HIGH MULTIPLICITY SCHEDULING PROBLEMS

Yves CRAMA
HEC Management School
University of Liège

Francqui Lecture, KUL, April 2010

Outline

- What is a high-multiplicity scheduling problem?
- Complexity analysis of HMSP
- Flowshops with flexible operations
- Just-In-Time sequencing
- High-multiplicity traveling salesman problem

What is a HMSP? (1)

Usual input of a (one machine) scheduling problem is:

- Number of jobs 1,2,...,*n*
- For each job *j*, a list of attributes like
 - Processing time p_i
 - Release date r_j
 - Due date d_i
 - etc.

What is a HMSP? (2)

=> input size:

O(n L),

where L is the encoding size of the attributes.

What is a HMSP? (3)

In certain applications, jobs are distributed in a small number of classes and all jobs in a same class are identical.

=> Input :

- number of classes s
- number of jobs n_i in class i (i = 1, 2, ..., s)
- attributes of a representative job in class *i*
- E.g., for s = 1: identical jobs

Example: low-multiplicity

```
s = 250 \text{ jobs}:
```

```
d_{i}
p_i
     24
      15
      12
      23
```

Example: high-multiplicity

```
s = 4 types of jobs:
```

```
      p_i
      d_i
      n_i

      3
      24
      50

      1
      6
      100

      4
      15
      75

      2
      12
      75
```

What is a HMSP? (4)

=> input size:

 $O(s \log n + s L)$

instead of

O(n L)

(where L is the encoding size of the attributes).

This is much more compact if s << n or if s is constant.

What is a HMSP? (5)

In particular,

- a problem which is polynomially solvable with low-multiplicity input can be solved in pseudo-polynomial time, but not necessarily in polynomial time, with HM input;
- not even easy to prove that a HMSP is in *NP* (because a natural certificate is a schedule, which is exponentially long in the input size).

Example: Cyclic manufacturing

- s types of products have to be produced in large numbers (say, infinitely many units)
- production ratios are fixed: e.g.

$$(r_1, r_2, \dots, r_s) = (1/2, 1/4, 1/8, 1/8)$$

• a Minimal Part Set (MPS) is a minimal batch of products which satisfies the target ratios and which can therefore be cyclically produced; e.g., MPS = (4, 2, 1, 1).

Example: Cyclic manufacturing

• In order to describe an instance, it is sufficient to give the MPS $(n_1, n_2, ..., n_s)$ and the characteristics of each part type i.

Example: multiprocessor scheduling

- *m* parallel machines
- available makespan: B
- s job classes
- n_i jobs in class i (i = 1,2,...,s)
- processing time p_i in class i

Is there a feasible schedule?

Example: multiprocessor scheduling

Case s = 2:

- *m* parallel machines
- available makespan: B
- n_1 jobs of length p_1 , n_2 jobs of length p_2

(6 numbers!)

McCormick, Smallwood, Spieksma (2001) give a polynomial algorithm for this case.

Case s = 3 is open (progress by Agnetis et al.)

Early work (1)

- Rothkopf, Operations Research (1966)
- Psaraftis, Operations Research (1980)
- Cosmadakis and Papadimitriou, SIAM J. Computing (1984)
- Hochbaum and Shamir, Discrete Applied Math. (1990), Operations Research (1991)
- Shallcross OR Letters (1992)

Early work (2)

Hochbaum and Shamir coined the term "high multiplicity problems".

They observed explicitly that, since the input size is

$$I = \mathcal{O}(s \log n + s L),$$

the total length of a schedule (*n* jobs) may be exponential in *I*

(see also Cosmadakis and Papadimitriou).

Further work (1)

- McCormick, Smallwood and Spieksma, *Math. OR* (2001): multiprocessor scheduling with small number of p_i 's
- Agnetis, *Annals of OR* (1997): no-wait flow-shop
- Clifford and Posner, *Operations Research* (2000), *Math. Programming* (2001)

Further work (2)

- Grigoriev, Ph.D. Thesis, Maastricht, 2003
- Brauner, Crama, Grigoriev and Van de Klundert, *Journal of Combinatorial Optimization* (2005), *Statistica Neerlandica* (2007).
- Brauner and Crama, Discrete Applied Mathematics (2004)
- Grigoriev and Van de Klundert, *Discrete Optimization* (2006)

On the complexity of HMSP

Brauner, Crama, Grigoriev and Van de Klundert (2005, 2007)

Motivation:

- refine some of the crude complexity analysis found in Clifford and Posner *Math. Prog.* (2001)
- draw parallel with complexity analysis of list generating algorithms (Johnson, Yannakakis and Papadimitriou *Inf. Proc. Letters* 1988).

