HIGH MULTIPLICITY SCHEDULING PROBLEMS

Yves CRAMA
HEC Management School
University of Liège

Francqui Lecture, KUL, April 2010

Outline

- What is a high-multiplicity scheduling problem?
- Complexity analysis of HMSP
- Flowshops with flexible operations
- Just-In-Time sequencing
- High-multiplicity traveling salesman problem

What is a HMSP? (1)

Usual input of a (one machine) scheduling problem is:

- Number of jobs $1,2, \ldots, n$
- For each job j, a list of attributes like
- Processing time p_{j}
- Release date r_{j}
- Due date d_{j}
- etc.

What is a HMSP? (2)

$=>$ input size:

$$
\mathrm{O}(n L)
$$

where L is the encoding size of the attributes.

What is a HMSP? (3)

In certain applications, jobs are distributed in a small number of classes and all jobs in a same class are identical.
$=>$ Input :

- number of classes S
- number of jobs n_{i} in class $i(i=1,2, \ldots, s)$
- attributes of a representative job in class i
E.g., for $s=1$: identical jobs

Example: low-multiplicity

$$
\begin{array}{ll}
s=250 \text { jobs: } \\
p_{i} & d_{i} \\
3 & 24 \\
1 & 6 \\
4 & 15 \\
2 & 12 \\
6 & 9 \\
3 & 17 \\
5 & 11 \\
4 & 23
\end{array}
$$

Example: high-multiplicity

$s=4$ types of jobs:

p_{i}	d_{i}	n_{i}
3	24	50
1	6	100
4	15	75
2	12	75

What is a HMSP? (4)

$=>$ input size:

$$
\mathrm{O}(s \log n+s L)
$$

instead of

$$
\mathrm{O}(n L)
$$

(where L is the encoding size of the attributes).
This is much more compact if $s \ll n$ or if s is constant.

What is a HMSP? (5)

In particular,

- a problem which is polynomially solvable with low-multiplicity input can be solved in pseudo-polynomial time, but not necessarily in polynomial time, with HM input;
- not even easy to prove that a HMSP is in $N P$ (because a natural certificate is a schedule, which is exponentially long in the input size).

Example : Cyclic manufacturing

- s types of products have to be produced in large numbers (say, infinitely many units)
- production ratios are fixed: e.g.

$$
\left(r_{1}, r_{2}, \ldots, r_{s}\right)=(1 / 2,1 / 4,1 / 8,1 / 8)
$$

- a Minimal Part Set (MPS) is a minimal batch of products which satisfies the target ratios and which can therefore be cyclically produced; e.g., $\operatorname{MPS}=(4,2,1,1)$.

Example : Cyclic manufacturing

- In order to describe an instance, it is sufficient to give the MPS $\left(n_{1}, n_{2}, \ldots, n_{s}\right)$ and the characteristics of each part type i.

Example: multiprocessor scheduling

- m parallel machines
- available makespan: B
- s job classes
- n_{i} jobs in class $i(i=1,2, \ldots, s)$
- processing time p_{i} in class i

Is there a feasible schedule?

Example: multiprocessor scheduling

Case $s=2$:

- m parallel machines
- available makespan: B
- n_{1} jobs of length p_{1}, n_{2} jobs of length p_{2}
(6 numbers !)
McCormick, Smallwood, Spieksma (2001) give a polynomial algorithm for this case.

Case $s=3$ is open (progress by Agnetis et al.) ${ }_{13}$

Early work (1)

- Rothkopf, Operations Research (1966)
- Psaraftis, Operations Research (1980)
- Cosmadakis and Papadimitriou, SIAM J.

Computing (1984)

- Hochbaum and Shamir, Discrete Applied

Math. (1990), Operations Research (1991)

- Shallcross OR Letters (1992)

Early work (2)

Hochbaum and Shamir coined the term "high multiplicity problems".
They observed explicitly that, since the input size is

$$
I=\mathrm{O}(s \log n+s L),
$$

the total length of a schedule (n jobs) may be exponential in I
(see also Cosmadakis and Papadimitriou).

