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Outline

• Learning from Examples

• Partially Defined Boolean Functions

• Logical Analysis of Data
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Common measures of classifier quality involve new data:

• training - test partition, cross validation (assumes distribution of

future examples follows that of data)

• simulation (assumes knowledge of distribution of future examples)

• clinical trial (done “in the future”)





Some typical examples

• Credit approval. Data: attributes of applicants for credit card vs.

decision.

• Customer targeting. Data: attributes of customers vs. decision to

buy.

• Medical diagnosis. Data: symptoms or bio-medical features vs. diag-

nosis.
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Data Sets and Classifiers

Attributes: A,B, ... in domains A, B,...

Data Set: D =
{
Xi = (Xi

A, X
i
B, ...) | i = 1, ...,M

}
Class: c : D 7−→ {0,1}

Classifier: f : A × B × · · · 7−→ {0,1}

We usually expect: f(X) = c(X) for all X ∈ D

There may be many classifiers for a same data set.
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Partially Defined Boolean Functions

• Definition

• Support sets

• Patterns

• Theories



Definitions

Attributes: V = {1,2, ..., n}.

Boolean function: f : {0,1}V −→ {0,1}.

True vectors of f : T (f) = {x ∈ {0,1}V | f(x) = 1}.

False vectors of f : F (f) = {x ∈ {0,1}V | f(x) = 0}.

T (f) ∩ F (f) = ∅ and T (f) ∪ F (f) = {0,1}V



Definitions

A term t is a Boolean function defined by an elementary conjunction

t(x) =
∧
j∈P

xj ∧
∧
j∈N

xj

where P,N ⊆ V , and x = 1− x.

The conjunction takes value 1 (or “true”) if and only if

xj = 1 for all j ∈ P and xj = 0 for all j ∈ N.

The set of true vectors of a term forms a sub-cube of {0,1}V , and vice-

versa, every sub-cube, is the set of true vectors of a Boolean function,

defined by a unique term.
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[a,b] = {(000), (001), (100), (101)} = (∗0∗) = T(x2)
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Definitions

Every Boolean function can be represented as a disjunctive normal form

(DNF), that is, as a disjunction (OR) of terms (elementary conjunctions):

f(x) =
∨

(P,N)∈E

( ∧
j∈P

xj ∧
∧
j∈N

xj
)

where P,N ⊆ V , and x = 1− x.

The DNF takes value 1 (or “true”) if and only if at least one of its terms

takes value 1.

Geometrically: the set of true vectors of f is covered by a union of subcubes

of {0,1}V .



Boolean functions as DNFs
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Definitions

Training Data: a pair of subsets (T,F) such that

T ⊆ {0,1}V , F ⊆ {0,1}V , and T ∩ F = ∅.

We call such a pair (T,F) a partially defined Boolean function (or pdBf in

short).

Classifier: a Boolean function f : {0,1}V −→ {0,1}, which is an extension

of (T,F), i.e., for which

T ⊆ T (f) and F ⊆ F (f).

Let E(T,F) denote the family of all extensions. Clearly, we have

|E(T,F)| = 22n−|T∪F|



What can guide learning?

If |V | = 20 and |(T,F)| = 1000, then

|E(T,F)| > 21,000,000
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• Simplicity

– Essential attributes
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– Representation (DNF, CNF, decision tree, etc.)



What can guide learning?

If |V | = 20 and |(T,F)| = 1000, then

|E(T,F)| > 21,000,000

• Simplicity

– Essential attributes

– Efficient representation (DNF, CNF, decision tree, etc.)

• Justifiability

Note on framework: we mostly speak here of building unspecified models,

as opposed to specified models such as regression models (which assume

a priori knowledge about the relation between inputs and outputs).



Building reasonable extensions

Given (T,F), how can we build a reasonable extension f ∈ ET (T,F)?

Many ways....

For example, nearest neighbor methods, decision trees, or neural net-

works build such classifiers.



