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Glossary37

Fractal Fractals are complex mathematical objects that38

are invariant with respect to dilations (self-similarity)39

and therefore do not possess a characteristic length40

scale. Fractal objects display scale-invariance proper-41

ties that can either fluctuate from point to point (mul-42

tifractal) or be homogeneous (monofractal). Mathe-43

matically, these properties should hold over all scales.44

However, in the real world, there are necessarily lower 45

and upper bounds over which self-similarity applies. 46

Wavelet transform The continuous wavelet transform 47

(WT) is a mathematical technique introduced in the 48

early 1980s to perform time-frequency analysis. The 49

WT has been early recognized as a mathematical mi- 50

croscope that is well adapted to characterize the scale- 51

invariance properties of fractal objects and to reveal 52

the hierarchy that governs the spatial distribution of 53

the singularities of multifractal measures and func- 54

tions. More specifically, the WT is a space-scale anal- 55

ysis which consists in expanding signals in terms of 56

wavelets that are constructed from a single function, 57

the analyzing wavelet, by means of translations and di- 58

lations. 59

Wavelet transformmodulus maxima method 60

The WTMM method provides a unified statistical 61

(thermodynamic) description of multifractal distribu- 62

tions including measures and functions. This method 63

relies on the computation of partition functions from 64

the wavelet transform skeleton defined by the wavelet 65

transform modulus maxima (WTMM). This skeleton 66

provides an adaptive space-scale partition of the frac- 67

tal distribution under study, from which one can ex- 68

tract the D(h) singularity spectrum as the equivalent 69

of a thermodynamic potential (entropy). With some 70

appropriate choice of the analyzing wavelet, one can 71

show that theWTMMmethod provides a natural gen- 72

eralization of the classical box-counting and structure 73

function techniques. 74

Compositional strand asymmetry The DNA double he- 75

lix is made of two strands that are maintained to- 76

gether by hydrogen bonds involved in the base-pair- 77

ing between Adenine (resp. Guanine) on one strand 78

and Thymine (resp. Cytosine) on the other strand. 79

Under no-strand bias conditions, i. e. when mutation 80

rates are identical on the two strands, in other words 81

when the two strands are strictly equivalent, one ex- 82

pects equimolarities of adenine and thymine and of 83

guanine and cytosine on each DNA strand, a property 84

named Chargaff’s second parity rule. Compositional 85

strand asymmetry refers to deviations from this rule 86

which can be assessed by measuring departure from 87

intrastrand equimolarities. Note that two major bio- 88

logical processes, transcription and replication, both 89

requiring the opening of the double helix, actually 90

break the symmetry between the twoDNA strands and 91

can thus be at the origin of compositional strand asym- 92

metries. 93

Eukaryote Organisms whose cells contain a nucleus, the 94

structure containing the genetic material arranged into 95
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2 Fractals andWavelets

