{2}$ -approximation algorithm for MAX SAT.

Johnson 1974

There is a $(1-\frac{1}{2^d})$ -approximation algorithm for the restriction of MAX SAT to DNFs in which every term has degree at least d. In particular, there is a $\frac{1}{2}$ -approximation algorithm for MAX SAT.

Pseudo-Boolean proof.

Johnson 1974

There is a $(1 - \frac{1}{2^d})$ -approximation algorithm for the restriction of MAX SAT to DNFs in which every term has degree at least d. In particular, there is a $\frac{1}{2}$ -approximation algorithm for MAX SAT.

Pseudo-Boolean proof.

• let
$$f(x_1,...,x_n) = \sum_{k=1}^m w_k (1 - T_k)$$

Johnson 1974

There is a $(1-\frac{1}{2^d})$ -approximation algorithm for the restriction of MAX SAT to DNFs in which every term has degree at least d. In particular, there is a $\frac{1}{2}$ -approximation algorithm for MAX SAT.

Pseudo-Boolean proof.

• let
$$f(x_1,...,x_n) = \sum_{k=1}^m w_k (1 - T_k)$$

•
$$f(\frac{1}{2},\ldots,\frac{1}{2}) = \sum_{k=1}^{m} w_k \left(1-(\frac{1}{2})^{|T_k|}\right) \ge (1-\frac{1}{2^d}) \sum_{k=1}^{m} w_k$$

Johnson 1974

There is a $(1 - \frac{1}{2^d})$ -approximation algorithm for the restriction of MAX SAT to DNFs in which every term has degree at least d. In particular, there is a $\frac{1}{2}$ -approximation algorithm for MAX SAT.

Pseudo-Boolean proof.

• let
$$f(x_1,...,x_n) = \sum_{k=1}^m w_k (1 - T_k)$$

•
$$f(\frac{1}{2},\ldots,\frac{1}{2}) = \sum_{k=1}^{m} w_k \left(1-(\frac{1}{2})^{|T_k|}\right) \geq (1-\frac{1}{2^d}) \sum_{k=1}^{m} w_k$$

• as in Rosenberg's theorem, find $X^* \in \{0,1\}^n$ such that $f(X^*) \ge f(\frac{1}{2},\dots,\frac{1}{2}) \ge (1-\frac{1}{2^d}) \sum_{k=1}^m w_k \ge (1-\frac{1}{2^d})$ OPT.

Subsequent improvements:

Yannakakis 1994, Goemans and Williamson 1994

There is a $\frac{3}{4}$ -approximation algorithm for MAX SAT.

Subsequent improvements:

Yannakakis 1994, Goemans and Williamson 1994

There is a $\frac{3}{4}$ -approximation algorithm for MAX SAT.

Sketch of pseudo-Boolean proof.

Subsequent improvements:

Yannakakis 1994, Goemans and Williamson 1994

There is a $\frac{3}{4}$ -approximation algorithm for MAX SAT.

Sketch of pseudo-Boolean proof.

• let X^{LP} be the fractional solution of an LP relaxation of MAX SAT, with optimal value Z^{LP}

Subsequent improvements:

Yannakakis 1994, Goemans and Williamson 1994

There is a $\frac{3}{4}$ -approximation algorithm for MAX SAT.

Sketch of pseudo-Boolean proof.

- let X^{LP} be the fractional solution of an LP relaxation of MAX SAT, with optimal value Z^{LP}
- show: $f(X^{LP}) \ge \frac{3}{4} Z^{LP} \ge \frac{3}{4} OPT$,

Subsequent improvements:

Yannakakis 1994, Goemans and Williamson 1994

There is a $\frac{3}{4}$ -approximation algorithm for MAX SAT.

Sketch of pseudo-Boolean proof.