Basic question:

• How should we analyze the complexity of an algorithm which is required to output a list of objects whose size is exponential in the size of the input??

Examples:

- Generate all vertices of a polyhedron given by a system of linear inequalities.
- Generate all maximal stable sets of a graph.
- Generate all Pareto-optimal (efficient) solutions of a multicriteria optimization problem.

We can say that such problems are NP-hard... but it's not really fair!

Main point is:

- Input size = I
- Output size = M
- *M* is exponential in *I*

Then, we call an algorithm *total polynomial* if its total running time is polynomial in I and M.

The algo runs with *polynomial delay* if the running time between successive outputs is polynomial in I (total time is O(I M)).

- Johnson, Yannakakis and Papadimitriou *Inf. Proc. Letters* (1988) for stable sets in graphs,
- Fukuda (1996) for vertices of polyhedra,
- T'Kindt, Bouibede-Hocine and Esswein (2005) for multicriteria scheduling problems,
- Boros, Elbassioni, Gurvich, Khachiyan, Makino for other classes of problems,

etc.

Back to HMSP...

Since the number of jobs n is exponential in the input size I, distinguish among algorithms which

- compute the optimal schedule length in polynomial time *poly(I)* (compact encoding);
- list all starting times in total polynomial time poly(n);
- list all starting times with polynomial delay poly(I) between job k and job k+1;
- compute the starting time of job k in pointwise polynomial time poly(I), for any k.

Example: 1-machine batch scheduling

Input: number n of identical jobs, processing time p, batch setup time b (3 numbers).

<u>Problem</u>: Group jobs into batches so as to minimize the sum of completion times.

The number of batches may be large (\sqrt{n}) , but Shallcross (1992) computes the optimal value in polynomial time and can compute the size of the k-th batch in polynomial time for any k.

- 2-machine flowshop, buffer of size b
- *n* identical parts
- Fixed operations can only be processed on a specific machine: total processing time of the fixed operations on M_1 is f_1 , on M_2 is f_2 .
- One flexible operation can be processed on either machine; processing time *s*.
- Input size is

$$I = O(\log(b) + \log(n) + \log(f_1) + \log(f_2) + \log(s))$$

Input size is

$$I = O(\log(b) + \log(n) + \log(f_1) + \log(f_2) + \log(s))$$

- A solution consists of an assignment of the flexible operation to one of the machines for each part, and of a production schedule.
- Writing down a solution requires O(n) time and space.

Problem is investigated in Crama and Gultekin *Journal of Scheduling* (2010).

- Crama and Gultekin (2010): when *b* is either 0 or infinite, pointwise polynomial algorithms
- require O(I) computing time to determine the optimal makespan, and
- require O(I) computing time to determine the starting time of any given part.

- Crama and Gultekin (2010): when *b* is positive and finite, polynomial-delay algorithm
- proceeds sequentially, part after part;
- requires O(I) computing time to determine the assignment of the flexible operation for the next part;
- requires O(I) computing time to determine the optimal makespan.

Open: Is there a pointwise polynomial algorithm for this problem?

Just in Time sequencing

- s product types;
- n_i items of type i (i = 1,...,s);
- unit processing times.

Let $r_i = n_i / n$, where n = total number of jobs.

Determine a sequence of items such that, at every time k, the number of items of type i which have been processed is as close as possible to $k r_i$.

Just in Time sequencing: example

$$n_1 = 3$$
 $n_2 = 3$ $n_3 = 1$ $r_1 = 3/7$ $r_2 = 3/7$ $r_3 = 1/7$

JIT sequencing: total deviation

Different versions of the problem.

Let x_{ik} = number of items of type i processed up to time k (i = 1,...,s; k = 1,...,n).

Kubiak and Sethi, Management Science (1991):

minimize
$$\sum_{i} \sum_{k} f(x_{ik} - k r_i)$$

where $f(.) = |.| \text{ or } (.)^2 \text{ or } ...$

Solvable in time $O(n^3)$: pseudo-polynomial (Kubiak *EJOR* 1993).

JIT sequencing: maximum deviation

Steiner and Yeomans, *Manag. Science* (1993): (MDJIT) minimize $\max_{i,k} |x_{ik} - k r_i|$

Thresholding approach: fix maximum allowed deviation *B*.