chromosomes. Eukaryotes constitute one of the three96

domains of life, the two others, called prokaryotes97

(without nucleus), being the eubacteria and the ar-98

chaebacteria.99

Transcription Transcription is the process whereby the100

DNA sequence of a gene is enzymatically copied into101

a complementary messenger RNA. In a following step,102

translation takes place where each messenger RNA103

serves as a template to the biosynthesis of a specific104

protein.105

Replication DNA replication is the process of making an106

identical copy of a double-stranded DNA molecule.107

DNA replication is an essential cellular function re-108

sponsible for the accurate transmission of genetic in-109

formation though successive cell generations. This110

process starts with the binding of initiating proteins to111

a DNA locus called origin of replication. The recruit-112

ment of additional factors initiates the bi-directional113

progression of two replication forks along the chromo-114

some. In eukaryotic cells, this binding event happens115

at a multitude of replication origins along each chro-116

mosome from which replication propagates until two117

converging forks collide at a terminus of replication.118

Chromatin Chromatin is the compound of DNA and119

proteins that forms the chromosomes in living cells. In120

eukaryotic cells, chromatin is located in the nucleus.121

Histones Histones are a major family of proteins found in122

eukaryotic chromatin. The wrapping of DNA around123

a core of 8 histones forms a nucleosome, the first step124

of eukaryotic DNA compaction.125

Definition of the Subject126

The continuous wavelet transform (WT) is a mathemat-127

ical technique introduced in signal analysis in the early128

1980s [1,2]. Since then, it has been the subject of consid-129

erable theoretical developments and practical applications130

in a wide variety of fields. The WT has been early recog-131

nized as a mathematical microscope that is well adapted132

to reveal the hierarchy that governs the spatial distribu-133

tion of singularities of multifractal measures [3,4,5]. What134

makes the WT of fundamental use in the present study135

is that its singularity scanning ability equally applies to136

singular functions than to singular measures [3,4,5,6,7,137

8,9,10,11]. This has led Alain Arneodo and his collabo-138

rators [12,13,14,15,16] to elaborate a unified thermody-139

namic description of multifractal distributions including140

measures and functions, the so-called Wavelet Transform141

Modulus Maxima (WTMM) method. By using wavelets142

instead of boxes, one can take advantage of the freedom143

in the choice of these “generalized oscillating boxes” to get 144

rid of possible (smooth) polynomial behavior that might 145

either mask singularities or perturb the estimation of their 146

strength h (Hölder exponent), remedying in this way for 147

one of the main failures of the classical multifractal meth- 148

ods (e. g. the box-counting algorithms in the case of mea- 149

sures and the structure function method in the case of 150

functions [12,13,15,16]). The other fundamental advan- 151

tage of using wavelets is that the skeleton defined by the 152

WTMM [10,11], provides an adaptative space-scale parti- 153

tioning from which one can extract the D(h) singularity 154

spectrum via the Legendre transform of the scaling expo- 155

nents �(q) (q real, positive as well as negative) of some par- 156

tition functions defined from the WT skeleton. We refer 157

the reader to Bacry et al. [13], Jaffard [17,18] for rigorous 158

mathematical results and to Hentschel [19] for the theo- 159

retical treatment of randommultifractal functions. 160

Applications of the WTMM method to 1D signals 161

have already provided insights into a wide variety of prob- 162

lems [20], e. g., the validation of the log-normal cascade 163

phenomenology of fully developed turbulence [21,22,23, 164

24] and of high-resolution temporal rainfall [25,26], the 165

characterization and the understanding of long-range cor- 166

relations in DNA sequences [27,28,29,30], the demonstra- 167

tion of the existence of causal cascade of information from 168

large to small scales in financial time series [31,32], the 169

use of the multifractal formalism to discriminate between 170

healthy and sick heartbeat dynamics [33,34], the discov- 171

ery of a Fibonacci structural ordering in 1D cuts of diffu- 172

sion limited aggregates (DLA) [35,36,37,38]. The canoni- 173

cal WTMMmethod has been further generalized from 1D 174

to 2D with the specific goal to achieve multifractal analy- 175

sis of rough surfaces with fractal dimensions DF anywhere 176

between 2 and 3 [39,40,41]. The 2D WTMM method has 177

been successfully applied to characterize the intermittent 178

nature of satellite images of the cloud structure [42,43], to 179

perform a morphological analysis of the anisotropic struc- 180

ture of atomic hydrogen (HI) density in Galactic spiral 181

arms [44] and to assist in the diagnosis in digitized mam- 182

mograms [45]. We refer the reader to Arneodo et al. [46] 183

for a review of the 2DWTMMmethodology, from the the- 184

oretical concepts to experimental applications. In a recent 185

work, Kestener and Arneodo [47] have further extended 186

the WTMM method to 3D analysis. After some convinc- 187

ing test applications to synthetic 3D monofractal Brow- 188

nian fields and to 3D multifractal realizations of singular 189

cascade measures as well as their random function coun- 190

terpart obtained by fractional integration, the 3DWTMM 191

method has been applied to dissipation and enstrophy 3D 192

numerical data issued from direct numerical simulations 193

(DNS) of isotropic turbulence. The results so-obtained 194
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Fractals and Wavelets 3