- let X^{LP} be the fractional solution of an LP relaxation of MAX SAT, with optimal value Z^{LP}
- show: $f(X^{LP}) \ge \frac{3}{4} Z^{LP} \ge \frac{3}{4} OPT$,
- as in Rosenberg's theorem, find $X^* \in \{0, 1\}^n$ such that $f(X^*) > f(X^{LP})$.

Still many subsequent improvements... Among others:

Still many subsequent improvements... Among others:

Max 3Sat

• (Karloff and Zwick 1997) There is an α -approximation algorithm with $\alpha = 0.875$ for Max 3Sat.

Still many subsequent improvements... Among others:

Max 3Sat

- (Karloff and Zwick 1997) There is an α -approximation algorithm with $\alpha = 0.875$ for MAX 3SAT.
- (Håstad 1997) Unless P = NP, there is no α -approximation algorithm with $\alpha > 0.875$ for MAX 3SAT.

Still many subsequent improvements... Among others:

Max 3Sat

- (Karloff and Zwick 1997) There is an α -approximation algorithm with $\alpha = 0.875$ for Max 3Sat.
- (Håstad 1997) Unless P = NP, there is no α -approximation algorithm with $\alpha > 0.875$ for MAX 3SAT.

Max 2Sat

• (Lewin, Livnat and Zwick 2002) There is an α -approximation algorithm with $\alpha = 0.9401$ for Max 2SaT.

Still many subsequent improvements... Among others:

Max 3Sat

- (Karloff and Zwick 1997) There is an α -approximation algorithm with $\alpha = 0.875$ for Max 3Sat.
- (Håstad 1997) Unless P = NP, there is no α -approximation algorithm with $\alpha > 0.875$ for MAX 3SAT.

Max 2Sat

- (Lewin, Livnat and Zwick 2002) There is an α -approximation algorithm with $\alpha = 0.9401$ for Max 2SaT.
- (Håstad 1997) Unless P = NP, there is no α -approximation algorithm with $\alpha > 0.9545$ for MAX 2SAT.

Outline

- Boolean and Pseudo-Boolean Functions
- 2 MAX CUT
- MAX SAT
- Monlinear 0-1 optimization algorithms

Pseudo-Boolean optimization

Problem statement:

PB optimization

Given a pseudo-Boolean function f in multilinear polynomial form, find the maximum of f. (NP-hard)

Many applications:

Pseudo-Boolean optimization

Problem statement:

PB optimization

Given a pseudo-Boolean function f in multilinear polynomial form, find the maximum of f. (NP-hard)

Many applications:

- Max Cut
- Max Sat
- computer vision

Computer vision

Basic framework: given a blurred, "noisy" image, restore a "better" version.

Challenge: Restored image should be "similar" to the initial one, "smooth" in "continuous areas", "crisp" at boundaries.

Formulation

- set \mathcal{P} of *pixels* (points in \mathbb{R}^2)
- initial assignment of *colors* (labels) to pixels: $c_0 : \mathcal{P} \to C$
- energy function: for every new coloring $c: \mathcal{P} \to C$, E(c) measures the deficiency of c

Formulation

- set \mathcal{P} of *pixels* (points in \mathbb{R}^2)
- initial assignment of *colors* (labels) to pixels: $c_0 : \mathcal{P} \to C$
- energy function: for every new coloring $c: \mathcal{P} \to C$, E(c) measures the deficiency of c

Typically:

$$E(c) = \sum_{p \in \mathcal{P}} (c_0(p) - c(p))^2 + \sum_{(p,q) \in E} V(c(p), c(q)),$$

where E is a collection of "neighboring pixels". One may choose for instance

$$V(c(p), c(q)) = 0$$
 if $c(p) = c(q)$, $V(c(p), c(q)) = M$ otherwise.

If each pixel can take one of two colors: $c(p) \in \{0, 1\}$ for all p,

If each pixel can take one of two colors: $c(p) \in \{0, 1\}$ for all p,

$$E(c) = \sum_{p \in \mathcal{P}} (c_0(p) - c(p))^2 + \sum_{(p,q) \in E} V(c(p), c(q))$$

is a quadratic pseudo-Boolean function (because each V(c(p),c(q)) depends on 2 Boolean variables only).

