
1

HIGH MULTIPLICITY 
SCHEDULING PROBLEMS

Yves CRAMA
HEC Management School

University of Liège

Francqui Lecture, KUL, April 2010



2

Outline

• What is a high-multiplicity scheduling 
problem?

• Complexity analysis of HMSP
• Flowshops with flexible operations
• Just-In-Time sequencing
• High-multiplicity traveling salesman problem
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What is a HMSP? (1)

Usual input of a (one machine) scheduling 
problem is:
• Number of jobs 1,2,…,n
• For each job j, a list of attributes like

– Processing time pj

– Release date rj

– Due date dj

– etc.
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What is a HMSP? (2)

=> input size:
O(n L),

where L is the encoding size of the attributes.
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What is a HMSP? (3)

In certain applications, jobs are distributed in 
a small number of classes and all jobs in a 
same class are identical.
=> Input :
• number of classes s 
• number of jobs ni in class i (i = 1,2,…,s)
• attributes of a representative job in class i
E.g., for s =1: identical jobs
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Example: low-multiplicity
s = 250 jobs:
 pi  di 

3 24
1 6
4 15
2 12
6 9
3 17
5 11
4 23  ...
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Example: high-multiplicity
s = 4 types of jobs:
 pi  di ni 

3 24 50
1 6     100
4 15 75
2 12 75
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What is a HMSP? (4)

=> input size:
O(s log n + s L) 

instead of
O(n L)

(where L is the encoding size of the attributes).
This is much more compact if s << n or if s is 

constant.
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What is a HMSP? (5)

In particular,
• a problem which is polynomially solvable 
with low-multiplicity input can be solved in 
pseudo-polynomial time, but not necessarily 
in polynomial time, with HM input;
• not even easy to prove that a HMSP is in NP 
(because a natural certificate is a schedule, 
which is exponentially long in the input size).
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Example : Cyclic manufacturing

• s types of products have to be produced in 
large numbers (say, infinitely many units)
• production ratios are fixed: e.g.
  (r1,r2,…, rs) = (1/2, 1/4, 1/8, 1/8) 
• a Minimal Part Set (MPS) is a minimal batch 
of products which satisfies the target ratios and 
which can therefore be cyclically produced; 
e.g., MPS = (4, 2, 1, 1).
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Example : Cyclic manufacturing

• In order to describe an instance, it is 
sufficient to give the MPS (n1, n2,…, ns) and 
the characteristics of each part type i. 
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Example: multiprocessor scheduling

• m parallel machines
• available makespan: B
• s job classes 
• ni jobs in class i (i = 1,2,…,s)
• processing time pi in class i

Is there a feasible schedule ?



13

Case s = 2:
• m parallel machines
• available makespan: B
• n1 jobs of length p1, n2 jobs of length p2 
(6 numbers !)
McCormick, Smallwood, Spieksma (2001) 
give a polynomial algorithm for this case.

Case s = 3 is open (progress by Agnetis et al.)

Example: multiprocessor scheduling
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Early work (1)

• Rothkopf, Operations Research (1966)
• Psaraftis, Operations Research (1980)
• Cosmadakis and Papadimitriou, SIAM J. 
Computing (1984)
• Hochbaum and Shamir, Discrete Applied 
Math. (1990), Operations Research (1991)
• Shallcross OR Letters (1992) 
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Early work (2)

Hochbaum and Shamir coined the term “high 
multiplicity problems”.

They observed explicitly that, since the input 
size is

I = O(s log n + s L), 
the total length of a schedule (n jobs) may be 

exponential in I
(see also Cosmadakis and Papadimitriou).
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Further work (1)
• McCormick, Smallwood and Spieksma, 
Math. OR (2001): multiprocessor scheduling 
with small number of pj’s
• Agnetis, Annals of OR (1997): no-wait flow-
shop
• Clifford and Posner, Operations Research 
(2000), Math. Programming (2001)
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Further work (2)
• Grigoriev, Ph.D. Thesis, Maastricht, 2003
• Brauner, Crama, Grigoriev and Van de 
Klundert, Journal of Combinatorial 
Optimization (2005), Statistica Neerlandica 
(2007). 
• Brauner and Crama, Discrete Applied 
Mathematics (2004)
• Grigoriev and Van de Klundert, Discrete 
Optimization (2006)
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On the complexity of HMSP
Brauner, Crama, Grigoriev 

and Van de Klundert (2005, 2007)

