
1

HIGH MULTIPLICITY
SCHEDULING PROBLEMS

Yves CRAMA
HEC Management School

University of Liège

Francqui Lecture, KUL, April 2010

2

Outline

• What is a high-multiplicity scheduling
problem?

• Complexity analysis of HMSP
• Flowshops with flexible operations
• Just-In-Time sequencing
• High-multiplicity traveling salesman problem

3

What is a HMSP? (1)

Usual input of a (one machine) scheduling
problem is:
• Number of jobs 1,2,…,n
• For each job j, a list of attributes like

– Processing time pj

– Release date rj

– Due date dj

– etc.

4

What is a HMSP? (2)

=> input size:
O(n L),

where L is the encoding size of the attributes.

5

What is a HMSP? (3)

In certain applications, jobs are distributed in
a small number of classes and all jobs in a
same class are identical.
=> Input :
• number of classes s
• number of jobs ni in class i (i = 1,2,…,s)
• attributes of a representative job in class i
E.g., for s =1: identical jobs

6

Example: low-multiplicity
s = 250 jobs:
 pi di

3 24
1 6
4 15
2 12
6 9
3 17
5 11
4 23 ...

7

Example: high-multiplicity
s = 4 types of jobs:
 pi di ni

3 24 50
1 6 100
4 15 75
2 12 75

8

What is a HMSP? (4)

=> input size:
O(s log n + s L)

instead of
O(n L)

(where L is the encoding size of the attributes).
This is much more compact if s << n or if s is

constant.

9

What is a HMSP? (5)

In particular,
• a problem which is polynomially solvable
with low-multiplicity input can be solved in
pseudo-polynomial time, but not necessarily
in polynomial time, with HM input;
• not even easy to prove that a HMSP is in NP
(because a natural certificate is a schedule,
which is exponentially long in the input size).

10

Example : Cyclic manufacturing

• s types of products have to be produced in
large numbers (say, infinitely many units)
• production ratios are fixed: e.g.
 (r1,r2,…, rs) = (1/2, 1/4, 1/8, 1/8)
• a Minimal Part Set (MPS) is a minimal batch
of products which satisfies the target ratios and
which can therefore be cyclically produced;
e.g., MPS = (4, 2, 1, 1).

11

Example : Cyclic manufacturing

• In order to describe an instance, it is
sufficient to give the MPS (n1, n2,…, ns) and
the characteristics of each part type i.

12

Example: multiprocessor scheduling

• m parallel machines
• available makespan: B
• s job classes
• ni jobs in class i (i = 1,2,…,s)
• processing time pi in class i

Is there a feasible schedule ?

13

Case s = 2:
• m parallel machines
• available makespan: B
• n1 jobs of length p1, n2 jobs of length p2
(6 numbers !)
McCormick, Smallwood, Spieksma (2001)
give a polynomial algorithm for this case.

Case s = 3 is open (progress by Agnetis et al.)

Example: multiprocessor scheduling

14

Early work (1)

• Rothkopf, Operations Research (1966)
• Psaraftis, Operations Research (1980)
• Cosmadakis and Papadimitriou, SIAM J.
Computing (1984)
• Hochbaum and Shamir, Discrete Applied
Math. (1990), Operations Research (1991)
• Shallcross OR Letters (1992)

15

Early work (2)

Hochbaum and Shamir coined the term “high
multiplicity problems”.

They observed explicitly that, since the input
size is

I = O(s log n + s L),
the total length of a schedule (n jobs) may be

exponential in I
(see also Cosmadakis and Papadimitriou).

16

Further work (1)
• McCormick, Smallwood and Spieksma,
Math. OR (2001): multiprocessor scheduling
with small number of pj’s
• Agnetis, Annals of OR (1997): no-wait flow-
shop
• Clifford and Posner, Operations Research
(2000), Math. Programming (2001)

17

Further work (2)
• Grigoriev, Ph.D. Thesis, Maastricht, 2003
• Brauner, Crama, Grigoriev and Van de
Klundert, Journal of Combinatorial
Optimization (2005), Statistica Neerlandica
(2007).
• Brauner and Crama, Discrete Applied
Mathematics (2004)
• Grigoriev and Van de Klundert, Discrete
Optimization (2006)

18

On the complexity of HMSP
Brauner, Crama, Grigoriev

and Van de Klundert (2005, 2007)

Motivation:
• refine some of the crude complexity analysis
found in Clifford and Posner Math. Prog.
(2001)
• draw parallel with complexity analysis of
list generating algorithms (Johnson,
Yannakakis and Papadimitriou Inf. Proc.
Letters 1988).