If each pixel can take one of two colors: $c(p) \in \{0, 1\}$ for all p,

$$E(c) = \sum_{p \in \mathcal{P}} (c_0(p) - c(p))^2 + \sum_{(p,q) \in E} V(c(p), c(q))$$

is a quadratic pseudo-Boolean function (because each V(c(p),c(q)) depends on 2 Boolean variables only).

Arises as subproblem for more general versions: given a coloring with C colors,

- find the best possible assignment achievable by extending a given color (say, green): that is, each pixel can be either colored green or maintained in its current color.
- find the best possible assignment achievable by exchanging two given colors (say, green and blue): that is, each green or blue pixel can be recolored either in green or in blue.

Boykov, Veksler and Zabih (2001) develop efficient heuristics based on such moves.

Quadratic optimization

The quadratic case has attracted most of the attention:

- many examples arise in this form: MAX CUT, MAX 2SAT, computer vision,...
- higher-degree cases can be efficiently reduced to quadratic.

In particular: roof duality framework and extensions.

Roof duality: linearization

Given: quadratic pseudo-Boolean maximization problem

$$\max f(x_1, x_2, \dots, x_n) = \sum_{(i,j) \in E} c_{ij} x_i x_j.$$

Standard linearization: substitute z_{ij} for each product $x_i x_j$.

Roof duality: linearization

Given: quadratic pseudo-Boolean maximization problem

$$\max f(x_1, x_2, \dots, x_n) = \sum_{(i,j) \in E} c_{ij} x_i x_j.$$

Standard linearization: substitute z_{ij} for each product $x_i x_j$.

(SL)
$$\max \sum_{i,j)\in E} c_{ij} z_{ij}$$
 (1)

subject to
$$x_i \ge z_{ij}$$
 (2)

$$x_j \geq z_{ij}$$
 (3)

$$x_i + x_j \le z_{ij} + 1 \tag{4}$$

$$x_i \in \{0, 1\}$$
 (5)

$$z_{ij} \in \{0,1\}$$
 (6)

Roof duality: linearization

L_2 bound

The optimal value of the linear relaxation of (SL) provides an upper-bound L_2 on OPT.

Roof duality: complementation

Another approach...

Given: quadratic pseudo-Boolean maximization problem

$$\max f(x_1, x_2, \dots, x_n) = \sum_{(i,j) \in E} c_{ij} x_i x_j.$$

Write f in the form (negaform)

$$f(x_1, x_2, \dots, x_n) = a_0 - \sum_i a_i \, \tilde{x}_i - \sum_{(i,j)} a_{ij} \, \tilde{x}_i \tilde{x}_j$$

where

- \tilde{x}_i is either x_i or \bar{x}_i ,
- $a_i \ge 0, a_{ij} \ge 0$ holds for all coefficients, except a_0 .

e.g.,
$$x_1x_2 = 1 - (1 - x_2) - (1 - x_1)x_2$$

Roof duality: complementation

Write f in the negaform

$$f(x_1, x_2, \dots, x_n) = a_0 - \sum_i a_i \, \tilde{x}_i - \sum_{(i,j)} a_{ij} \, \tilde{x}_i \tilde{x}_j$$

where

- \tilde{x}_i is either x_i or \overline{x}_i ,
- $a_i \ge 0$, $a_{ij} \ge 0$ holds for all coefficients, except a_0 .

Observations

- This is always possible.
- a₀ is an upper-bound on max f for every negaform of f.

Denote by C_2 the best possible upper bound derived from a negaform.

Hammer, Hansen and Simeone 1984

 Standard linearization and negaforms yield the same bound: L₂ = C₂

Denote by C_2 the best possible upper bound derived from a negaform.