Motivation: 
• refine some of the crude complexity analysis 
found in Clifford and Posner Math. Prog. 
(2001)
• draw parallel with complexity analysis of 
list generating algorithms (Johnson, 
Yannakakis and Papadimitriou Inf. Proc. 
Letters 1988).
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List-generating algorithms

Basic question: 
• How should we analyze the complexity of 
an algorithm which is required to output a list 
of objects whose size is exponential in the 
size of the input??
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List-generating algorithms
Examples:
• Generate all vertices of a polyhedron given by a 
system of linear inequalities.
• Generate all maximal stable sets of a graph. 
• Generate all Pareto-optimal (efficient) solutions 
of a multicriteria optimization problem. 

We can say that such problems are NP-hard... but 
it's not really fair!
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List-generating algorithms
Main point is:
• Input size = I
• Output size = M 
• M is exponential in I 
 Then, we call an algorithm total polynomial if its 
total running time is polynomial in I and M. 
 The algo runs with polynomial delay if the 
running time between successive outputs is 
polynomial in I (total time is O(I M)).
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List-generating algorithms

Johnson, Yannakakis and Papadimitriou Inf. Proc. 
Letters (1988) for stable sets in graphs,

Fukuda (1996) for vertices of polyhedra,
T'Kindt, Bouibede-Hocine and Esswein (2005) for 

multicriteria scheduling problems,
Boros, Elbassioni, Gurvich, Khachiyan, Makino 

for other classes of problems,
etc.
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Since the number of jobs n is exponential in the 
input size I, distinguish among algorithms which
• compute the optimal schedule length in 
polynomial time poly(I) (compact encoding);
• list all starting times in total polynomial time 
poly(n) ;
• list all starting times with polynomial delay 
poly(I) between job k and job k+1;
• compute the starting time of job k in pointwise 
polynomial time poly(I), for any k.

Back to HMSP...
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Example: 1-machine batch scheduling

Input: number n of identical jobs, processing time 
p, batch setup time b (3 numbers).

Problem: Group jobs into batches so as to 
minimize the sum of completion times.

The number of batches may be large (√n), but 
Shallcross (1992) computes the optimal value 
in polynomial time and can compute the size of 
the k-th batch in polynomial time for any k.
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Example: Flowshops with flexible operations
• 2-machine flowshop, buffer of size b
• n identical parts
• Fixed operations can only be processed on a 

specific machine: total processing time of the 
fixed operations on M1 is f1, on M2 is f2 .

• One flexible operation can be processed on 
either machine; processing time s.

• Input size is 
I = O( log(b) + log(n) + log(f1) + log(f2 ) + log(s) )
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• Input size is 
I = O( log(b) + log(n) + log(f1) + log(f2 ) +log(s) )
• A solution consists of an assignment of the 

flexible operation to one of the machines for 
each part, and of a production schedule.

• Writing down a solution requires O(n) time and 
space. 

Problem is investigated in Crama and Gultekin 
Journal of Scheduling (2010).

Example: Flowshops with flexible operations
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Crama and Gultekin (2010): when b is either 0 or 
infinite, pointwise polynomial algorithms

• require O(I) computing time to determine the 
optimal makespan, and

• require O(I) computing time to determine the 
starting time of any given part.

Example: Flowshops with flexible operations
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Crama and Gultekin (2010): when b is positive and 
finite, polynomial-delay algorithm 

• proceeds sequentially, part after part; 
• requires O(I) computing time to determine the 

assignment of the flexible operation for the next 
part;

• requires O(I) computing time to determine the 
optimal makespan.

Open: Is there a pointwise polynomial algorithm for 
this problem?

Example: Flowshops with flexible operations
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Just in Time sequencing
• s product types;
• ni items of type i (i = 1,…,s);
• unit processing times.
Let ri = ni / n, where n = total number of jobs.
Determine a sequence of items such that, at 
every time k, the number of items of type i 
which have been processed is as close as 
possible to k ri.
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Just in Time sequencing: example

n1 = 3 n2 = 3 n3 = 1
r1 = 3/7 r2 = 3/7 r3 = 1/7

kr1  3/7     6/7       9/7     12/7    15/7    18/7    21/7
x1k    1        1          2         2         2          3         3
dev 4/7     1/7       5/7      2/7      1/7      3/7        0
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JIT sequencing: total deviation
Different versions of the problem.
Let xik = number of items of type i processed up 

to time k (i = 1,…,s; k = 1,…,n).
Kubiak and Sethi, Management Science (1991):

minimize ∑i ∑k f ( xik − k ri )
where f (.) = | . | or (.)2 or …
Solvable in time O(n3): pseudo-polynomial 
(Kubiak EJOR 1993).
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JIT sequencing: maximum deviation