Nearest Neighbor classifiers

Define a notion of distance ρ(X,Y ) between any two points X,Y in the

input space.
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Nearest Neighbor classifiers

Define a notion of distance ρ(X,Y ) between any two points X,Y in the

input space.

Data: Examples
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Nearest Neighbor classifiers

Example in the Boolean case.
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Nearest Neighbor classifiers

Example in the Boolean case.
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Decision Trees for pdBfs
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Decision Trees for pdBfs
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Decision Trees for pdBfs
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Decision Trees for pdBfs
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Note: (001) is classified differently by NN and by DT



Linear separator
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w T = {(010), (100)}

w

w

w F = {(110), (101)}

Decide whether T and F can be separated by a hyperplane.

This is a simple linear programming problem.

Similar to recognizing a weighted majority game.



Logical Analysis of Data

LAD: Introduced in Crama, Hammer and Ibaraki (1988).

Based on the representation of extensions by DNFs and on selection of

• subsets of relevant variables (support sets)

• relevant terms (patterns)

• relevant disjunctions of terms (theories)



Partially Defined Boolean Functions

• Definition

• Support sets

• Patterns

• Theories



Finding Essential Attributes

• Select relevant features.

• Eliminate noise.

• Compress data.



Relevance and its evaluations

• Well defined for complete systems: an attribute is relevant, if changing

its value changes the classification of some situations.

• Measures of relevance are based on counting such situations (with slight

variations, e.g., coalitions’ power in game theory; voters’ influence in

voting schemes, etc., Shapley (1954), Chow (1961), Banzhaf (1965),

Winder (1971), Kahn, Kalai and Linial (1988), Hammer, Kogan and

Rohtblum (2000))

• These definitions cannot be easily extended to incomplete data sets in

a consistent way, see e.g., John, Kohavi and Pfleger (1994).



Eliminate Noise: What is it?

• A random attribute?

• An irrelevant attribute?

• An (almost) constant attribute?

• A dependent attribute?



Data compression

• The simpler, the better! – “Occam’s Razor:”

Theories built on smaller attribute sets, generalize better.

Blumer,Ehrenfeucht,Haussler and Warmuth (1987)

• Decreases the computational complexity of finding and using a classifier.

• Decreases the cost of future data collection.



Feature selection based on separating power

Find a small (smallest, if possible) subset of the attributes which distin-

guishes the sets T and F. Such a subset is called a support set.

Crama, Hammer and Ibaraki (1988).



Feature selection based on separating power

Find a small (smallest, if possible) subset of the attributes which distin-

guishes the sets T and F. Such a subset is called a support set.

Crama, Hammer and Ibaraki (1988).

T

1 0 0 1 1 0 0 0 0
1 1 1 1 0 0 1 0 0
0 1 1 0 1 1 1 0 0
1 0 1 0 0 1 1 1 1

F

0 0 1 1 1 1 0 0 1
0 1 0 1 1 1 1 1 1
0 0 0 0 1 1 0 1 0
1 1 0 0 0 0 0 1 0



Feature selection based on separating power

Find a small (smallest, if possible) subset of the attributes which distin-

guishes the sets T and F. Such a subset is called a support set.

Crama, Hammer and Ibaraki (1988).

T

1 0 0 1 1 0 0 0 0
1 1 1 1 0 0 1 0 0
0 1 1 0 1 1 1 0 0
1 0 1 0 0 1 1 1 1

F

0 0 1 1 1 1 0 0 1
0 1 0 1 1 1 1 1 1
0 0 0 0 1 1 0 1 0
1 1 0 0 0 0 0 1 0



Feature selection based on separating power

Finding a smallest support set is NP-hard.

Algorithmic Approaches to find a small(est) support set:

• complete enumeration: FOCUS (Almuallim and Dietterich, 1994) ...

• greedy search: Rel-FSS (Bell and Wang, 2000) ...

• computing relevance index: (Kira and Rendell, 1992) ...

• etc., ... over 40 references in the past decade.

