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Objectives

Focus:

basic facts about pseudo-Boolean functions
some representative applications
including nice proofs!

Largely based on

BOOLEAN FUNCTIONS
Theory, Algorithms, and Applications

Yves CRAMA and Peter L. HAMMER
Cambridge University Press
Due to appear: December 2010
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Definitions

Boolean functions
A Boolean function is a mapping ϕ : {0,1}n → {0,1}

Pseudo-Boolean functions
A pseudo-Boolean function is a mapping f : {0,1}n → R
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Examples

x1 x2 x3 ϕ f
0 0 0 0 4
0 0 1 1 2
0 1 0 0 -1
0 1 1 1 3
1 0 0 0 -5
1 0 1 0 6
1 1 0 1 3
1 1 1 1 7
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Set functions

Set functions:
Boolean and pseudo-Boolean functions on {0,1}n can also be
viewed as set functions, that is, functions defined on subsets of
{1,2, . . . ,n}.

x1 x2 x3 S ϕ f
0 0 0 ∅ 0 4
0 0 1 {3} 1 2
0 1 0 {2} 0 -1
0 1 1 {2,3} 1 3
1 0 0 {1} 0 -5
1 0 1 {1,3} 0 6
1 1 0 {1,2} 1 3
1 1 1 {1,2,3} 1 7
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Definitions

Literals
A Boolean literal is a variable xi or its negation
(complementation) x i = 1− xi .

Terms
A Boolean term (conjunction, AND) is a product of literals:
x1x2x3, x1x2x3, x2x3, etc.

Note that x1x2x3 = 1 exactly when x1 = 0, x2 = 0, x3 = 1.

DNFs
A disjunctive normal form (DNF) is a disjunction (OR) of terms.

A DNF takes value 1 if at least one of its terms takes value 1.
Example: x1x2x3 ∨ x1x2x3 ∨ x2x3.
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Representation by DNFs

DNFs:
Every Boolean function can be represented – in many ways –
by a disjunctive normal form (DNF).

x1 x2 x3 ϕ Terms DNFs
0 0 0 0
0 0 1 1 x1x2x3
0 1 0 0
0 1 1 1 x1x2x3 ϕ = x1x2x3 ∨ x1x2x3 ∨ x1x2x3 ∨ x1x2x3
1 0 0 0 = x1x2 ∨ x2x3 ∨ x1x3
1 0 1 0
1 1 0 1 x1x2x3
1 1 1 1 x1x2x3
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Representation by ANFs

ANFs:
Every pseudo-Boolean function can be represented – in many
ways – by an arithmetic normal form (ANF), that is, a
polynomial in its literals.

x1 x2 x3 f Terms ANFs
0 0 0 4 x1x2x3
0 0 1 2 x1x2x3
0 1 0 -1 x1x2x3 f = 4x1x2x3 + 2x1x2x3 − x1x2x3
0 1 1 3 x1x2x3 + 3x1x2x3 − 5x1x2x3 + 6x1x2x3
1 0 0 -5 x1x2x3 3x1x2x3 + 7x1x2x3
1 0 1 6 x1x2x3
1 1 0 3 x1x2x3
1 1 1 7 x1x2x3
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Representation by polynomials

Substituting each x i by 1− xi yields a polynomial
representation.

x1 x2 x3 f Terms ANFs
0 0 0 4 x1x2x3
0 0 1 2 x1x2x3
0 1 0 -1 x1x2x3 f = 4− 9x1 − 5x2 − 2x3 + 13x1x2
0 1 1 3 x1x2x3 + 13x1x3 + 6x2x3 − 13x1x2x3
1 0 0 -5 x1x2x3
1 0 1 6 x1x2x3
1 1 0 3 x1x2x3
1 1 1 7 x1x2x3
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Representation by polynomials

Polynomials:
Every pseudo-Boolean function can be represented – in a
unique way – by a multilinear polynomial in its variables.

Extensions:
Note: every polynomial like

f = 4− 9x1 − 5x2 − 2x3 + 13x1x2 + 13x1x3 + 6x2x3 − 13x1x2x3

defines
a pseudo-Boolean function on {0,1}n;
a function on [0,1]n.

Example: f (1
2 ,

1
2 ,

1
2) = 19

8
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Applications

Game theory

Simple (voting) games are Boolean functions
Cooperative games in characteristic form are
pseudo-Boolean functions: f (S) = value that can be
obtained by coalition S
The polynomial expression of f is called its multilinear
extension (viewed as function on [0,1]n).