Steiner and Yeomans, Manag. Science (1993):
(MDJIT) minimize maxi,k | xik − k ri |

Thresholding approach: fix maximum allowed 
deviation B.
We want to produce the j-th item of type i at 
time k so that | j − k ri | ≤ B.
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MDJIT : earliest and latest dates

We want to produce the j-th item of type i at 
time k so that | j − k ri | ≤ B.
Bounds on k can be computed:
• earliest due date for j-th item of type i is

E(i,j) = ( j−B ) / ri  ;
• latest due date is

L(i,j) =  ( j−1+B ) / ri + 1 .
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MDJIT: Bipartite matching
Reduction to bipartite matching: graph G
• V = { product items } ∪ { time units}
• j-th item of type i is linked to all time units 
in the feasible interval [ E(i,j) , L(i,j) ].

Proposition (SY93): MDJIT has a solution 
with value at most B if and only if G has a 
perfect matching.
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MDJIT : EDD algorithm

Since G is convex, the existence of a perfect 
matching can be checked in time O(n) by the 
Earliest Due Date algorithm (Glover 1967):

• run through time periods k = 1,…,n; 
• assign to k the item (i,j) with earliest due 
date, i.e., with smallest value of L(i,j) 
among all available items.
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MDJIT : pseudo-polynomial algo 

Binary search on B leads to O(n log n) 
algorithm for the optimization problem: 
pseudo-polynomial.

• Can we do better ?
• Is the MDJIT problem in P ? in NP ?
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MDJIT: further results
 (Brauner and Crama DAM 2004)

Idea: 
• use Hall’s theorem for the existence of a 
bipartite perfect matching :

for all X ⊆ {items}, | X | ≤ | N(X) | ;
• specialize for convex graphs ;
• express in algebraic form.
This leads to:
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MDJIT: algebraic characterization

Theorem:
MDJIT has a solution with maximum deviation at 
most B if and only if the following inequalities 
hold for all x1 ≤ x2 in {1,2,…,n} :

∑i max (0, x2 ri + B − (x1−1) ri + B ) ≥ x2− x1 + 1

∑i max (0, x2 ri − B − (x1−1) ri + B ) ≤ x2− x1 + 1.
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MDJIT: co-NP and fixed s

Corollary 1: MDJIT is in co-NP.

Corollary 2: for fixed s, the optimal value of 
MDJIT can be solved in  polynomial time.
Proof: express the CNS as linear inequalities in 
integer variables; use Lenstra’s algorithm.
When s = 2, the problem is easy.
We don’t know anything better when s = 3.
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MDJIT: polynomial delay

Corollary 3: for fixed s, the optimal sequence can 
be determined with polynomial delay between job 
k and job k+1.

Proof: determine the optimal value B* in 
polynomial time, then use the EDD algorithm.
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MDJIT : optimal value
Corollary 4: the optimal value B* of MDJIT 
satisfies :

B* ≤ 1 − 1/n.

Corollary 5: if gcd(n1, n2,…, ns) = m, then the 
optimal solution is obtained by repeating m times 
the optimal solution for (n1/m, n2/m,…, ns/m). 
So, for MDJIT, it is not possible to reduce the 
average cycle time by duplicating the MPS.
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MDJIT: small deviation instances

Note that B* < 1 for all instances.
When is B* < 1/2 ?

Conjecture: When s ≥ 3, B* < 1/2 if and only if        
(n1, n2,…, ns) = (1, 2, 4, …, 2s−1).

True for s ≤ 6 (Brauner and Crama 2004).
True for all s (Kubiak 2003; Brauner & Jost 2008).
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MDJIT and Fraenkel’s conjecture

Interesting connections with balanced words 
(« uniformly dense » colorings of integers) 
and Fraenkel’s conjecture in number theory.
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Balanced words
A balanced word is a coloring of the integers N 
with s colors such that, for any two subintervals 
I1, I2 of N of the same length, each color 
appears almost the same number of times in I1 
and in I2 (« almost » means: up to one unit).

The density of color i in a balanced word is 
(roughly) the proportion of integers of that color 
in large intervals. 
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Fraenkel’s conjecture

Conjecture: When s ≥ 3, there exists a balanced 
word on s colors with densities (r1, r2,…, rs) if 
and only if ri ∼ 2i−1. 