19

List-generating algorithms

Basic question:
• How should we analyze the complexity of
an algorithm which is required to output a list
of objects whose size is exponential in the
size of the input??

20

List-generating algorithms
Examples:
• Generate all vertices of a polyhedron given by a
system of linear inequalities.
• Generate all maximal stable sets of a graph.
• Generate all Pareto-optimal (efficient) solutions
of a multicriteria optimization problem.

We can say that such problems are NP-hard... but
it's not really fair!

21

List-generating algorithms
Main point is:
• Input size = I
• Output size = M
• M is exponential in I
 Then, we call an algorithm total polynomial if its
total running time is polynomial in I and M.
 The algo runs with polynomial delay if the
running time between successive outputs is
polynomial in I (total time is O(I M)).

22

List-generating algorithms

Johnson, Yannakakis and Papadimitriou Inf. Proc.
Letters (1988) for stable sets in graphs,

Fukuda (1996) for vertices of polyhedra,
T'Kindt, Bouibede-Hocine and Esswein (2005) for

multicriteria scheduling problems,
Boros, Elbassioni, Gurvich, Khachiyan, Makino

for other classes of problems,
etc.

23

Since the number of jobs n is exponential in the
input size I, distinguish among algorithms which
• compute the optimal schedule length in
polynomial time poly(I) (compact encoding);
• list all starting times in total polynomial time
poly(n) ;
• list all starting times with polynomial delay
poly(I) between job k and job k+1;
• compute the starting time of job k in pointwise
polynomial time poly(I), for any k.

Back to HMSP...

24

Example: 1-machine batch scheduling

Input: number n of identical jobs, processing time
p, batch setup time b (3 numbers).

Problem: Group jobs into batches so as to
minimize the sum of completion times.

The number of batches may be large (√n), but
Shallcross (1992) computes the optimal value
in polynomial time and can compute the size of
the k-th batch in polynomial time for any k.

25

Example: Flowshops with flexible operations
• 2-machine flowshop, buffer of size b
• n identical parts
• Fixed operations can only be processed on a

specific machine: total processing time of the
fixed operations on M1 is f1, on M2 is f2 .

• One flexible operation can be processed on
either machine; processing time s.

• Input size is
I = O(log(b) + log(n) + log(f1) + log(f2) + log(s))

26

• Input size is
I = O(log(b) + log(n) + log(f1) + log(f2) +log(s))
• A solution consists of an assignment of the

flexible operation to one of the machines for
each part, and of a production schedule.

• Writing down a solution requires O(n) time and
space.

Problem is investigated in Crama and Gultekin
Journal of Scheduling (2010).

Example: Flowshops with flexible operations

27

Crama and Gultekin (2010): when b is either 0 or
infinite, pointwise polynomial algorithms

• require O(I) computing time to determine the
optimal makespan, and

• require O(I) computing time to determine the
starting time of any given part.

Example: Flowshops with flexible operations

28

Crama and Gultekin (2010): when b is positive and
finite, polynomial-delay algorithm

• proceeds sequentially, part after part;
• requires O(I) computing time to determine the

assignment of the flexible operation for the next
part;

• requires O(I) computing time to determine the
optimal makespan.

Open: Is there a pointwise polynomial algorithm for
this problem?

Example: Flowshops with flexible operations

29

Just in Time sequencing
• s product types;
• ni items of type i (i = 1,…,s);
• unit processing times.
Let ri = ni / n, where n = total number of jobs.
Determine a sequence of items such that, at
every time k, the number of items of type i
which have been processed is as close as
possible to k ri.

30

Just in Time sequencing: example

n1 = 3 n2 = 3 n3 = 1
r1 = 3/7 r2 = 3/7 r3 = 1/7

kr1 3/7 6/7 9/7 12/7 15/7 18/7 21/7
x1k 1 1 2 2 2 3 3
dev 4/7 1/7 5/7 2/7 1/7 3/7 0

31

JIT sequencing: total deviation
Different versions of the problem.
Let xik = number of items of type i processed up

to time k (i = 1,…,s; k = 1,…,n).
Kubiak and Sethi, Management Science (1991):

minimize ∑i ∑k f (xik − k ri)
where f (.) = | . | or (.)2 or …
Solvable in time O(n3): pseudo-polynomial
(Kubiak EJOR 1993).