Numerous applications in artificial intelligence, operations
research, combinatorics, algebra, etc.
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Pseudo-Boolean optimization

Complexity
Given a pseudo-Boolean function f in multilinear polynomial
form, it is NP-hard to find the maximum of f .

A useful property:

Rosenberg

The maximum of a multilinear polynomial on [0,1]n (continuous
maximizer) is attained at a 0-1 point (discrete maximizer):

maxX∈{0,1}n f (X ) = maxX∈[0,1]n f (X ).
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Pseudo-Boolean optimization

Rosenberg

The maximum of a multilinear polynomial on [0,1]n is attained
at a 0-1 point:

maxX∈{0,1}n f (X ) = maxX∈[0,1]n f (X ).

Sketch of proof: for

f = 4− 9x1 − 5x2 − 2x3 + 13x1x2 + 13x1x3 + 6x2x3 − 13x1x2x3;

consider any point (x∗1 , x
∗
2 , x

∗
3 ) ∈ [0,1]3

fix (x∗1 , x
∗
2 ) in f : the resulting function g(x3) is linear

maximize g(x3) for x3: this yields a 0-1 maximizer x̂3
f (x∗1 , x

∗
2 , x̂3) ≥ f (x∗1 , x

∗
2 , x

∗
3 )

repeat for x1, x2.
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Rosenberg

The maximum of a multilinear polynomial on [0,1]n is attained
at a 0-1 point:

maxX∈{0,1}n f (X ) = maxX∈[0,1]n f (X ).

Observe: the proof actually shows that, given any point
X ∗ ∈ [0,1]n, a better point X̂ ∈ {0,1}n can be found in
polynomial time.
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MAX CUT
MAX SAT

Nonlinear 0-1 optimization algorithms

Definitions

Cuts
undirected graph G = (N,E) with N = {1,2, . . . ,n}
capacities c : E → R+ on edges
for S ⊆ N, the cut δ(S) is the set of edges having exactly
one endpoint in S;
the capacity of cut δ(S) is

∑
(i,j)∈δ(S) c(i , j).

MAX CUT problem
Find a cut of maximum capacity in G.

Note: MAX CUT is NP-hard (as opposed to MIN CUT, which is
polynomial).
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Pseudo-Boolean formulation

Observe:
let xi = 1 if vertex i is in S, xi = 0 otherwise;
edge (i , j) is in the cut δ(S) if and only if xix j + x ixj = 1.

Therefore,

MAX CUT problem
MAX CUT is equivalent to the maximization of the quadratic
pseudo-Boolean function

f (x1, x2, . . . , xn) =
∑

1≤i<j≤n

c(i , j)(xix j + x ixj).

MAX CUT and quadratic pseudo-Boolean optimization are
closely related problems
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Large cuts

Theorem
In every graph, there is a cut with weight at least
1
2
∑

1≤i<j≤n c(i , j) (the sum of all weights).

Pseudo-Boolean proof:

let f (x1, x2, . . . , xn) =
∑

1≤i<j≤n c(i , j)(xix j + x ixj)

f (1
2 , . . . ,

1
2) =

∑
1≤i<j≤n c(i , j)(1

4 + 1
4) = 1

2
∑

1≤i<j≤n c(i , j)
by Rosenberg’s theorem,
maxX∈{0,1}n f (X ) = maxX∈[0,1]n f (X ) ≥ f (1

2 , . . . ,
1
2).

Note: the large cut can be found in polynomial time.
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Definitions

DNF SATISFIABILITY
SAT problem:

Input: a DNF ϕ(x1, . . . , xn) =
∨m

k=1 Tk

Output: “Yes” if there is a point X ∗ = (x1, . . . , xn) ∈ {0,1}n
such that ϕ(X ∗) = 0; “No"’ otherwise.

Note: ϕ(X ∗) = 0 iff X ∗ makes all terms Tk of ϕ equal to 0, or
equivalently, iff X ∗ makes at least one literal equal to 0 in each
term of ϕ.

For example, with

ϕ(x1, x2, x3) = x1x2x3 ∨ x1x2x3 ∨ x1x2x3 ∨ x1x2x3,

we get: ϕ(1,0,1) = 0.
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Cook’s theorem

Cook’s theorem
SAT is NP-complete even when each term contains at most 3
literals (3SAT).
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Definitions

What if there is no X ∗ such that ϕ(X ∗) = 0 (i.e., if ϕ ≡ 1)?