Note that decision trees automatically select a (small) support set.



Feature selection based on separating power

A set covering model to find a small(est) support set:

• associate a 0-1 variable ai with each attribute Ai

• for every pair of false example X and true example Y , express that at

least one of the attributes differentiating X from Y must be chosen:

for all X ∈ F, Y ∈ T,
∑

i:xi 6=yi

ai ≥ 1

• minimize
∑
i ai.

This model can be solved either exactly, or heuristically.



Feature selection based on separating power
Questions to clarify

Why a small(est) feature set??

Which one??

How to measure the quality of a support set?



Why a small(est) feature set??
Which one??

• Typically, there are many support sets of different sizes.
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• Typically, there are many support sets of different sizes.

• The larger the data set, the less likely to have a small support set.



Why a small(est) feature set??
Which one??

• Typically, there are many support sets of different sizes.

• The larger the data set, the less likely to have a small support set.

• The larger the data set, the more surprising to have a small support

set.



Why a small(est) feature set??
Which one??

• Typically, there are many support sets of different sizes.

• The larger the data set, the less likely to have a small support set.

• The larger the data set, the more surprising to have a small support

set.

• OUR SURPRISE ≈ INFORMATION IN DATA



The Good News

Boros, Horiyama, Ibaraki, Makino and Yagiura, 2003

Distribution of Support Sets in Randomly Generated Data

K 5 6 7 8 9 10 11 12
n = 10 LB 22 34 46 60 66

UB 60 58 68 80 84
n = 15 LB 26 42 62 90 126 176 238 312

UB ∞ 82 98 126 164 214 278 352
n = 20 LB 30 46 70 102 150 216 306 432

UB ∞ 102 116 150 198 268 364 494
n = 40 LB 34 54 84 126 198 278 408 594

UB ∞ ∞ 156 196 262 358 498 694
n = 100 LB 38 62 96 148 226 336 500 734

UB ∞ ∞ 236 252 330 450 624 876
n = 1000 LB 46 76 122 190 292 442 662 982

UB ∞ ∞ ∞ 420 480 672 874 1220

Lower and upper bounds on the threshold size of data sets (assuming

|T| = |F| and uniform random generation) above which support sets of size

K are unlikely to exists.



The Good News
Distribution of Support Sets in Randomly Generated Data

K 5 6 7 8 9 10 11 12
n = 10 LB 22 34 46 60 66

UB 60 58 68 80 84
n = 15 LB 26 42 62 90 126 176 238 312

UB ∞ 82 98 126 164 214 278 352
n = 20 LB 30 46 70 102 150 216 306 432

UB ∞ 102 116 150 198 268 364 494
n = 40 LB 34 54 84 126 198 278 408 594

UB ∞ ∞ 156 196 262 358 498 694
n = 100 LB 38 62 96 148 226 336 500 734

UB ∞ ∞ 236 252 330 450 624 876
n = 1000 LB 46 76 122 190 292 442 662 982

UB ∞ ∞ ∞ 420 480 672 874 1220

• If we have 20 attributes and less than 46 records, then it is very likely

to have many support sets of size 6 or smaller.

• If we have more than 102 records, then it is very unlikely to have a

support set of size 6 or smaller =⇒ If there is one ...



The Good News
Distribution of Support Sets in Randomly Generated Data

K 5 6 7 8 9 10 11 12
n = 10 LB 22 34 46 60 66

UB 60 58 68 80 84
n = 15 LB 26 42 62 90 126 176 238 312

UB ∞ 82 98 126 164 214 278 352
n = 20 LB 30 46 70 102 150 216 306 432

UB ∞ 102 116 150 198 268 364 494
n = 40 LB 34 54 84 126 198 278 408 594

UB ∞ ∞ 156 196 262 358 498 694
n = 100 LB 38 62 96 148 226 336 500 734

UB ∞ ∞ 236 252 330 450 624 876
n = 1000 LB 46 76 122 190 292 442 662 982

UB ∞ ∞ ∞ 420 480 672 874 1220

• If, in a data set with 1000 attributes and more than 672 records, we

find a support set of size 10, then

– it might be a unique one;

– it is probably related to the structure of the data, and not to random

noise.