32

JIT sequencing: maximum deviation

Steiner and Yeomans, Manag. Science (1993):
(MDJIT) minimize maxi,k | xik − k ri |

Thresholding approach: fix maximum allowed
deviation B.
We want to produce the j-th item of type i at
time k so that | j − k ri | ≤ B.

33

MDJIT : earliest and latest dates

We want to produce the j-th item of type i at
time k so that | j − k ri | ≤ B.
Bounds on k can be computed:
• earliest due date for j-th item of type i is

E(i,j) = (j−B) / ri  ;
• latest due date is

L(i,j) =  (j−1+B) / ri + 1 .

34

MDJIT: Bipartite matching
Reduction to bipartite matching: graph G
• V = { product items } ∪ { time units}
• j-th item of type i is linked to all time units
in the feasible interval [E(i,j) , L(i,j)].

Proposition (SY93): MDJIT has a solution
with value at most B if and only if G has a
perfect matching.

35

MDJIT : EDD algorithm

Since G is convex, the existence of a perfect
matching can be checked in time O(n) by the
Earliest Due Date algorithm (Glover 1967):

• run through time periods k = 1,…,n;
• assign to k the item (i,j) with earliest due
date, i.e., with smallest value of L(i,j)
among all available items.

36

MDJIT : pseudo-polynomial algo

Binary search on B leads to O(n log n)
algorithm for the optimization problem:
pseudo-polynomial.

• Can we do better ?
• Is the MDJIT problem in P ? in NP ?

37

MDJIT: further results
 (Brauner and Crama DAM 2004)

Idea:
• use Hall’s theorem for the existence of a
bipartite perfect matching :

for all X ⊆ {items}, | X | ≤ | N(X) | ;
• specialize for convex graphs ;
• express in algebraic form.
This leads to:

38

MDJIT: algebraic characterization

Theorem:
MDJIT has a solution with maximum deviation at
most B if and only if the following inequalities
hold for all x1 ≤ x2 in {1,2,…,n} :

∑i max (0, x2 ri + B − (x1−1) ri + B) ≥ x2− x1 + 1

∑i max (0, x2 ri − B − (x1−1) ri + B) ≤ x2− x1 + 1.

39

MDJIT: co-NP and fixed s

Corollary 1: MDJIT is in co-NP.

Corollary 2: for fixed s, the optimal value of
MDJIT can be solved in polynomial time.
Proof: express the CNS as linear inequalities in
integer variables; use Lenstra’s algorithm.
When s = 2, the problem is easy.
We don’t know anything better when s = 3.

40

MDJIT: polynomial delay

Corollary 3: for fixed s, the optimal sequence can
be determined with polynomial delay between job
k and job k+1.

Proof: determine the optimal value B* in
polynomial time, then use the EDD algorithm.

41

MDJIT : optimal value
Corollary 4: the optimal value B* of MDJIT
satisfies :

B* ≤ 1 − 1/n.

Corollary 5: if gcd(n1, n2,…, ns) = m, then the
optimal solution is obtained by repeating m times
the optimal solution for (n1/m, n2/m,…, ns/m).
So, for MDJIT, it is not possible to reduce the
average cycle time by duplicating the MPS.

42

MDJIT: small deviation instances

Note that B* < 1 for all instances.
When is B* < 1/2 ?

Conjecture: When s ≥ 3, B* < 1/2 if and only if
(n1, n2,…, ns) = (1, 2, 4, …, 2s−1).

True for s ≤ 6 (Brauner and Crama 2004).
True for all s (Kubiak 2003; Brauner & Jost 2008).

43

MDJIT and Fraenkel’s conjecture

Interesting connections with balanced words
(« uniformly dense » colorings of integers)
and Fraenkel’s conjecture in number theory.

44

Balanced words
A balanced word is a coloring of the integers N
with s colors such that, for any two subintervals
I1, I2 of N of the same length, each color
appears almost the same number of times in I1
and in I2 (« almost » means: up to one unit).

The density of color i in a balanced word is
(roughly) the proportion of integers of that color
in large intervals.