We want to produce the *j*-th item of type *i* at time *k* so that $|j - k r_i| \le B$.

MDJIT: earliest and latest dates

We want to produce the *j*-th item of type *i* at time *k* so that $|j - k r_i| \le B$.

Bounds on *k* can be computed:

• earliest due date for *j*-th item of type *i* is

$$E(i,j) = \lceil (j-B)/r_i \rceil;$$

latest due date is

$$L(i,j) = [(j-1+B)/r_i + 1].$$

MDJIT: Bipartite matching

Reduction to bipartite matching: graph G

- $V = \{ \text{ product items } \} \cup \{ \text{ time units} \}$
- *j*-th item of type i is linked to all time units in the feasible interval [E(i,j), L(i,j)].

Proposition (SY93): MDJIT has a solution with value at most *B* if and only if *G* has a perfect matching.

MDJIT: EDD algorithm

Since G is convex, the existence of a perfect matching can be checked in time O(n) by the Earliest Due Date algorithm (Glover 1967):

- run through time periods k = 1, ..., n;
- assign to k the item (i,j) with earliest due date, i.e., with smallest value of L(i,j) among all available items.

MDJIT: pseudo-polynomial algo

Binary search on B leads to $O(n \log n)$ algorithm for the optimization problem: pseudo-polynomial.

- Can we do better?
- Is the MDJIT problem in *P* ? in *NP* ?

MDJIT: further results (Brauner and Crama *DAM* 2004)

Idea:

• use Hall's theorem for the existence of a bipartite perfect matching:

```
for all X \subseteq \{\text{items}\}, |X| \le |N(X)|;
```

- specialize for convex graphs;
- express in algebraic form.

This leads to:

MDJIT: algebraic characterization

Theorem:

MDJIT has a solution with maximum deviation at most B if and only if the following inequalities hold for all $x_1 \le x_2$ in $\{1,2,...,n\}$:

$$\sum_{i} \max \left(0, \left[x_{2} r_{i} + B\right] - \left[(x_{1} - 1) r_{i} + B\right]\right) \ge x_{2} - x_{1} + 1$$

$$\sum_{i} \max \left(0, \left[x_{2} r_{i} - B\right] - \left[(x_{1} - 1) r_{i} + B\right]\right) \le x_{2} - x_{1} + 1.$$

MDJIT: co-NP and fixed s

Corollary 1: MDJIT is in *co-NP*.

Corollary 2: for fixed s, the optimal value of MDJIT can be solved in polynomial time.

<u>Proof</u>: express the CNS as linear inequalities in integer variables; use Lenstra's algorithm.

When s = 2, the problem is easy.

We don't know anything better when s = 3.

MDJIT: polynomial delay

Corollary 3: for fixed s, the optimal sequence can be determined with polynomial delay between job k and job k+1.

<u>Proof</u>: determine the optimal value B^* in polynomial time, then use the EDD algorithm.

MDJIT: optimal value

Corollary 4: the optimal value B^* of MDJIT satisfies:

$$B* \le 1 - 1/n$$
.

Corollary 5: if $gcd(n_1, n_2, ..., n_s) = m$, then the optimal solution is obtained by repeating m times the optimal solution for $(n_1/m, n_2/m, ..., n_s/m)$.

So, for MDJIT, it is not possible to reduce the average cycle time by duplicating the MPS.

MDJIT: small deviation instances

Note that $B^* < 1$ for all instances.

When is $B^* < 1/2$?

Conjecture: When
$$s \ge 3$$
, $B^* < 1/2$ if and only if $(n_1, n_2, ..., n_s) = (1, 2, 4, ..., 2^{s-1})$.

True for $s \le 6$ (Brauner and Crama 2004).

True for all s (Kubiak 2003; Brauner & Jost 2008).

MDJIT and Fraenkel's conjecture

Interesting connections with *balanced words* (« uniformly dense » colorings of integers) and *Fraenkel's conjecture* in number theory.

Balanced words

A *balanced word* is a coloring of the integers \mathbb{N} with s colors such that, for any two subintervals II, I2 of \mathbb{N} of the same length, each color appears almost the same number of times in I1 and in I2 (« almost » means: up to one unit).

The *density* of color *i* in a balanced word is (roughly) the proportion of integers of that color in large intervals.