Partially Defined Boolean Functions

• Definition

• Support sets

• Patterns

• Theories



Definitions

A term t is a pattern of (T,F) if

T ∩ T (t) 6= ∅ and F ⊆ F (t),

or

t(x) = 1 for at least one x ∈ T and t(x) = 0 for all x ∈ F.

A pattern corresponds to a combination of attributes which has been ob-

served at least once in a true data point, but which never occurs in a false

data point.

A pattern of (F,T) is called a co-pattern of (T,F).

Pat(T,F) and co-Pat(T,F) denote the families of all patterns and co-

patterns of (T,F), respectively.



Returning to the medical example

Test Results
ID x1 x2 x3 x4

T
A
B
C

1
0
1

1
1
1

0
1
1

1
1
0

F

T
U
V
W

0
1
1
0

0
0
0
1

1
0
1
1

1
1
0
0

Ms. Y 1 1 0 0
Mr. Z 1 0 1 1

Some patterns:

x1x2, x2x3, x2x4, . . .

Some co-patterns:

x1x2, x2, x1x4, . . .



Partially Defined Boolean Functions

• Definition

• Support sets

• Patterns

• Theories



Theories and Co-Theories

An extension f ∈ E(T,F) is called a theory of (T,F) if it can be represented

as a disjunction of some of the patterns of (T,F).

A theory g of (F,T) is called a co-theory of (T,F) (it can be represented

by a disjunction of some of the co-patterns of (T,F)).

Denote by ET (T,F) and ET (F,T) the families of theories and co-theories of

a given pdBf (T,F).

Typically we have

|ET (T,F)| << |E(T,F)|



Examples

Nearest Neighbor classifier
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w

w (111) is classified as red (false)

~

w (000) is classified as blue (true)

Classifier: fNN = x1x2 ∨ x2x3.

This classifier is a theory.



Examples

Decision Trees for pdBfs
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fD = x1 ∨ x1x2x3 = x1 ∨ x2x3

fD = x1x2 ∨ x1x2x3 = x1x2 ∨ x1x3

fD is a theory and fD is a co-theory .



Theories as justifiable classifiers

Theory f classifies an example x as a “positive” example if f(x) = 1.

This is the case only if (at least) one pattern of f is “triggered” by x, mean-

ing that we have observed earlier another positive example displaying the

same features, and we have never observed a negative example displaying

these features.



Theories as justifiable classifiers

Theory f classifies an example x as a “positive” example if f(x) = 1.

This is the case only if (at least) one pattern of f is “triggered” by x, mean-

ing that we have observed earlier another positive example displaying the

same features, and we have never observed a negative example displaying

these features.

But we don’t necessarily have a good justification for the opposite classifi-

cation.
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Theories as justifiable classifiers

Theory f classifies an example x as a “positive” example if f(x) = 1.

This is the case only if (at least) one pattern of f is “triggered” by x, mean-

ing that we have observed earlier another positive example displaying the

same features, and we have never observed a negative example displaying

these features.

But we don’t necessarily have a good justification for the opposite classifi-

cation.

Similarly, co-theory g classifies an example x as a “negative” example if

g(x) = 1.

In both cases, we can provide some explanation or justification for the

classification, but not for the opposite one.



Theories, Co-Theories and Bi-Theories

A pair of a theory f ∈ ET (T,F) and a co-theory g ∈ ET (F,T) can be used

to define a classifier F :

Ff,g(x) =


1 if f(x) = 1 and g(x) = 0,
0 if f(x) = 0 and g(x) = 1,
? otherwise

Such a classifier can justify all its definite answers with evidence from (T,F),

however, it may not be able to give an answer for all x ∈ {0,1}V !