Further work (1)

- McCormick, Smallwood and Spieksma, Math. OR (2001): multiprocessor scheduling with small number of p_{j} 's
- Agnetis, Annals of $O R$ (1997): no-wait flowshop
- Clifford and Posner, Operations Research (2000), Math. Programming (2001)

Further work (2)

- Grigoriev, Ph.D. Thesis, Maastricht, 2003
- Brauner, Crama, Grigoriev and Van de Klundert, Journal of Combinatorial Optimization (2005), Statistica Neerlandica (2007).
- Brauner and Crama, Discrete Applied Mathematics (2004)
- Grigoriev and Van de Klundert, Discrete Optimization (2006)

On the complexity of HMSP Brauner, Crama, Grigoriev and Van de Klundert $(2005,2007)$

Motivation:

- refine some of the crude complexity analysis found in Clifford and Posner Math. Prog. (2001)
- draw parallel with complexity analysis of list generating algorithms (Johnson, Yannakakis and Papadimitriou Inf. Proc. Letters 1988).

List-generating algorithms

Basic question:

- How should we analyze the complexity of an algorithm which is required to output a list of objects whose size is exponential in the size of the input??

List-generating algorithms

Examples:

- Generate all vertices of a polyhedron given by a system of linear inequalities.
- Generate all maximal stable sets of a graph.
- Generate all Pareto-optimal (efficient) solutions of a multicriteria optimization problem.

We can say that such problems are NP-hard... but it's not really fair!

List-generating algorithms

Main point is:

- Input size = I
- Output size = M
- M is exponential in I

Then, we call an algorithm total polynomial if its total running time is polynomial in I and M.
The algo runs with polynomial delay if the running time between successive outputs is polynomial in I (total time is $\mathrm{O}(I M)$).

List-generating algorithms

Johnson, Yannakakis and Papadimitriou Inf. Proc. Letters (1988) for stable sets in graphs,
Fukuda (1996) for vertices of polyhedra,
T'Kindt, Bouibede-Hocine and Esswein (2005) for multicriteria scheduling problems,
Boros, Elbassioni, Gurvich, Khachiyan, Makino for other classes of problems,
etc.

Back to HMSP...

Since the number of jobs n is exponential in the input size I, distinguish among algorithms which - compute the optimal schedule length in polynomial time poly(I) (compact encoding); - list all starting times in total polynomial time poly(n) ;

- list all starting times with polynomial delay poly(I) between job k and job $k+1$;
- compute the starting time of job k in pointwise polynomial time poly(I), for any k.

Example: 1-machine batch scheduling

Input: number n of identical jobs, processing time p, batch setup time b (3 numbers).
Problem: Group jobs into batches so as to minimize the sum of completion times.
The number of batches may be large $(\sqrt{ } n)$, but Shallcross (1992) computes the optimal value in polynomial time and can compute the size of the k-th batch in polynomial time for any k.

Example: Flowshops with flexible operations

- 2-machine flowshop, buffer of size b
- n identical parts
- Fixed operations can only be processed on a specific machine: total processing time of the fixed operations on M_{1} is f_{1}, on M_{2} is f_{2}.
- One flexible operation can be processed on either machine; processing time s.
- Input size is
$I=\mathrm{O}\left(\log (b)+\log (n)+\log \left(f_{1}\right)+\log \left(f_{2}\right)+\log (s)\right)$

Example: Flowshops with flexible operations

- Input size is
$I=\mathrm{O}\left(\log (b)+\log (n)+\log \left(f_{l}\right)+\log \left(f_{2}\right)+\log (s)\right)$
- A solution consists of an assignment of the flexible operation to one of the machines for each part, and of a production schedule.
- Writing down a solution requires $\mathrm{O}(n)$ time and space.
Problem is investigated in Crama and Gultekin Journal of Scheduling (2010).

Example: Flowshops with flexible operations

Crama and Gultekin (2010): when b is either 0 or infinite, pointwise polynomial algorithms

- require $\mathrm{O}(I)$ computing time to determine the optimal makespan, and
- require $\mathrm{O}(I)$ computing time to determine the starting time of any given part.