Hammer, Hansen and Simeone 1984

- Standard linearization and negaforms yield the same bound: L₂ = C₂
- Weak persistency: if x_i takes value 1 (0) in the optimal solution of the relaxation of (SL), then it takes value 1 (0) in some maximizer of f.

Denote by C_2 the best possible upper bound derived from a negaform.

Hammer, Hansen and Simeone 1984

- Standard linearization and negaforms yield the same bound: L₂ = C₂
- Weak persistency: if x_i takes value 1 (0) in the optimal solution of the relaxation of (SL), then it takes value 1 (0) in some maximizer of f.
- Strong persistency: if $a_i\tilde{x}_i$, $a_i > 0$, is a linear term in the optimal negaform of f, then \tilde{x}_i takes value 0 in all maximizers of f.

Previous approach has been extended in various ways:

- efficient computation of bounds and of persistent values: Boros and Hammer (2002), Boros, Hammer and Tavares (2005), Rother, Kolmogorov, Lempitsky and Szummer (2007), etc.
- hierarchy of improving bounds: Boros, Crama and Hammer (1990, 1992), Boros and Minoux (2009), etc.
- connections with lift-and-project, Adams-Sherali relaxations: Boros and Minoux (2009), etc.
- higher-degree polynomials (Crama 1993)

A recent application:

- remarkable success in computer vision (sparse) applications
- based on fast computation of bounds by network flows, persistency properties and further developments.

See Rother, Kolmogorov, Lempitsky and Szummer (2007), Kolmogorov and Rother (2007).

 Pseudo-Boolean functions are ubiquitous in many fields of application.

- Pseudo-Boolean functions are ubiquitous in many fields of application.
- Rich connections with graph theory (cuts, flows, stable sets,...), AI (SAT, belief functions, constraint satisfaction,...), game theory (cooperative games), algebra and matroid theory (submodularity), etc.

- Pseudo-Boolean functions are ubiquitous in many fields of application.
- Rich connections with graph theory (cuts, flows, stable sets,...), AI (SAT, belief functions, constraint satisfaction,...), game theory (cooperative games), algebra and matroid theory (submodularity), etc.
- Much computational and theoretical work to be done.

- Pseudo-Boolean functions are ubiquitous in many fields of application.
- Rich connections with graph theory (cuts, flows, stable sets,...), AI (SAT, belief functions, constraint satisfaction,...), game theory (cooperative games), algebra and matroid theory (submodularity), etc.
- Much computational and theoretical work to be done.

See Boros and Hammer (2002), Crama and Hammer (2010).

Some references

- E. Boros, Y. Crama and P.L. Hammer, Upper bounds for quadratic 0–1 maximization, *Operations Research Letters* 9 (1990) 73–79.
- E. Boros, Y. Crama and P.L. Hammer, Chvátal cuts and odd cycle inequalities in quadratic 0–1 optimization, *SIAM Journal on Discrete Mathematics* 5 (1992) 163–177.
- E. Boros and P.L. Hammer, Pseudo-Boolean optimization, *Discrete Applied Mathematics* 123 (2002) 155–225.
- Y. Boykov, O. Veksler and R. Zabih, Fast approximate energy minimization via graph cuts, *IEEE Transactions on Pattern Analysis and Machine Intelligence* 23 (2001) 1222–1239.

Some references

- Y. Crama, Concave extensions for nonlinear 0–1 maximization problems, *Mathematical Programming* 61 (1993) 53–60.
- Y. Crama and P.L. Hammer, eds., *Boolean Functions: Theory, Algorithms, and Applications*, Cambridge University Press, New York, to appear.
- V. Kolmogorov and C. Rother, Minimizing non-submodular functions with graph cuts A review, *IEEE Transactions on Pattern Analysis and Machine Intelligence* 29 (2007) 1274–1279.
- C. Rother, V. Kolmogorov, V. Lempitsky and M. Szummer, Optimizing binary MRFs via extended roof duality, in: *IEEE Conference on Computer Vision and Pattern Recognition* June 2007.