To avoid such uncertainties, ideally we would like to use a pair for which

g = f



Theories, Co-Theories and Bi-Theories

A theory f ∈ ET (T,F) is called a bi-theory of (T,F) if f is a co-theory of

(T,F).

Then, the pair (f, f) defines a classifier Ff,f which always provides evidence

to support its answers.
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Theories, Co-Theories and Bi-Theories

A theory f ∈ ET (T,F) is called a bi-theory of (T,F) if f is a co-theory of

(T,F).

Then, the pair (f, f) defines a classifier Ff,f which always provides evidence

to support its answers.

Do we always have bi-theories?

YES, in fact (most) nearest neighbor approaches and decision tree based

methods build a classifier Ff,f for some bi-theory f ∈ EB(T,F).



Theories, Co-Theories and Bi-Theories

A theory f ∈ ET (T,F) is called a bi-theory of (T,F) if f is a co-theory of

(T,F).

Then, the pair (f, f) defines a classifier Ff,f which always provides evidence

to support its answers.

Do we always have bi-theories?

YES, in fact (most) nearest neighbor approaches and decision tree based

methods build a classifier Ff,f for some bi-theory f ∈ EB(T,F).

But in general, some bi-theories do not correspond to any decision

tree nor to any nearest neighbor classifier.



Conclusions

• Bi-theories and decision trees are very strongly related.
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• Bi-theories and decision trees are very strongly related.

• Bi-theories and nearest neighbor approaches are very strongly

related.



Conclusions

• Bi-theories and decision trees are very strongly related.

• Bi-theories and nearest neighbor approaches are very strongly

related.

• Patterns and co-patterns are the basic building blocks in all these

methods.



Logical Analysis of Data

Extensions and applications of LAD

• Binarization of numerical attributes

• Binarization of categorical attributes

• Pattern generation

• Theory building



Binarization – Numerical Attributes

Attributes
ID A · · ·

S+

001
002
003
004

1.7
3.5
4.2
9.3

S−
991
992
993

2.3
6.2
7.5

Binarized Attributes
ID A ≥ 2.9 · · ·

T

001
002
003
004

0
1
1
1

F
991
992
993

0
1
1

1.7 2.3 3.5 4.2 6.2 7.5 9.3

| | | |
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Attributes
ID A · · ·

S+

001
002
003
004

1.7
3.5
4.2
9.3

S−
991
992
993

2.3
6.2
7.5

Binarized Attributes
ID A ≥ 2.9 A ≥ 5.2 · · ·

T

001
002
003
004

0
1
1
1

0
0
0
1

F
991
992
993

0
1
1

0
1
1

1.7 2.3 3.5 4.2 6.2 7.5 9.3

| | | |



Binarization – Numerical Attributes

Attributes
ID A · · ·

S+

001
002
003
004

1.7
3.5
4.2
9.3

S−
991
992
993

2.3
6.2
7.5

Binarized Attributes
ID A ≥ 2.9 A ≥ 5.2 · · ·

T

001
002
003
004

0
1
1
1

0
0
0
1

F
991
992
993

0
1
1

0
1
1

1.7 2.3 3.5 4.2 6.2 7.5 9.3

| | | |

Linear time generation; up to 40 cut points per attribute



Binarization

c(X) A B C
1 5.7 3.1 blue
1 1.2 4.2 green
1 3.1 5.1 blue
1 2.8 3.2 green
0 7.1 7.3 red
0 5.9 3.6 yellow
0 6.4 4.2 blue
0 3.4 1.6 green



Binarization

c(X) A B C A ≥ 6 · · · B ≥ 3 · · · C = blue · · ·
1 5.7 3.1 blue 0 1 1
1 1.2 4.2 green 0 1 0
1 3.1 5.1 blue 0 · · · 1 · · · 1 · · ·
1 2.8 3.2 green −→ 0 1 0
0 7.1 7.3 red 1 1 0
0 5.9 3.6 yellow 0 1 0
0 6.4 4.2 blue 1 · · · 1 · · · 1 · · ·
0 3.4 1.6 green 0 0 0