Fraenkel's conjecture

Conjecture: When $s \ge 3$, there exists a balanced word on s colors with densities $(r_1, r_2, ..., r_s)$ if and only if $r_i \sim 2^{i-1}$.

The MDJIT conjecture is Fraenkel's conjecture for symmetric words.

Fair apportionment

Apportionment problem: Given s political parties and target ratios $(r_1, r_2, ..., r_s)$, allocate n seats in an assembly so that party i receives approximately $r_i n$ seats.

Closely related to JIT sequencing.

See: Kubiak, *Proportional Optimization and Fairness*, Springer 2009.

High multiplicity TSP

Description

- Graph G = (V,E), |V| = s
- $s \times s$ distance matrix $D \ge 0$ (not necessarily symmetric, $d_{ii} \ge 0$)
- Integers n_i (i = 1, 2, ..., s)
- Find the shortest tour which visits vertex i exactly n_i times, for i = 1, 2, ..., s.

Example: Aircraft sequencing

(Psaraftis, Operations Research 1980)

- s categories of airplanes waiting to land (B747, B707, DC-9)
- there are several airplanes in each category; say, (5, 7, 3)
- landing duration and delay between successive landings depends on respective categories only.

High multiplicity TSP

- Model for machine scheduling with setups.
- Rothkopf (1966): conditions under which all jobs of a same type are processed in succession.
- Psaraftis (1980): dynamic programming pseudopolynomial algo: $O(s^2 \Pi(n_i+1))$.
- Cosmadakis and Papadimitriou (1984): $O(g(s) log(\sum n_i))$ where g(s) is an exponential function of s; polynomial for fixed s.

Encodings of solutions (1)

Several possible encodings:

- sequence of vertices (jobs)
- solution (x_{ij}) of integer LP $(x_{ij} = \text{number of times edge } (i,j)$ is traversed; transportation constraints + subtour elimination constraints)
- list (m_C, C) : m_C = number of copies of cycle C in the walk.

Encodings of solutions (2)

Size of different encodings:

- sequence of vertices : size = $\sum_{i} n_{i}$
- solution (x_{ij}) of integer LP : size = s^2
- list (m_C, C) : size = $O(s^2)$.

So, the HMTSP is in *NP*.

Non minimal part sets (1)

Back to Minimal Part Set (MPS):

- production ratios are fixed: e.g., (1/2, 1/4, 1/8, 1/8)
- a Minimal Part Set (MPS) is a minimal batch of products which satisfies the target ratios and which can therefore be cyclically produced; e.g., MPS = (4, 2, 1, 1).
- Question: Is it possible to attain a smaller average cycle time if multiples of the MPS are produced cyclically?

Non minimal part sets (2)

Is it possible to attain a smaller average cycle time if multiples of the MPS are produced cyclically?

e.g., produce repeatedly (8, 4, 2, 2) instead of (4, 2, 1, 1).

$$(n_1, n_2, n_3) = (1,1,1)$$

 $(n_1, n_2, n_3) = (1,1,1)$ - Average tour length = 4

$$(n_1, n_2, n_3) = (2,2,2)$$

 $(n_1, n_2, n_3) = (2,2,2)$ - Average tour length = 3

Results

(Grigoriev and Van de Klundert 2006)

Let F(l): average tour length with $l \times n_i$ visits to city i (i = 1, 2, ..., s).

Let F^T : optimal cost of a transportation problem with demands n_i and supplies n_j (i, j = 1, 2, ..., s).

Theorem: for all $l \in \mathbb{N}$,

$$F^T \leq F(l+1) \leq F(l)$$
.

Stable instances

An instance of HMTSP is <u>stable</u> if there exists l such that $F(l) = F^{T}$.

Let l^0 be the smallest such multiplier l.

<u>Proposition</u>. If l^0 exists, then $l^0 \le s - 1$.

<u>Proposition</u>. Stable instances can be recognized in polynomial time.

Possible extensions?

Basic question:

Is it possible to attain a smaller average cycle time if multiples of the MPS are produced cyclically?

Remember: it is not the case for the MDJIT sequencing problem.

Other frameworks where this question could yield interesting results?

62

Conclusions

- High multiplicity optimization problems pose intriguing and challenging complexity questions.
- Membership in P, NP, coNP may be non trivial.
- Algorithms can be viewed as list-generating algorithms.
- Connections with number theory and integer programming in fixed dimensions.
- Finding the optimal size of a part set (multipliers of the MPS) might be an interesting question in different settings.