have revealed that the multifractal spatial structure of both195

dissipation and enstrophy fields are likely to be well de-196

scribed by a multiplicative cascade process clearly non-197

conservative. This contrasts with the conclusions of previ-198

ous box-counting analysis [48] that failed to estimate cor-199

rectly the corresponding multifractal spectra because of200

their intrinsic inability to master non-conservative singu-201

lar cascade measures [47].202

For many years, the multifractal description has been203

mainly devoted to scalar measures and functions. How-204

ever, in physics as well as in other fundamental and ap-205

plied sciences, fractals appear not only as deterministic or206

random scalar fields but also as vector-valued determin-207

istic or random fields. Very recently, Kestener and Ar-208

neodo [49,50] have combined singular value decomposi-209

tion techniques and WT analysis to generalize the mul-210

tifractal formalism to vector-valued random fields. The211

so-called Tensorial Wavelet Transform Modulus Maxima212

(TWTMM) method has been applied to turbulent velocity213

and vorticity fields generated in (256)3 DNS of the incom-214

pressible Navier–Stokes equations. This study reveals the215

existence of an intimate relationship Dv(h C 1) D D!(h)216

between the singularity spectra of these two vector fields217

that are found significantly more intermittent that previ-218

ously estimated from longitudinal and transverse veloc-219

ity increment statistics. Furthermore, thanks to the singu-220

lar value decomposition, the TWTMMmethod looks very221

promising for future simultaneous multifractal and struc-222

tural (vorticity sheets, vorticity filaments) analysis of tur-223

bulent flows [49,50].224

Introduction225

The possible relevance of scale invariance and fractal con-226

cepts to the structural complexity of genomic sequences227

has been the subject of considerable increasing inter-228

est [20,51,52]. During the past fifteen years or so, there229

has been intense discussion about the existence, the na-230

ture and the origin of the long-range correlations (LRC)231

observed in DNA sequences. Different techniques includ-232

ing mutual information functions [53,54], auto-correla-233

tion functions [55,56], power-spectra [54,57,58], “DNA234

walk” representation [52,59], Zipf analysis [60,61] and en-235

tropies [62,63], were used for the statistical analysis of236

DNA sequences. For years there has been some perma-237

nent debate on rather struggling questions like the fact that238

the reported LRC might be just an artifact of the composi-239

tional heterogeneity of the genome organization [20,27,52,240

55,56,64,65,66,67]. Another controversial issue is whether241

or not LRC properties are different for protein-coding (ex-242

onic) and non-coding (intronic, intergenic) sequences [20,243

27,52,54,55,56,57,58,59,61,68]. Actually, there were many 244

objective reasons for this somehow controversial situation. 245

Most of the pioneering investigations of LRC in DNA se- 246

quences were performed using different techniques that 247

all consisted in measuring power-law behavior of some 248

characteristic quantity, e. g., the fractal dimension of the 249

DNA walk, the scaling exponent of the correlation func- 250

tion or the power-law exponent of the power spectrum. 251

Therefore, in practice, they all faced the same difficulties, 252

namely finite-size effects due to the finiteness of the se- 253

quence [69,70,71] and statistical convergence issue that 254

required some precautions when averaging over many 255

sequences [52,65]. But beyond these practical problems, 256

there was also a more fundamental restriction since the 257

measurement of a unique exponent characterizing the 258

global scaling properties of a sequence failed to resolve 259

multifractality [27], and thus provided very poor informa- 260

tion upon the nature of the underlying LRC (if they were 261

any). Actually, it can be shown that for a homogeneous 262

(monofractal) DNA sequence, the scaling exponents esti- 263

mated with the techniques previously mentioned, can all 264

be expressed as a function of the so-called Hurst or rough- 265

ness exponent H of the corresponding DNA walk land- 266

scape [20,27,52]. H D 1/2 corresponds to classical Brown- 267

ian, i. e. uncorrelated random walk. For any other value 268

of H, the steps (increments) are either positively corre- 269

lated (H > 1/2: Persistent randomwalk) or anti-correlated 270

(H < 1/2: Anti-persistent random walk). 271

One of the main obstacles to LRC analysis in DNA 272

sequences is the genuine mosaic structure of these se- 273

quences which are well known to be formed of “patches” 274

of different underlying composition [72,73,74]. When us- 275

ing the “DNA walk” representation, these patches appear 276

as trends in the DNA walk landscapes that are likely to 277

break scale-invariance [20,52,59,64,65,66,67,75,76]. Most 278

of the techniques, e. g. the variance method, used for char- 279

acterizing the presence of LRC are not well adapted to 280

study non-stationary sequences. There have been some 281

phenomenological attempts to differentiate local patch- 282

iness from LRC using ad hoc methods such as the so- 283

called “min-max method” [59] and the “detrended fluc- 284

tuation analysis” [77]. In previous works [27,28], the WT 285

has been emphasized as a well suited technique to over- 286

come this difficulty. By considering analyzing wavelets that 287

make the WT microscope blind to low-frequency trends, 288

any bias in the DNA walk can be removed and the ex- 289

istence of power-law correlations with specific scale in- 290

variance properties can be revealed accurately. In [78], 291

from a systematic WT analysis of human exons, CDSs 292

and introns, LRC were found in non-coding sequences as 293

well as in coding regions somehow hidden in their inner 294
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4 Fractals andWavelets

codon structure. These results made rather questionable295

the model based on genome plasticity proposed at that296

time to account for the reported absence of LRC in coding297

sequences [27,28,52,54,59,68]. More recently, some struc-298

tural interpretation of these LRC has emerged from a com-299

parative multifractal analysis of DNA sequences using300

structural coding tables based on nucleosome positioning301

data [29,30]. The application of the WTMM method has302

revealed that the corresponding DNA chain bending pro-303

files are monofractal (homogeneous) and that there exists304

two LRC regimes. In the 10–200 bp range, LRC are ob-305

served for eukaryotic sequences as quantified by a Hurst306

exponent valueH ' 0:6 (but not for eubacterial sequences307

for which H D 0:5) as the signature of the nucleosomal308

structure. These LRCwere shown to favor the autonomous309

formation of small (a few hundred bps) 2D DNA loops310

and in turn the propensity of eukaryotic DNA to inter-311

act with histones to form nucleosomes [79,80]. In addi-312

tion, these LRC might induce some local hyperdiffusion313

of these loops which would be a very attractive interpre-314

tation of the nucleosomal repositioning dynamics. Over315

larger distances (& 200 bp), stronger LRC with H ' 0:8316

seem to exist in any sequence [29,30]. These LRC are ac-317

tually observed in the S. cerevisiae nucleosome position-318

ing data [81] suggesting that they are involved in the nu-319

cleosome organization in the so-called 30 nm chromatin320

fiber [82]. The fact that this second regime of LRC is also321

present in eubacterial sequences shows that it is likely to322

be a possible key to the understanding of the structure and323

dynamics of both eukaryotic and prokaryotic chromatin324

fibers. In regards to their potential role in regulating the325

hierarchical structure and dynamics of chromatin, the re-326

cent report [83] of sequence-induced LRC effects on the327

conformations of naked DNA molecules deposited onto328

mica surface under 2D thermodynamic equilibrium ob-329

served by Atomic Force Microscopy (AFM) is a definite330

experimental breakthrough.331

Our purpose here is to take advantage of the avail-332

ability of fully sequenced genomes to generalize the ap-333

plication of the WTMM method to genome-wide mul-334

tifractal sequence analysis when using codings that have335

a clear functional meaning. According to the second par-336

ity rule [84,85], under no strand-bias conditions, each337

genomic DNA strand should present equimolarities of338

adenines A and thymines T and of guanines G and cy-339

tosines C [86,87]. Deviations from intrastrand equimolar-340

ities have been extensively studied during the past decade341

and the observed skews have been attributed to asym-342

metries intrinsic to the replication and transcription pro-343

cesses that both require the opening of the double helix.344

Actually, during these processes mutational events can af-345

fect the two strands differently and an asymmetry can 346

result if one strand undergoes different mutations, or 347

is repaired differently than the other strand. The exis- 348

tence of transcription and/or replication associated strand 349

asymmetries has been mainly established for prokaryote, 350

organelle and virus genomes [88,89,90,91,92,93,94]. For 351

a long time the existence of compositional biases in eu- 352

karyotic genomes has been unclear and it is only recently 353

that (i) the statistical analysis of eukaryotic gene introns 354

have revealed the presence of transcription-coupled strand 355

asymmetries [95,96,97] and (ii) the genome wide multi- 356

scale analysis of mammalian genomes has clearly shown 357

some departure from intrastrand equimolarities in inter- 358

genic regions and further confirmed the existence of repli- 359

cation-associated strand asymmetries [98,99,100]. In this 360

manuscript, we will review recent results obtained when 361

using the WT microscope to explore the scale invariance 362

properties of the TA and GC skew profiles in the 22 hu- 363

man autosomes [98,99,100]. These results will enlighten 364

the richness of information that can be extracted from 365

these functional codings of DNA sequences including the 366

prediction of 1012 putative human replication origins. In 367

particular, this study will reveal a remarkable human gene 368

organization driven by the coordination of transcription 369

and replication [101]. 370

AWavelet-BasedMultifractal Formalism: 371

TheWavelet TransformModulusMaximaMethod 372

The Continuous Wavelet Transform 373

TheWT is a space-scale analysis which consists in expand- 374

ing signals in terms ofwaveletswhich are constructed from 375

a single function, the analyzing wavelet  , by means of 376

translations and dilations. The WT of a real-valued func- 377

tion f is defined as [1,2]: 378

T [ f ] (x0; a) D 1
a

C1Z

�1
f (x) 

�x � x0
a

�
dx ; (1) 379

where x0 is the space parameter and a (> 0) the scale pa- 380

rameter. The analyzing wavelet is generally chosen to be 381

well localized in both space and frequency. Usually is re- 382

quired to be of zero mean for the WT to be invertible. But 383

for the particular purpose of singularity tracking that is of 384

interest here, we will further require  to be orthogonal to 385

low-order polynomials [7,8,9,10,11,12,13,14,15,16]: 386

C1Z

�1
xm (x)dx ; 0 � m < n : (2) 387

TS2 Please check. Fig. 2 is cited before Fig. 1.
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Fractals and Wavelets 5