Binarization

c(X) A B C A ≥ 6 · · · B ≥ 3 · · · C = blue · · ·
1 5.7 3.1 blue 0 1 1
1 1.2 4.2 green 0 1 0
1 3.1 5.1 blue 0 · · · 1 · · · 1 · · ·
1 2.8 3.2 green −→ 0 1 0
0 7.1 7.3 red 1 1 0
0 5.9 3.6 yellow 0 1 0
0 6.4 4.2 blue 1 · · · 1 · · · 1 · · ·
0 3.4 1.6 green 0 0 0

c(X) = (A < 6) ∧ (B ≥ 3) ∧ (C ∈ {blue, green})



Logical Analysis of Data

Extensions and applications of LAD

• Binarization of numerical attributes

• Binarization of categorical attributes

• Pattern generation

• Theory building



Pattern Generation

Test Results
ID x1 x2 x3 x4

T
A
B
C

1
0
1

1
1
0

0
0
0

1
1
0

F

T
U
V
W

0
1
1
0

0
0
1
1

0
1
0
0

1
1
0
0

Pattern: P(x) = x2x4

P(b) = 0 ∀ b ∈ F
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T
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0
1
1
0

0
0
1
1

0
1
0
0

1
1
0
0

Pattern: P(x) = x2x4

P(b) = 0 ∀ b ∈ F

Coverage: cov(P) = 2 > 0

number of positive examples covered

Precision: π(P) = 2/7 > 0

fraction of data correctly classified
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Generating efficiently all patterns is possible (in total time).



Pattern Generation

Test Results
ID x1 x2 x3 x4

T
A
B
C

1
0
1

1
1
0

0
0
0

1
1
0

F

T
U
V
W

0
1
1
0

0
0
1
1

0
1
0
0

1
1
0
0

Pattern: P(x) = x2x4

P(b) = 0 ∀ b ∈ F

Coverage: cov(P) = 2 > 0

number of positive examples covered

Precision: π(P) = 2/7 > 0

fraction of data correctly classified

Generating efficiently all patterns is possible (in total time).

TOO MANY!



Pattern Generation

Test Results
ID x1 x2 x3 x4

T
A
B
C

1
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1

1
1
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0
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0

1
1
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1
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P(b) = 0 ∀ b ∈ F

Coverage: cov(P) = 2 > 0

number of positive examples covered

Precision: π(P) = 2/7 > 0

fraction of data correctly classified

Ideally, we would like to generate all patterns with high coverage:

P(T,F, γ) = {P | cov(P) ≥ γ|T|}



Pattern Generation

Test Results
ID x1 x2 x3 x4

T
A
B
C

1
0
1

1
1
0

0
0
0

1
1
0

F

T
U
V
W

0
1
1
0

0
0
1
1

0
1
0
0

1
1
0
0

Pattern: P(x) = x2x4

P(b) = 0 ∀ b ∈ F

Coverage: cov(P) = 2 > 0

number of positive examples covered

Precision: π(P) = 2/7 > 0

fraction of data correctly classified

Ideally, we would like to generate all patterns with high coverage:

P(T,F, γ) = {P | cov(P) ≥ γ|T|}

NP-hard!

Even if |P(T,F, γ)| is small, we cannot guarantee finding them all, unless

P=NP!



Patterns
In practice, generation heuristics concentrate for instance on patterns of
small degree, high coverage, high precision.

Remember:

cov(P) = number of positive examples covered by P

π(P) = fraction of examples correctly classified by P

c(X) A1 A2 A3 A4 A5 P(X) = A1 ∧A3 ∧A4
1 0 0 1 1 1 1
1 0 1 1 0 1 0
1 0 0 1 1 0 1
1 0 0 1 0 1 0
1 0 1 1 1 0 1
0 1 0 1 1 0 0
0 1 1 1 1 1 0
0 0 1 1 0 0 0
0 0 0 0 0 0 0
0 0 1 0 1 1 0

Coverage: cov(P) = 3 Precision: π(P) = 0.8



Patterns

There is considerable empirical evidence that patterns with high precision

on a training (data) set generalize well, in the sense that they provide

classifiers with high precision on subsequent test sets.