Maximum Satisfiability

MAX SAT problem:
Input: a DNF ϕ(x1, . . . , xn) =

∨m
k=1 Tk

Output: a point X ∗ = (x1, . . . , xn) ∈ {0,1}n which
maximizes the number of terms Tk such that Tk (X ∗) = 0.

If SAT has a solution X ∗, then X ∗ is optimal for MAX SAT. In
fact:

Theorem
MAX SAT is NP-hard even when each term contains at most 2
literals (MAX 2SAT).
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Weighted version

Weighted Maximum Satisfiability

Weighted MAX SAT problem:
Input: a DNF ϕ(x1, . . . , xn) =

∨m
k=1 Tk , weights wk ∈ R+ for

k = 1, . . . ,m.
Output: a point X ∗ = (x1, . . . , xn) ∈ {0,1}n which
maximizes the total weight of the terms canceled by X ∗:

maximize
m∑

k=1

{wk | Tk (X ∗) = 0 } subject to X ∗ ∈ {0,1}n.
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Pseudo-Boolean formulation

MAX CUT problem

MAX SAT is equivalent to the maximization of the
pseudo-Boolean function

f (x1, x2, . . . , xn) =
m∑

k=1

wk

(
1 − Tk

)
.

Example: with equal weights and

ϕ(x1, x2, x3) = x1x2x3 ∨ x1x2x3 ∨ x1x2x3 ∨ x1x2x3,

we get

f (x1, x2, x3) = (1−x1x2x3)+(1−x1x2x3)+(1−x1x2x3)+(1−x1x2x3),

where x i = (1− xi).
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Pseudo-Boolean formulation

Pseudo-Boolean formulation allows:
approaches by nonlinear (0-1) optimization
approximation algorithms

Recall

Approximation algorithm

An α-algorithm for MAX SAT is a polynomial-time algorithm
which, for every instance, produces a solution X̂ with value at
least α times the optimal value:

m∑
k=1

{wk | Tk (X̂ ) = 0 } ≥ α OPT.
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Approximability of MAX SAT

Johnson 1974

There is a (1− 1
2d )-approximation algorithm for the restriction of

MAX SAT to DNFs in which every term has degree at least d .
In particular, there is a 1

2 -approximation algorithm for MAX SAT.

Pseudo-Boolean proof.

let f (x1, . . . , xn) =
∑m

k=1 wk

(
1 − Tk

)
f (1

2 , . . . ,
1
2) =

∑m
k=1 wk

(
1 − (1

2)|Tk |
)
≥ (1− 1

2d )
∑m

k=1 wk

as in Rosenberg’s theorem, find X ∗ ∈ {0,1}n such that
f (X ∗) ≥ f (1

2 , . . . ,
1
2) ≥ (1− 1

2d )
∑m

k=1 wk ≥ (1− 1
2d ) OPT.
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Approximability of MAX SAT

Subsequent improvements:

Yannakakis 1994, Goemans and Williamson 1994

There is a 3
4 -approximation algorithm for MAX SAT.

Sketch of pseudo-Boolean proof.
let X LP be the fractional solution of an LP relaxation of
MAX SAT, with optimal value Z LP

show: f (X LP) ≥ 3
4 Z LP ≥ 3

4 OPT,
as in Rosenberg’s theorem, find X ∗ ∈ {0,1}n such that
f (X ∗) ≥ f (X LP).
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Approximability of MAX SAT

Still many subsequent improvements...
Among others:

MAX 3SAT

(Karloff and Zwick 1997) There is an α-approximation
algorithm with α = 0.875 for MAX 3SAT.
(Håstad 1997) Unless P = NP, there is no α-approximation
algorithm with α > 0.875 for MAX 3SAT.

MAX 2SAT

(Lewin, Livnat and Zwick 2002) There is an
α-approximation algorithm with α = 0.9401 for MAX 2SAT.
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Pseudo-Boolean optimization

Problem statement:

PB optimization
Given a pseudo-Boolean function f in multilinear polynomial
form, find the maximum of f . (NP-hard)

Many applications:

MAX CUT

MAX SAT

computer vision
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Computer vision

Basic framework: given a blurred, “noisy" image, restore a
“better” version.