As originally pointed out by Mallat and collabora-388

tors [10,11], for the specific purpose of analyzing the reg-389

ularity of a function, one can get rid of the redundancy of390

the WT by concentrating on the WT skeleton defined by391

its modulus maxima only. These maxima are defined, at392

each scale a, as the local maxima of jT [ f ](x; a)j consid-393

ered as a function of x. As illustrated in Figs. 2e, 2f TS2 ,394

these WTMM are disposed on connected curves in the395

space-scale (or time-scale) half-plane, calledmaxima lines.396

Let us define L(a0) as the set of all the maxima lines that397

exist at the scale a0 and which contain maxima at any scale398

a � a0. An important feature of these maxima lines, when399

analyzing singular functions, is that there is at least one400

maxima line pointing towards each singularity [10,11,16].401

Scanning Singularities with theWavelet402

TransformModulus Maxima403

The strength of the singularity of a function f at point x0404

is given by the Hölder exponent, i. e., the largest exponent405

such that there exists a polynomial Pn(x � x0) of order406

n < h(x0) and a constant C > 0, so that for any point x407

in a neighborhood of x0, one has [7,8,9,10,11,13,16]:408

j f (x) � Pn(x � x0)j � C jx � x0jh : (3)409

If f is n times continuously differentiable at the point x0,410

then one can use for the polynomial Pn (x � x0), the order-411

n Taylor series of f at x0 and thus prove that h(x0) > n.412

Thus h(x0) measures how irregular the function f is at the413

point x0. The higher the exponent h(x0), the more regular414

the function f .415

The main interest in using the WT for analyzing the416

regularity of a function lies in its ability to be blind to417

polynomial behavior by an appropriate choice of the an-418

alyzing wavelet  . Indeed, let us assume that according419

to Eq. (3), f has, at the point x0, a local scaling (Hölder)420

exponent h(x0); then, assuming that the singularity is not421

oscillating [11,102,103], one can easily prove that the local422

behavior of f is mirrored by theWTwhich locally behaves423

like [7,8,9,10,11,12,13,14,15,16,17,18]:424

T [ f ](x0; a) � ah(x0) ; a ! 0C ; (4)425

provided n > h(x0), where n is the number of vanish-426

ing moments of  (Eq. (2)). Therefore one can extract the427

exponent h(x0) as the slope of a log-log plot of theWT am-428

plitude versus the scale a. On the contrary, if one chooses429

n < h(x0), the WT still behaves as a power-law but with430

a scaling exponent which is n :431

T [ f ](x0; a) � an ; a ! 0C : (5)432

Thus, around a given point x0, the faster theWT decreases 433

when the scale goes to zero, the more regular f is around 434

that point. In particular, if f 2 C1 at x0 (h(x0) D C1), 435

then the WT scaling exponent is given by n , i. e. a value 436

which is dependent on the shape of the analyzing wavelet. 437

According to this observation, one can hope to detect the 438

points where f is smooth by just checking the scaling be- 439

havior of the WT when increasing the order n of the an- 440

alyzing wavelet [12,13,14,15,16]. 441

Remark 1 A very important point (at least for practical 442

purpose) raised by Mallat and Hwang [10] is that the local 443

scaling exponent h(x0) can be equally estimated by looking 444

at the value of the WT modulus along a maxima line con- 445

verging towards the point x0. Indeed one can prove that 446

both Eqs. (4) and (5) still hold when following a maxima 447

line from large down to small scales [10,11]. 448

AWavelet-Based Multifractal Formalism: 449

TheWavelet TransformModulus Maxima Method 450

As originally defined by Parisi and Frisch [104], the mul- 451

tifractal formalism of multi-affine functions amounts to 452

compute the so-called singularity spectrum D(h) defined 453

as the Hausdorff dimension of the set where the Hölder 454

exponent is equal to h [12,13,16]: 455

D(h) D dimH fx; h(x) D hg ; (6) 456

where h can take, a priori, positive as well as negative real 457

values (e. g., the Dirac distribution ı(x) corresponds to the 458

Hölder exponent h(0) D �1) [17]. 459

A natural way of performing a multifractal analysis 460

of fractal functions consists in generalizing the “classi- 461

cal” multifractal formalism [105,106,107,108,109] using 462

wavelets instead of boxes. By taking advantage of the free- 463

dom in the choice of the “generalized oscillating boxes” 464

that are the wavelets, one can hope to get rid of possible 465

smooth behavior that could mask singularities or perturb 466

the estimation of their strength h. But the major difficulty 467

with respect to box-counting techniques [48,106,110,111, 468

112] for singular measures, consists in defining a covering 469

of the support of the singular part of the function with our 470

set of wavelets of different sizes. As emphasized in [12,13, 471

14,15,16], the branching structure of the WT skeletons of 472

fractal functions in the (x; a) half-plane enlightens the hi- 473

erarchical organization of their singularities (Figs. 2e, 2f). 474

The WT skeleton can thus be used as a guide to position, 475

at a considered scale a, the oscillating boxes in order to 476

obtain a partition of the singularities of f . The wavelet 477

transform modulus maxima (WTMM) method amounts 478

to compute the following partition function in terms of 479
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6 Fractals andWavelets

WTMM coefficients [12,13,14,15,16]:480

Z(q; a) D
X

l2L(a)

�
sup

(x;a0)2l
a0�a

ˇ̌
T [ f ](x; a0)