45

Fraenkel’s conjecture

Conjecture: When s ≥ 3, there exists a balanced
word on s colors with densities (r1, r2,…, rs) if
and only if ri ∼ 2i−1.

The MDJIT conjecture is Fraenkel's conjecture
for symmetric words.

46

Fair apportionment

Apportionment problem: Given s political
parties and target ratios (r1, r2,…, rs), allocate n
seats in an assembly so that party i receives
approximately ri n seats.

Closely related to JIT sequencing.

See: Kubiak, Proportional Optimization and
Fairness, Springer 2009.

47

High multiplicity TSP

Description
• Graph G = (V,E), |V| = s
• s×s distance matrix D ≥ 0 (not necessarily

symmetric, dii ≥ 0)
• Integers ni (i = 1,2,…,s)
• Find the shortest tour which visits vertex i

exactly ni times, for i = 1,2,…,s.

48

Example : Aircraft sequencing
(Psaraftis, Operations Research 1980)

• s categories of airplanes waiting to land
(B747, B707, DC-9)
• there are several airplanes in each category;
say, (5, 7, 3)
• landing duration and delay between
successive landings depends on respective
categories only.

49

High multiplicity TSP
• Model for machine scheduling with setups.
• Rothkopf (1966): conditions under which all

jobs of a same type are processed in succession.
• Psaraftis (1980): dynamic programming

pseudopolynomial algo: O(s2 Π(ni+1)).
• Cosmadakis and Papadimitriou (1984):

O(g(s) log (Σ ni)) where g(s) is an exponential
function of s; polynomial for fixed s.

50

Encodings of solutions (1)

Several possible encodings:
• sequence of vertices (jobs)
• solution (xij) of integer LP (xij = number of
times edge (i,j) is traversed; transportation
constraints + subtour elimination constraints)
• list (mC ,C) : mC = number of copies of cycle
C in the walk.

51

Encodings of solutions (2)

Size of different encodings:
• sequence of vertices : size = ∑i ni
• solution (xij) of integer LP : size = s2

• list (mC ,C) : size = O(s2).

So, the HMTSP is in NP.

52

Non minimal part sets (1)

Back to Minimal Part Set (MPS):
• production ratios are fixed: e.g., (1/2, 1/4, 1/8, 1/8)
• a Minimal Part Set (MPS) is a minimal batch of

products which satisfies the target ratios and
which can therefore be cyclically produced; e.g.,
MPS = (4, 2, 1, 1).

• Question: Is it possible to attain a smaller
average cycle time if multiples of the MPS are
produced cyclically ?

53

Is it possible to attain a smaller average cycle
time if multiples of the MPS are produced
cyclically ?
e.g., produce repeatedly (8, 4, 2, 2) instead of
(4, 2, 1, 1).

Non minimal part sets (2)

54

2

2
23

1

55

2

2
23

1

(n1, n2, n3) = (1,1,1)

56

2
23

1

(n1, n2, n3) = (1,1,1) - Average tour length = 4

57

2

2
23

1

(n1, n2, n3) = (2,2,2)

58

23

1

(n1, n2, n3) = (2,2,2) - Average tour length = 3

59

Results
(Grigoriev and Van de Klundert 2006)

Let F(l) : average tour length with l×ni visits to
city i (i = 1,2,…,s).

Let FT : optimal cost of a transportation problem
with demands ni and supplies nj (i, j = 1,2,…,s).

Theorem: for all l ∈ N ,
FT ≤ F(l+1) ≤ F(l).

60

F(l)

 FT

l0

61

Stable instances

An instance of HMTSP is stable if there exists
l such that F(l) = FT.
Let l0 be the smallest such multiplier l.

Proposition. If l0 exists, then l0 ≤ s − 1.

Proposition. Stable instances can be
recognized in polynomial time.

62

Possible extensions ?
Basic question:
Is it possible to attain a smaller average cycle
time if multiples of the MPS are produced
cyclically ?

Remember: it is not the case for the MDJIT
sequencing problem.

Other frameworks where this question could
yield interesting results ?

63

Conclusions
• High multiplicity optimization problems pose
intriguing and challenging complexity questions.
• Membership in P, NP, coNP may be non trivial.
• Algorithms can be viewed as list-generating
algorithms.
• Connections with number theory and integer
programming in fixed dimensions.
• Finding the optimal size of a part set
(multipliers of the MPS) might be an interesting
question in different settings.

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63