Challenge: Restored image should be “similar” to the initial
one, “smooth” in “continuous areas”, “crisp” at boundaries.
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Formulation

set P of pixels (points in R2)
initial assignment of colors (labels) to pixels: c0 : P → C
energy function: for every new coloring c : P → C, E(c)
measures the deficiency of c

Typically:

E(c) =
∑
p∈P

(c0(p)− c(p))2 +
∑

(p,q)∈E

V (c(p), c(q)),

where E is a collection of “neighboring pixels”.
One may choose for instance

V (c(p), c(q)) = 0 if c(p) = c(q), V (c(p), c(q)) = M otherwise.
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Black-white case

If each pixel can take one of two colors: c(p) ∈ {0,1} for all p,

E(c) =
∑
p∈P

(c0(p)− c(p))2 +
∑

(p,q)∈E

V (c(p), c(q))

is a quadratic pseudo-Boolean function (because each
V (c(p), c(q)) depends on 2 Boolean variables only).
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Black-white case

Arises as subproblem for more general versions: given a
coloring with C colors,

find the best possible assignment achievable by extending
a given color (say, green): that is, each pixel can be either
colored green or maintained in its current color.
find the best possible assignment achievable by
exchanging two given colors (say, green and blue): that is,
each green or blue pixel can be recolored either in green or
in blue.

Boykov, Veksler and Zabih (2001) develop efficient heuristics
based on such moves.
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Quadratic optimization

The quadratic case has attracted most of the attention:

many examples arise in this form: MAX CUT, MAX 2SAT,
computer vision,...
higher-degree cases can be efficiently reduced to
quadratic.

In particular: roof duality framework and extensions.
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Roof duality: linearization

Given: quadratic pseudo-Boolean maximization problem

max f (x1, x2, . . . , xn) =
∑

(i,j)∈E

cij xixj .

Standard linearization: substitute zij for each product xixj .

(SL) max
∑

i,j)∈E

cij zij (1)

subject to xi ≥ zij (2)
xj ≥ zij (3)
xi + xj ≤ zij + 1 (4)
xi ∈ {0,1} (5)
zij ∈ {0,1} (6)
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Roof duality: linearization

L2 bound
The optimal value of the linear relaxation of (SL) provides an
upper-bound L2 on OPT.
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Roof duality: complementation

Another approach...
Given: quadratic pseudo-Boolean maximization problem

max f (x1, x2, . . . , xn) =
∑

(i,j)∈E

cij xixj .

Write f in the form (negaform)

f (x1, x2, . . . , xn) = a0 −
∑

i

ai x̃i −
∑
(i,j)

aij x̃i x̃j

where
x̃i is either xi or x i ,
ai ≥ 0,aij ≥ 0 holds for all coefficients, except a0.

e.g., x1x2 = 1− (1− x2)− (1− x1)x2
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Roof duality: complementation

Write f in the negaform

f (x1, x2, . . . , xn) = a0 −
∑

i

ai x̃i −
∑
(i,j)

aij x̃i x̃j

where
x̃i is either xi or x i ,
ai ≥ 0,aij ≥ 0 holds for all coefficients, except a0.

Observations
This is always possible.
a0 is an upper-bound on max f for every negaform of f .
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Properties

Denote by C2 the best possible upper bound derived from a
negaform.

Hammer, Hansen and Simeone 1984
Standard linearization and negaforms yield the same
bound: L2 = C2

Weak persistency: if xi takes value 1 (0) in the optimal
solution of the relaxation of (SL), then it takes value 1 (0) in
some maximizer of f .
Strong persistency: if ai x̃i ,ai > 0, is a linear term in the
optimal negaform of f , then x̃i takes value 0 in all
maximizers of f .
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Properties

Previous approach has been extended in various ways:

efficient computation of bounds and of persistent values:
Boros and Hammer (2002), Boros, Hammer and Tavares
(2005), Rother, Kolmogorov, Lempitsky and Szummer
(2007), etc.
hierarchy of improving bounds: Boros, Crama and
Hammer (1990, 1992), Boros and Minoux (2009), etc.
connections with lift-and-project, Adams-Sherali
relaxations: Boros and Minoux (2009), etc.
higher-degree polynomials (Crama 1993)
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Properties

A recent application:

remarkable success in computer vision (sparse)
applications
based on fast computation of bounds by network flows,
persistency properties and further developments.

See Rother, Kolmogorov, Lempitsky and Szummer (2007),
Kolmogorov and Rother (2007).
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Conclusions

Pseudo-Boolean functions are ubiquitous in many fields of
application.

Rich connections with graph theory (cuts, flows, stable
sets,...), AI (SAT, belief functions, constraint
satisfaction,...), game theory (cooperative games), algebra
and matroid theory (submodularity), etc.
Much computational and theoretical work to be done.

See Boros and Hammer (2002), Crama and Hammer (2010).
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