Example: Flowshops with flexible operations

Crama and Gultekin (2010): when b is positive and finite, polynomial-delay algorithm

- proceeds sequentially, part after part;
- requires $\mathrm{O}(I)$ computing time to determine the assignment of the flexible operation for the next part;
- requires $\mathrm{O}(I)$ computing time to determine the optimal makespan.
Open: Is there a pointwise polynomial algorithm for this problem?

Just in Time sequencing

- s product types;
- n_{i} items of type $i(i=1, \ldots, s)$;
- unit processing times.

Let $r_{i}=n_{i} / n$, where $n=$ total number of jobs.
Determine a sequence of items such that, at every time k, the number of items of type i which have been processed is as close as possible to $k r_{i}$.

Just in Time sequencing: example

$$
\begin{array}{lll}
n_{1}=3 & n_{2}=3 & n_{3}=1 \\
r_{1}=3 / 7 & r_{2}=3 / 7 & r_{3}=1 / 7
\end{array}
$$

$\begin{array}{lll}k r_{1} & 3 / 7 & 6 / 7\end{array}$
9/7
12/7
15/7
18/7
21/7
$x_{1 k} \quad 1$
1
2
2
3
3
$\operatorname{dev} 4 / 7$
1/7
5/7
2/7
1/7
3/7
0

JIT sequencing: total deviation

Different versions of the problem.
Let $x_{i k}=$ number of items of type i processed up to time $k(i=1, \ldots, s ; k=1, \ldots, n)$.
Kubiak and Sethi, Management Science (1991):

$$
\operatorname{minimize} \sum_{i} \sum_{k} f\left(x_{i k}-k r_{i}\right)
$$

where $f()=.\mid$. or $(.)^{2}$ or \ldots
Solvable in time $\mathrm{O}\left(n^{3}\right)$: pseudo-polynomial (Kubiak EJOR 1993).

JIT sequencing: maximum deviation
Steiner and Yeomans, Manag. Science (1993):
(MDJIT) minimize $\max _{i, k}\left|x_{i k}-k r_{i}\right|$
Thresholding approach: fix maximum allowed deviation B.

We want to produce the j-th item of type i at time k so that $\left|j-k r_{i}\right| \leq B$.

MDJIT : earliest and latest dates

We want to produce the j-th item of type i at time k so that $\left|j-k r_{i}\right| \leq B$.
Bounds on k can be computed:

- earliest due date for j-th item of type i is

$$
\mathrm{E}(i, j)=\left\lceil(j-B) / r_{i}\right\rceil
$$

- latest due date is

$$
\mathrm{L}(i, j)=\left\lfloor(j-1+B) / r_{i}+1\right\rfloor .
$$

MDJIT: Bipartite matching

Reduction to bipartite matching: graph G
$-\mathrm{V}=\{$ product items $\} \cup\{$ time units $\}$

- j-th item of type i is linked to all time units in the feasible interval $[\mathrm{E}(i, j), \mathrm{L}(i, j)]$.

Proposition (SY93): MDJIT has a solution with value at most B if and only if G has a perfect matching.

MDJIT : EDD algorithm

Since G is convex, the existence of a perfect matching can be checked in time $\mathrm{O}(n)$ by the Earliest Due Date algorithm (Glover 1967):

- run through time periods $k=1, \ldots, n$;
- assign to k the item (i, j) with earliest due date, i.e., with smallest value of $\mathrm{L}(i, j)$ among all available items.

MDJIT : pseudo-polynomial algo

Binary search on B leads to $\mathrm{O}(n \log n)$ algorithm for the optimization problem: pseudo-polynomial.

- Can we do better ?
- Is the MDJIT problem in P ? in $N P$?

MDJIT: further results (Brauner and Crama DAM 2004)

Idea:

- use Hall's theorem for the existence of a bipartite perfect matching :

$$
\text { for all } X \subseteq\{\text { items }\},|X| \leq|N(X)| ;
$$

- specialize for convex graphs ;
- express in algebraic form.