ˇ̌�q
; (7)481

where q 2 R and the sup can be regarded as a way to482

define a scale adaptative “Hausdorff-like” partition. Now483

from the deep analogy that links the multifractal formal-484

ism to thermodynamics [12,113], one can define the ex-485

ponent �(q) from the power-law behavior of the partition486

function:487

Z(q; a) � a�(q) ; a ! 0C ; (8)488

where q and �(q) play respectively the role of the inverse489

temperature and the free energy. The main result of this490

wavelet-basedmultifractal formalism is that in place of the491

energy and the entropy (i. e. the variables conjugated to q492

and �), one has h, the Hölder exponent, and D(h), the sin-493

gularity spectrum. This means that the singularity spec-494

trum of f can be determined from the Legendre transform495

of the partition function scaling exponent �(q) [13,17,18]:496

D(h) D min
q

(qh � �(q)) : (9)497

From the properties of the Legendre transform, it is easy to498

see that homogeneous fractal functions that involve singu-499

larities of unique Hölder exponent h D @� /@q, are char-500

acterized by a �(q) spectrum which is a linear function501

of q. On the contrary, a nonlinear �(q) curve is the signa-502

ture of nonhomogeneous functions that exhibitmultifrac-503

tal properties, in the sense that the Hölder exponent h(x)504

is a fluctuating quantity that depends upon the spatial po-505

sition x.506

Defining our Battery of AnalyzingWavelets507

There are almost as many analyzing wavelets as applica-508

tions of the continuous WT [3,4,5,12,13,14,15,16]. In the509

present work, we will mainly used the class of analyzing510

wavelets defined by the successive derivatives of theGauss-511

ian function:512

g(N)(x) D dN

dxN
e�x2/2 ; (10)513

for which n D N and more specifically g(1) and g(2) that514

are illustrated in Figs. 1a, 1b.515

Remark 2 TheWT of a signal f with g(N) (Eq. (10)) takes516

the following simple expression:517

Tg(N) [ f ](x; a) D 1
a

C1Z

�1
f (y)g(N)

� y � x
a

�
dy ;

D aN
dN

dxN
Tg(0) [ f ](x; a) :

(11)518

TS3 519

Equation (11) shows that the WT computed with g(N) at 520

scale a is nothing but theN-th derivative of the signal f (x) 521

smoothed by a dilated version g(0)(x/a) of the Gaussian 522

function. This property is at the heart of various applica- 523

tions of the WT microscope as a very efficient multi-scale 524

singularity tracking technique [20]. 525

With the specific goal of disentangling the contri- 526

butions to the nucleotide composition strand asymme- 527

try coming respectively from transcription and replication 528

processes, we will use in Sect. “A Wavelet-Based Method- 529

ology to Disentangle Transcription- and Replication- 530

Associated Strand Asymmetries Reveals a Remarkable 531

Gene Organization in the Human Genome”, an adapted 532

analyzing wavelet of the following form (Fig. 1c) [101,114]: 533

�R(x) D �
�
x � 1

2

�
; for x 2

�
�1
2
;
1
2

	

D 0 elsewhere :
(12) 534

By performing multi-scale pattern recognition in the 535

(space, scale) half-plane with this analyzing wavelet, we 536

will be able to define replication domains bordered by pu- 537

tative replication origins in the human genome and more 538

generally in mammalian genomes [101,114]. 539

Test Applications of the WTMMMethod on Mono- 540

fractal and Multifractal Synthetic Random Signals 541

This section is devoted to test applications of the WTMM 542

method to random functions generated either by addi- 543

tive models like fractional Brownian motions [115] or by 544

multiplicativemodels like randomW -cascades on wavelet 545

dyadic trees [21,22,116,117]. For each model, we first 546

wavelet transform 1000 realizations of length L D 65 536 547

with the first order (n D 1) analyzing wavelet g(1). From 548

the WT skeletons defined by the WTMM, we compute the 549

mean partition function (Eq. (7)) from which we extract 550

the annealed �(q) (Eq. (8)) and, in turn, D(h) (Eq. (9)) 551

multifractal spectra. We systematically test the robustness 552

of our estimates with respect to some change of the shape 553

of the analyzing wavelet, in particular when increasing 554

the number n of zero moments, going from g(1) to g(2) 555

(Eq. (10)). 556

Fractional Brownian Signals Since its introduction by 557

Mandelbrot and van Ness [115], the fractional Brownian 558

motion (fBm) BH has become a very popular model in 559

signal and image processing [16,20,39]. In 1D, fBm has 560

proved useful for modeling various physical phenomena 561

with long-range dependence, e. g., “1/ f ” noises. The fBm 562

TS3 Please check end of remark.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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Fractals and Wavelets 7

Fractals andWavelets, Figure 1
Set of analyzing wavelets  (x) that can be used in Eq. (1). a g(1) and b g(2) as defined in Eq. (10). c �R as defined in Eq. (12), that
will be used in Sect. “A Wavelet-Based Methodology to Disentangle Transcription- and Replication-Associated Strand Asymmetries
Reveals a Remarkable Gene Organization in the Human Genome” to detect replication domains. d Box function�T that will be used
in Sect. “A Wavelet-Based Methodology to Disentangle Transcription- and Replication-Associated Strand Asymmetries Reveals a
Remarkable Gene Organization in the Human Genome” to model step-like skew profiles induced by transcription

exhibits a power spectral density S(k) � 1/kˇ , where the563

spectral exponent ˇ D 2H C 1 is related to the Hurst ex-564

ponent H. fBm has been extensively used as test stochas-565

tic signals for Hurst exponent measurements. In Figs. 2, 3566

and 4, we report the results of a statistical analysis of fBm’s567

using the WTMM method [12,13,14,15,16]. We mainly568

concentrate on B1/3 since it has a k�5/3 power-spectrum569

similar to the spectrum of the multifractal stochastic sig-570

nal we will study next. Actually, our goal is to demon-571

strate that, where the power spectrum analysis fails, the572

WTMM method succeeds in discriminating unambigu-573

ously between these two fractal signals. The numerical574

signals were generated by filtering uniformly generated575

pseudo-random noise in Fourier space in order to have the576

required k�5/3 spectral density. A B1/3 fractional Brownian577

trail is shown in Fig. 2a. Figure 2c illustrates theWT coded,578

independently at each scale a, using 256 colors. The ana-579

lyzing wavelet is g(1) (n D 1). Figure 3a displays some580

plots of log2 Z(q; a) versus log2(a) for different values of q, 581

where the partition function Z(q; a) has been computed 582

on theWTMM skeleton shown in Fig. 2e, according to the 583

definition (Eq. (7)). Using a linear regression fit, we then 584

obtain the slopes �(q) of these graphs. As shown in Fig. 3c, 585

when plotted versus q, the data for the exponents �(q) con- 586

sistently fall on a straight line that is remarkably fitted by 587

the theoretical prediction: 588

�(q) D qH � 1 ; (13) 589

with H D 1/3. From the Legendre transform of this linear 590

�(q) (Eq. (9)), one gets a D(h) singularity spectrum that 591

reduces to a single point: 592

D(h) D 1 if h D H ;
D �1 if h ¤ H :