Wisconsin Breast Cancer Data Set
http://www.ics.uci.edu/ mlearn/MLRepository.html

O. L. Mangasarian and W. H. Wolberg: ”Cancer diagnosis via linear pro-

gramming”, SIAM News, Volume 23, Number 5, September 1990, pp.

1-18.

• Number of Instances: 699 (status of 15 July 1992)

• Number of Attributes: 9 with integer values between 1 and 10

• Missing attribute values: 16, all for attribute ”Bare-nuclei”.

• Class distribution:

– Benign: 458 (65.5%)

– Malignant: 241 (34.5%)



Wisconsin Breast Cancer Data Set

• Training set: 63 records (≈ 10%)

• Attributes: 13 binary

• Number of patterns P with π(P) ≥ 0.7: 36 (of degrees 2− 5)



Wisconsin Breast Cancer Data Set



Wisconsin Breast Cancer Data Set

• Training set: 63 records (≈ 10%)

• Attributes: 13 binary

• Number of patterns P with π(P) ≥ 0.7: 36 (of degrees 2− 5)

• Single best pattern: 95.1%-classifier!!

P1(X) = (Clump-Thickness ≤ 6) ∧ (Bare-Nuclei ≤ 4) ∧ (Normal-Nucleoli ≤ 3)

• Misclassifies only 5 malignant cases (all with missing data!)

• Best results reported in literature: 95− 98%



Mushroom Database
http://www.ics.uci.edu/ mlearn/MLRepository.html

• Number of Instances: 8124 (status of April 27, 1987)

• Number of Attributes: 22 with nominal values (126 categories)

• Missing attribute values: 2480, all for attribute stalk-root.

• Class distribution:

– edible: 4208 (51.8%)

– poisonous: 3916 (48.2%)



Mushroom Database

• Training set: 161 records (≈ 2%)

• Attributes: 56 binary

• Number of patterns P with π(P) ≥ 0.85: 218 (of degrees 2− 9)
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Mushroom Database

• Training set: 161 records (≈ 2%)

• Attributes: 56 binary

• Number of patterns P with π(P) ≥ 0.85: 218 (of degrees 2− 9)

• Single best pattern: 98.5%-classifier!!

P(X) = (Odor 6= none) ∧ (Odor 6= anise) ∧ (Odor 6= almond)

• Best results reported in literature: 95− 99%



Australian Credit Card Data Set
STATLOG: http://www.ncc.up.pt/liacc/ML/statlog/datasets.html

• Number of Instances: 690

• Number of Attributes: 14 (6 numerical and 8 categorical)

• Missing attribute values: none

• Class distribution:

– positive: 307 (44.5%)

– negative: 383 (55.5%)



Australian Credit Card Data Set

• Training set: 36 records (≈ 5%)

• Attributes: 12 binary

• Number of patterns P with π(P) ≥ 0.60: 26 (of degrees 1− 4)
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Australian Credit Card Data Set

• Training set: 36 records (≈ 5%)

• Attributes: 12 binary

• Number of patterns P with π(P) ≥ 0.60: 26 (of degrees 1− 4)

• Single best pattern: 85.4%-classifier!!