This leads to:

MDJIT: algebraic characterization

Theorem:
MDJIT has a solution with maximum deviation at most B if and only if the following inequalities hold for all $x_{1} \leq x_{2}$ in $\{1,2, \ldots, n\}$:

$$
\begin{aligned}
& \sum_{i} \max \left(0,\left\lfloor x_{2} r_{i}+B\right\rfloor-\left\lceil\left(x_{1}-1\right) r_{i}+B\right\rceil\right) \geq x_{2}-x_{1}+1 \\
& \sum_{i} \max \left(0,\left\lceil x_{2} r_{i}-B\right\rceil-\left\lfloor\left(x_{1}-1\right) r_{i}+B\right\rfloor\right) \leq x_{2}-x_{1}+1 .
\end{aligned}
$$

MDJIT: co-NP and fixed s

Corollary 1: MDJIT is in co-NP.

Corollary 2: for fixed s, the optimal value of MDJIT can be solved in polynomial time.
Proof: express the CNS as linear inequalities in integer variables; use Lenstra's algorithm.
When $s=2$, the problem is easy.
We don't know anything better when $s=3$.

MDJIT: polynomial delay

Corollary 3: for fixed s, the optimal sequence can be determined with polynomial delay between job k and job $k+1$.

Proof: determine the optimal value B^{*} in polynomial time, then use the EDD algorithm.

MDJIT : optimal value

Corollary 4: the optimal value B^{*} of MDJIT satisfies :

$$
B^{*} \leq 1-1 / n
$$

Corollary 5: if $\operatorname{gcd}\left(n_{1}, n_{2}, \ldots, n_{s}\right)=m$, then the optimal solution is obtained by repeating m times the optimal solution for $\left(n_{1} / m, n_{2} / m, \ldots, n_{s} / m\right)$.
So, for MDJIT, it is not possible to reduce the average cycle time by duplicating the MPS.

MDJIT: small deviation instances

Note that $B *<1$ for all instances.
When is $B^{*}<1 / 2$?
Conjecture: When $s \geq 3, B^{*}<1 / 2$ if and only if

$$
\left(n_{1}, n_{2}, \ldots, n_{s}\right)=\left(1,2,4, \ldots, 2^{s-1}\right)
$$

True for $s \leq 6$ (Brauner and Crama 2004).
True for all s (Kubiak 2003; Brauner \& Jost 2008).

MDJIT and Fraenkel's conjecture

Interesting connections with balanced words (« uniformly dense » colorings of integers) and Fraenkel's conjecture in number theory.

Balanced words

A balanced word is a coloring of the integers with s colors such that, for any two subintervals I1, I2 of \mathbb{N} of the same length, each color appears almost the same number of times in $I 1$ and in I2 (« almost » means: up to one unit).

The density of color i in a balanced word is (roughly) the proportion of integers of that color in large intervals.

Fraenkel's conjecture

Conjecture: When $s \geq 3$, there exists a balanced word on s colors with densities $\left(r_{1}, r_{2}, \ldots, r_{s}\right)$ if and only if $r_{i} \sim 2^{i-1}$.

The MDJIT conjecture is Fraenkel's conjecture for symmetric words.

Fair apportionment

Apportionment problem: Given s political parties and target ratios ($r_{1}, r_{2}, \ldots, r_{s}$), allocate n seats in an assembly so that party i receives approximately $r_{i} n$ seats.

Closely related to JIT sequencing.

See: Kubiak, Proportional Optimization and Fairness, Springer 2009.

High multiplicity TSP

Description

- Graph $G=(\mathrm{V}, \mathrm{E}),|\mathrm{V}|=s$
- $s \times s$ distance matrix $D \geq 0$ (not necessarily symmetric, $d_{i i} \geq 0$)
- Integers $n_{i}(i=1,2, \ldots, s)$
- Find the shortest tour which visits vertex i exactly n_{i} times, for $i=1,2, \ldots, s$.