(14) 593

Thus, as expected theoretically [16,115], one finds that the 594

fBm B1/3 is a nowhere differentiable homogeneous frac- 595
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8 Fractals andWavelets

Fractals andWavelets, Figure 2
WT of monofractal andmultifractal stochastic signals. Fractional Brownianmotion: a a realization of B1/3 (L D 65536); cWT of B1/3 as
coded, independently at each scale a, using 256 colors from black (jT j D 0) to red (maxb jT j); e WT skeleton defined by the set
of all the maxima lines. Log-normal randomW -cascades: b a realization of the log-normalW -cascade model (L D 65536) with the
following parameter valuesm D �0:355 ln 2 and � 2 D 0:02 ln 2 (see [116]); dWT of the realization in b represented with the same
color coding as in c; fWT skeleton. The analyzing wavelet is g(1) (see Fig. 1a)

tal signal with a unique Hölder exponent h D H D 1/3.596

Note that similar good estimates are obtained when using597

analyzing wavelets of different order (e. g. g(2)), and this598

whatever the value of the index H of the fBm [12,13,14,15,599

16].600

Within the perspective of confirming the monofractal-601

ity of fBm’s, we have studied the probability density func-602

tion (pdf) of wavelet coefficient values �a(Tg(1) (:; a)), as 603

computed at a fixed scale a in the fractal scaling range. Ac- 604

cording to the monofractal scaling properties, one expects 605

these pdfs to satisfy the self-similarity relationship [20,27, 606

28]: 607

aH�a(aHT) D �(T) ; (15) 608
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Fractals and Wavelets 9

Fractals andWavelets, Figure 3
Determination of the �(q) and D(h) multifractal spectra of fBm B1/3 (red circles) and log-normal randomW -cascades (green dots)
using the WTMMmethod. a log2 Z(q; a) vs. log2 a: B1/3. b log2 Z(q; a) vs. log2 a: Log-normalW -cascades with the same parameters
as in Fig. 2b. c �(q) vs. q; the solid lines correspond respectively to the theoretical spectra (13) and (16). d D(h) vs. h; the solid lines
correspond respectively to the theoretical predictions (14) and (17). The analyzing wavelet is g(1). The reported results correspond to
annealed averaging over 1000 realizations of L D 65536

where �(T) is a “universal” pdf (actually the pdf obtained609

at scale a D 1) that does not depend on the scale param-610

eter a. As shown in Figs. 4a, 4a0 for B1/3, when plotting611

aH�a(aHT) vs. T , all the �a curves corresponding to dif-612

ferent scales (Fig. 4a) remarkably collapse on a unique613

curve when using a unique exponent H D 1/3 (Fig. 4a0).614

Furthermore the so-obtained universal curve cannot be615

distinguished from a parabola in semi-log representation616

as the signature of the monofractal Gaussian statistics of 617

fBm fluctuations [16,20,27]. 618

Random W -Cascades Multiplicative cascade models 619

have enjoyed increasing interest in recent years as the 620

paradigm of multifractal objects [16,19,48,105,107,108, 621

118]. The notion of cascade actually refers to a self-sim- 622

ilar process whose properties are defined multiplicatively 623
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10 Fractals andWavelets

Fractals andWavelets, Figure 4
Probability distribution functions of wavelet coefficient values of fBm B1/3 (open symbols) and log-normal randomW -cascades (filled
symbols) with the same parameters as in Fig. 2b. a �a vs. Tg(1) for the set of scales a D 10 (4), 50 (�), 100 (�), 1000 (˙), 9000 (O);
a0 aH�a(�(aHTg(1) )) vs. Tg(1) with H D 1/3; The symbols have the samemeaning as in a. b �a vs. Tg(1) for the set of scales a D 10 ( ),
50 ( ), 100 ( ), 1000 ( ), 9000 ( ); (b0) aH�a(aHTg(1) ) vs. Tg(1) with H D �m/ ln 2 D 0:355. The analyzing wavelet is g(1) (Fig. 1a)

from coarse to fine scales. In that respect, it occupies a cen-624

tral place in the statistical theory of turbulence [48,104].625

Originally, the concept of self-similar cascades was intro-626

duced to model multifractal measures (e. g. dissipation or627

enstrophy) [48]. It has been recently generalized to the628

construction of scale-invariant signals (e. g. longitudinal629

velocity, pressure, temperature) using orthogonal wavelet630

basis [116,119]. Instead of redistributing the measure over631

sub-intervals with multiplicative weights, one allocates the632

wavelet coefficients in a multiplicative way on the dyadic633

grid. This method has been implemented to generate mul-634

tifractal functions (with weights W) from a given deter-635

ministic or probabilistic multiplicative process. Along the636

line of themodeling of fully developed turbulent signals by637

log-infinitely divisible multiplicative processes [120,121],638

wewill mainly concentrate here on the log-normalW -cas- 639

cades in order to calibrate the WTMM method. If m and 640

�2 are respectively the mean and the variance of lnW 641

(where W is a multiplicative random variable with log- 642

normal probability distribution), then, as shown in [116], 643

a straightforward computation leads to the following �(q) 644

spectrum: 645

�(q) D � log2hWqi � 1 ; 8q 2 R

D � �2

2 ln 2
q2 � m

ln 2
q � 1 ;