P(X) = (A8 = 0)

• Best results reported in literature: 80− 87%



STATLOG Results: Australian Credit Card
Error Rate

Algorithm on training on test
Cal5 0.132 0.131
Itrule 0.162 0.137
LogDisc 0.125 0.141
Discrim 0.139 0.141
Dipol92 0.139 0.141
Radial 0.107 0.145
Cart 0.145 0.145
Best Pattern 0.111 0.146
Castle 0.144 0.148
Bayes 0.136 0.151
IndCart 0.081 0.152
BackProp 0.087 0.154
C4.5 0.099 0.155
Smart 0.090 0.158
BayTree 0.000 0.171
KNN 0.000 0.181
Ac2 0.000 0.181
NewId 0.000 0.181
LVQ 0.065 0.197
Alloc80 0.194 0.201
Cn2 0.001 0.204
QuaDisc 0.185 0.207
Default 0.440 0.440
Cascade ? 100.0
Kohonen ? 100.0



STATLOG: Vehicle Data Set
STATLOG: http://www.ncc.up.pt/liacc/ML/statlog/datasets.html

• Number of Instances: 846

• Number of Attributes: 18 numerical

• Missing attribute values: none

• Class distribution:

– OPEL: 212 (25.06%)

– SAAB: 217 (25.65%)

– BUS: 218 (25.77%)

– VAN: 199 (23.52%)



STATLOG: Vehicle Data Set
Averages over the 4 classes

Error Rate
Algorithm on training on test
QuaDisc 0.085 0.150
Dipol92 0.079 0.151
Alloc80 0.000 0.173
Best Patterns 0.068 0.192
LogDisc 0.167 0.192
BackProp 0.168 0.207
Discrim 0.202 0.216
Smart 0.062 0.217
Cart 0.284 0.235
C4.5 0.065 0.266
BayTree 0.079 0.271
KNN 0.000 0.275
Cal5 0.068 0.279
Cascade 0.263 0.280
LVQ 0.171 0.287
Ac2 ? 0.296
IndCart 0.047 0.298
NewId 0.030 0.298
Radial 0.098 0.307
Cn2 0.018 0.314
Itrule ? 0.324
Kohonen 0.115 0.340
Castle 0.545 0.505
Bayes 0.519 0.558
Default 0.750 0.750
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When Best is Good

♣ A pattern is good, if its precision on the test set is high.

♦ A pattern is best, if its precision on the training set is high.

♥ Empirical evidence suggests that best patterns generalize very well.

The average precision on the test set, as a function of the precision on

the training set, is increasing; its variance, as a function of the precision

on the training set, is decreasing.

♠ A best pattern alone is a very good, simple and robust classifier.



Logical Analysis of Data

• Binarization of numerical attributes

• Binarization of categorical attributes

• Pattern generation

• Theory building



Theory Building

Theories can be built by selecting enough patterns to cover all positive

examples.

This can be done for instance by solving an optimization problem, either

exactly or in a greedy way.

Similarly for co-theories.

Many applications in the literature...



Theory Building

Theory formation: for each vector a ∈ T we choose at most 5 patterns

with the highest coverage from P(a,T,F, γ).

Results of 10-fold cross validation
Data Set Training Test
AU CREDIT∗ 88.9% 85.4%
BCW 99.7% 97.4%
BUPA 97.4% 90.1%
DNA∗ 87.2% 87.5%
HEART 100.0% 96.3%
HEPATITIS 100.0% 87.0%
IONOSPHERE 99.9% 95.2%
PIMA 81.3% 77.9%
VEHICLE∗† 93.2% 80.8%
VOTES 100.0% 98.3%
WINE 100.0% 97.9%

∗ STATLOG Data Collection
† 4 classes



Conclusions

In conclusion

♠ A best pattern alone is a very good, simple and robust classifier.

♥ Theories built as disjunctions of good patterns provide excellent clas-

sifiers for a large variety of applications.

♣ Theories provide classifications that are both understandable and

justifiable.

♦ Several software packages have been developed.



Software

Software available from Christhophe Meyer’s LAD site

http://www.gerad.ca/˜christop/LAD en.html

1) Datascope (package written by Sorin Alexe in Visual Basic for Windows)

2) LADTools (program in C++ written by Eddy Mayoraz; may need

CPLEX)

3) Ladoscope Gang (a set of programs written in Objective Caml by Pierre

Lemaire)

Software available by request from E. Boros

4) PLAD (a PERL LAD Tool package, ”use at your own risk research-

ware”)
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