Example : Aircraft sequencing (Psaraftis, Operations Research 1980)

- s categories of airplanes waiting to land (B747, B707, DC-9)
- there are several airplanes in each category; say, $(5,7,3)$
- landing duration and delay between successive landings depends on respective categories only.

High multiplicity TSP

- Model for machine scheduling with setups.
- Rothkopf (1966): conditions under which all jobs of a same type are processed in succession.
- Psaraftis (1980): dynamic programming pseudopolynomial algo: $\mathrm{O}\left(s^{2} \Pi\left(n_{i}+1\right)\right)$.
- Cosmadakis and Papadimitriou (1984): $\mathrm{O}\left(g(s) \log \left(\sum n_{i}\right)\right)$ where $g(s)$ is an exponential function of s; polynomial for fixed s.

Encodings of solutions (1)

Several possible encodings:

- sequence of vertices (jobs)
- solution $\left(x_{i j}\right)$ of integer LP $\left(x_{i j}=\right.$ number of times edge (i, j) is traversed; transportation constraints + subtour elimination constraints)
- list $\left(m_{C}, C\right): m_{C}=$ number of copies of cycle C in the walk.

Encodings of solutions (2)

Size of different encodings:

- sequence of vertices : size $=\sum_{i} n_{i}$
- solution $\left(x_{i j}\right)$ of integer LP : size $=s^{2}$
- list $\left(m_{C}, C\right):$ size $=\mathrm{O}\left(s^{2}\right)$.

So, the HMTSP is in $N P$.

Non minimal part sets (1)

Back to Minimal Part Set (MPS):

- production ratios are fixed: e.g., ($1 / 2,1 / 4,1 / 8,1 / 8$)
- a Minimal Part Set (MPS) is a minimal batch of products which satisfies the target ratios and which can therefore be cyclically produced; e.g., $\operatorname{MPS}=(4,2,1,1)$.
- Question: Is it possible to attain a smaller average cycle time if multiples of the MPS are produced cyclically?

Non minimal part sets (2)

Is it possible to attain a smaller average cycle time if multiples of the MPS are produced cyclically?
e.g., produce repeatedly $(8,4,2,2)$ instead of (4, 2, 1, 1).

$\left(n_{1}, n_{2}, n_{3}\right)=(1,1,1)$

$\left(n_{1}, n_{2}, n_{3}\right)=(1,1,1)-$ Average tour length $=4_{56}$

$\left(n_{1}, n_{2}, n_{3}\right)=(2,2,2)$

$\left(n_{1}, n_{2}, n_{3}\right)=(2,2,2)-$ Average tour length $=3$

Results

(Grigoriev and Van de Klundert 2006)

Let $\mathrm{F}(l)$: average tour length with $l \times n_{i}$ visits to city $i(i=1,2, \ldots, s)$.
Let F^{T} : optimal cost of a transportation problem with demands n_{i} and supplies $n_{j}(i, j=1,2, \ldots, s)$.
Theorem: for all $l \in N$,

$$
\mathrm{F}^{\mathrm{T}} \leq \mathrm{F}(l+1) \leq \mathrm{F}(l) .
$$

Stable instances

An instance of HMTSP is stable if there exists l such that $\mathrm{F}(l)=\mathrm{F}^{\mathrm{T}}$.
Let l^{0} be the smallest such multiplier l.

Proposition. If l^{0} exists, then $l^{0} \leq s-1$.

Proposition. Stable instances can be recognized in polynomial time.

Possible extensions?

Basic question:
Is it possible to attain a smaller average cycle time if multiples of the MPS are produced cyclically?

Remember: it is not the case for the MDJIT sequencing problem.

Other frameworks where this question could yield interesting results?

Conclusions

- High multiplicity optimization problems pose intriguing and challenging complexity questions.
- Membership in P, NP, coNP may be non trivial.
- Algorithms can be viewed as list-generating algorithms.
- Connections with number theory and integer programming in fixed dimensions.
- Finding the optimal size of a part set (multipliers of the MPS) might be an interesting question in different settings.