(16) 646

where h: : :i means ensemble average. The correspond- 647

ing D(h) singularity spectrum is obtained by Legendre 648
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Fractals and Wavelets 11

transforming �(q) (Eq. (9)):649

D(h) D � (h C m/ ln 2)2

2�2/ ln 2
C 1 : (17)650

According to the convergence criteria established651

in [116], m and �2 have to satisfy the conditions: m < 0652

and jmj/� > p
2 ln 2. Moreover, by solving D(h) D 0, one653

gets the following bounds for the support of the D(h) sin-654

gularity spectrum: hmin D �m/ ln 2 � (
p
2�)/

p
ln 2 and655

hmax D �m/ ln 2 C (
p
2�)/

p
ln 2.656

In Fig. 2b is illustrated a realization of a log-normal657

W -cascade for the parameter valuesm D �0:355 ln 2 and658

�2 D 0:02 ln 2. The corresponding WT and WT skeleton659

as computed with g(1) are shown in Figs. 2d and 2f re-660

spectively. The results of the application of the WTMM661

method are reported in Fig. 3. As shown in Fig. 3b, when662

plotted versus the scale parameter a in a logarithmic rep-663

resentation, the annealed average of the partition func-664

tions Z(q; a) displays a well defined scaling behavior over665

a range of scales of about 5 octaves. Note that scaling666

of quite good quality is found for a rather wide range667

of q values: �5 � q � 10. When processing to a linear668

regression fit of the data over the first four octaves, one669

gets the �(q) spectrum shown in Fig. 3c. This spectrum670

is clearly a nonlinear function of q, the hallmark of mul-671

tifractal scaling. Moreover, the numerical data are in re-672

markable agreement with the theoretical quadratic predic-673

tion (Eq. (16)). Similar quantitative agreement is observed674

on the D(h) singularity spectrum in Fig. 3d which displays675

a single humped parabola shape that characterizes inter-676

mittent fluctuations corresponding to Hölder exponents677

values ranging from hmin D 0:155 to hmax D 0:555. Un-678

fortunately, to capture the strongest and the weakest sin-679

gularities, one needs to compute the �(q) spectrum for680

very large values of jqj. This requires the processing of681

many more realizations of the considered log-normal ran-682

dom W -cascade. The multifractal nature of log-normal683

W -cascade realizations is confirmed in Figs. 4b, 4b0 where684

the self-similarity relationship (Eq. (15)) is shown not to685

apply. Actually there does not exist a H value allowing to686

superimpose onto a single curve theWT pdfs computed at687

different scales.688

The test applications reported in this section demon-689

strate the ability of the WTMM method to resolve mul-690

tifractal scaling of 1D signals, a hopeless task for classi-691

cal power spectrum analysis. They were used on purpose692

to calibrate and to test the reliability of our methodology,693

and of the corresponding numerical tools, with respect to694

finite-size effects and statistical convergence.695

Bifractality of Human DNA Strand-Asymmetry 696

Profiles Results from Transcription 697

During genome evolution, mutations do not occur at ran- 698

dom as illustrated by the diversity of the nucleotide sub- 699

stitution rate values [122,123,124,125]. This non-random- 700

ness is considered as a by-product of the various DNA 701

mutation and repair processes that can affect each of the 702

two DNA strands differently. Asymmetries of substitution 703

rates coupled to transcription have been mainly observed 704

in prokaryotes [88,89,91], with only preliminary results in 705

eukaryotes. In the human genome, excess of T was ob- 706

served in a set of gene introns [126] and some large-scale 707

asymmetry was observed in human sequences but they 708

were attributed to replication [127]. Only recently, a com- 709

parative analysis of mammalian sequences demonstrated 710

a transcription-coupled excess of G+T over A+C in the 711

coding strand [95,96,97]. In contrast to the substitution 712

biases observed in bacteria presenting an excess of C!T 713

transitions, these asymmetries are characterized by an ex- 714

cess of purine (A!G) transitions relatively to pyrimidine 715

(T!C) transitions. These might be a by-product of the 716

transcription-coupled repair mechanism acting on uncor- 717

rected substitution errors during replication [128]. In this 718

section, we report the results of a genome-wide multifrac- 719

tal analysis of strand-asymmetry DNA walk profiles in the 720

human genome [129]. This study is based on the compu- 721

tation of the TA and GC skews in non-overlapping 1 kbp 722

windows: 723

STA D nT � nA
nT C nA

; SGC D nG � nC
nG C nC

; (18) 724

where nA, nC, nG and nT are respectively the numbers of 725

A, C, G andT in the windows. Because of the observed cor- 726

relation between the TA andGC skews, we also considered 727

the total skew 728

S D STA C SGC : (19) 729

From the skews STA(n), SGC(n) and S(n), obtained along 730

the sequences, where n is the position (in kbp units) from 731

the origin, we also computed the cumulative skew profiles 732

(or skew walk profiles): 733

˙TA(n) D
nX

jD1

STA( j) ; ˙GC(n) D
nX

jD1

SGC( j) ; (20) 734

and 735

˙(n) D
nX

jD1

S( j) : (21) 736

Our goal is to show that the skew DNA walks of the 737

22 human autosomes display an unexpected (with respect 738
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12 Fractals andWavelets