The MDJIT conjecture is Fraenkel's conjecture 
for symmetric words.
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Fair apportionment

Apportionment problem: Given s political 
parties and target ratios  (r1, r2,…, rs), allocate n 
seats in an assembly so that party i receives 
approximately ri n seats.

Closely related to JIT sequencing.

See: Kubiak, Proportional Optimization and 
Fairness, Springer 2009.
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High multiplicity TSP

Description 
• Graph G = (V,E), |V| = s
• s×s distance matrix D ≥ 0 (not necessarily 

symmetric, dii ≥ 0)
• Integers ni (i = 1,2,…,s)
• Find the shortest tour which visits vertex i 

exactly ni times, for i = 1,2,…,s.
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Example : Aircraft sequencing
(Psaraftis, Operations Research 1980)

• s categories of airplanes waiting to land 
(B747, B707, DC-9)
• there are several airplanes in each category; 
say, (5, 7, 3)
• landing duration and delay between 
successive landings depends on respective 
categories only.
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High multiplicity TSP
• Model for machine scheduling with setups.
• Rothkopf (1966): conditions under which all 

jobs of a same type are processed in succession.
• Psaraftis (1980): dynamic programming 

pseudopolynomial algo: O( s2 Π(ni+1) ).
• Cosmadakis and Papadimitriou (1984):     

O( g(s) log (Σ ni) ) where g(s) is an exponential 
function of s; polynomial for fixed s.
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Encodings of solutions (1)

Several possible encodings:
• sequence of vertices (jobs)
• solution (xij) of integer LP (xij = number of 
times edge (i,j) is traversed; transportation 
constraints + subtour elimination constraints)
• list (mC ,C) : mC =  number of copies of cycle 
C in the walk.
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Encodings of solutions (2)

Size of different encodings:
• sequence of vertices : size = ∑i ni 
• solution (xij) of integer LP : size = s2

• list (mC ,C) : size = O(s2).

So, the HMTSP is in NP.
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Non minimal part sets (1)

Back to Minimal Part Set (MPS):
• production ratios are fixed: e.g., (1/2, 1/4, 1/8, 1/8) 
• a Minimal Part Set (MPS) is a minimal batch of 

products which satisfies the target ratios and 
which can therefore be cyclically produced; e.g., 
MPS = (4, 2, 1, 1).

• Question: Is it possible to attain a smaller 
average cycle time if multiples of the MPS are 
produced cyclically ?
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Is it possible to attain a smaller average cycle 
time if multiples of the MPS are produced 
cyclically ?
e.g., produce repeatedly (8, 4, 2, 2) instead of 
(4, 2, 1, 1).

Non minimal part sets (2)



54

2

2
23

1
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2

2
23

1

(n1, n2, n3) = (1,1,1)
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2
23

1

(n1, n2, n3) = (1,1,1) - Average tour length = 4
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2

2
23

1

(n1, n2, n3) = (2,2,2)
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23

1

(n1, n2, n3) = (2,2,2) - Average tour length = 3



59

Results 
(Grigoriev and Van de Klundert 2006)

Let F(l) : average tour length with l×ni visits to 
city i (i = 1,2,…,s).

Let FT : optimal cost of a transportation problem 
with demands ni and supplies nj   (i, j = 1,2,…,s).

Theorem: for all l ∈ N , 
FT ≤ F(l+1) ≤ F(l).
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F(l)

   FT

l0
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Stable instances

An instance of HMTSP is stable if there exists 
l such that F(l) = FT. 
Let l0 be the smallest such multiplier l.

Proposition. If l0 exists, then l0 ≤ s − 1.

Proposition. Stable instances can be 
recognized in polynomial time. 
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Possible extensions ?
Basic question: 
Is it possible to attain a smaller average cycle 
time if multiples of the MPS are produced 
cyclically ?

Remember: it is not the case for the MDJIT 
sequencing problem.

Other frameworks where this question could 
yield interesting results ?
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Conclusions
• High multiplicity optimization problems pose 
intriguing and challenging complexity questions.
• Membership in P, NP, coNP may be non trivial.
• Algorithms can be viewed as list-generating 
algorithms.
• Connections with number theory and integer 
programming in fixed dimensions.
• Finding the optimal size of a part set 
(multipliers of the MPS) might be an interesting 
question in different settings. 
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