to previous monofractal diagnosis [27,28,29,30]) bifractal739

scaling behavior in the range 10 to 40 kbp as the signature740

of the presence of transcription-induced jumps in the LRC741

noisy S profiles. Sequences and gene annotation data (“ref-742

Gene”) were retrieved from the UCSC Genome Browser743

(May 2004). We used RepeatMasker to exclude repetitive744

elements thatmight have been inserted recently and would745

not reflect long-term evolutionary patterns.746

Revealing the Bifractality of Human Skew DNAWalks747

with the WTMMMethod748

As an illustration of our wavelet-based methodology, we749

show in Fig. 5 the S skew profile of a fragment of human750

chromosome 6 (Fig. 5a), the corresponding skew DNA751

walk (Fig. 5b) and its space-scale wavelet decomposition752

using the Mexican hat analyzing wavelet g(2) (Fig. 1b).753

When computing Z(q; a) (Eq. (7)) from the WT skeletons754

of the skew DNA walks ˙ of the 22 human autosomes,755

we get convincing power-law behavior for �1:5 � q � 3756

(data not shown). In Fig. 6a are reported the �(q) expo-757

nents obtained using a linear regression fit of ln Z(q; a)758

vs. ln a over the range of scales 10 kbp � a � 40 kbp.759

All the data points remarkably fall on two straight lines760

�1(q) D 0:78q � 1 and �2(q) D q � 1 which strongly sug-761

gests the presence of two types of singularities h1 D 0:78762

and h2 D 1, respectively on two sets S1 and S2 with the763

sameHaussdorf dimension D D ��1(0) D ��2(0) D 1, as764

confirmed when computing the D(h) singularity spectrum765

in Fig. 6b. This observation means that Z(q; a) can be split766

in two parts [12,16]:767

Z(q; a) D C1(q)aqh1�1 C C2(q)aqh2�1 ; (22)768

where C1(q) and C2(q) are prefactors that depend on q.769

Since h1 < h2, in the limit a 7! 0C, the partition function770

is expected to behave like Z(q; a) � C1(q)aqh1�1 for q > 0771

and like Z(q; a) � C2(q)aqh2�1 for q < 0, with a so-called772

phase transition [12,16] at the critical value qc D 0. Sur-773

prisingly, it is the contribution of the weakest singularities774

h2 D 1 that controls the scaling behavior of Z(q; a) for775

q > 0 while the strongest ones h1 D 0:78 actually domi-776

nate for q < 0 (Fig. 6a). This inverted behavior originates777

from finite (1 kbp) resolution which prevents the observa-778

tion of the predicted scaling behavior in the limit a 7! 0C.779

The prefactors C1(q) and C2(q) in Eq. (22) are sensitive to780

(i) the number of maxima lines in the WT skeleton along781

which the WTMM behave as ah1 or ah2 and (ii) the rela-782

tive amplitude of these WTMM. Over the range of scales783

used to estimate �(q), the WTMM along the maxima lines784

pointing (at small scale) to h2 D 1 singularities are signifi-785

cantly larger than those along the maxima lines associated786

Fractals andWavelets, Figure 5
a Skew profile S(n) (Eq. (19)) of a repeat-masked fragment of hu-
man chromosome 6; red (resp. blue) 1 kbp window points corre-
spond to (+) genes (resp. (�) genes) lying on the Watson (resp.
Crick) strand; black points to intergenic regions. b Cumulated
skew profile˙ (n) (Eq. (21)). cWT of˙ ; Tg(2) (n;a) is coded from
black (min) to red (max); the WT skeleton defined by the maxima
lines is shown in solid (resp. dashed) lines corresponding to posi-
tive (resp. negative) WT values. For illustration yellow solid (resp.
dashed) maxima lines are shown to point to the positions of 2
upward (resp. 2 downward) jumps in S (vertical dashed lines in a
and b) that coincide with gene transcription starts (resp. ends).
In green are shownmaxima lines that persist above a � 200kbp
and that point to sharp upward jumps in S (vertical solid lines
in a and b) that are likely to be the locations of putative repli-
cation origins (see Sect. “From the Detection of Relication Ori-
gins Using theWavelet TransformMicroscope to theModeling of
Replication inMammalianGenomes”) [98,100]; note that 3 out of
those 4 jumps are co-located with transcription start sites [129]

to h1 D 0:78 (see Figs. 6c, 6d). This implies that the larger 787

q > 0, the stronger the inequality C2(q) � C1(q) and the 788

more pronounced the relative contribution of the second 789

term in the r.h.s. of Eq. (22). On the opposite for q < 0, 790

C1(q) � C2(q) which explains that the strongest singular- 791

ities h1 D 0:78 now control the scaling behavior of Z(q; a) 792

over the explored range of scales. 793

In Figs. 6c, 6d are shown the WTMM pdfs computed 794

at scales a D 10, 20 and 40 kbp after rescaling by ah1 and 795

ah2 respectively. We note that there does not exist a value 796

of H such that all the pdfs collapse on a single curve as 797

expected from Eq. (15) for monofractal DNA walks. Con- 798

sistently with the �(q) data in Fig. 6a and with the in- 799
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Fractals andWavelets, Figure 6
Multifractal analysis of˙ (n) of the 22 human (filled symbols) and 19mouse (open circle) autosomes using theWTMMmethodwith g(2)

over the range 10 kbp � a � 40kbp [129]. a �(q) vs. q. b D(h) vs. h. cWTMM pdf: � is plotted versus jTj/aH where H D h1 D 0:78,
in semi-log representation; the inset is an enlargement of the pdf central part in linear representation. d Same as in c but with
H D h2 D 1. In c and d, the symbols correspond to scales a D 10 ( ), 20 ( ) and 40kbp ( )

verted scaling behavior discussed above, when using the800

two exponents h1 D 0:78 and h2 D 1, one succeeds in su-801

perimposing respectively the central (bump) part (Fig. 6c)802

and the tail (Fig. 6d) of the rescaled WTMM pdfs. This803

corroborates the bifractal nature of the skew DNA walks804

that display two competing scale-invariant components805

of Hölder exponents: (i) h1 D 0:78 corresponds to LRC806

homogeneous fluctuations previously observed over the807

range 200 bp . a . 20 kbp in DNA walks generated with808

structural codings [29,30] and (ii) h2 D 1 is associated to809

convex _ and concave ^ shapes in the DNA walks ˙ in-810

dicating the presence of discontinuities in the derivative811

of˙ , i. e., of jumps in S (Figs. 5a, 5b). At a given scale a, ac-812

cording to Eq. (11), a large value of the WTMM in Fig. 5c813

corresponds to a strong derivative of the smoothed S pro-814

file and the maxima line to which it belongs is likely to815

point to a jump location in S. This is particularly the case 816

for the colored maxima lines in Fig. 5c: Upward (resp. 817

downward) jumps (Fig. 5a) are so-identified by the max- 818

ima lines corresponding to positive (resp. negative) values 819

of the WT. 820

Transcription-Induced Step-Like Skew Profiles 821

in the Human Genome 822

In order to identify the origin of the jumps observed in 823

the skew profiles, we have performed a systematic inves- 824

tigation of the skews observed along 14 854 intron con- 825

taining genes [96,97]. In Fig. 7 are reported the mean val- 826

ues of STA and SGC skews for all genes as a function of 827

the distance to the 50- or 30- end. At the 50 gene extremi- 828

ties (Fig. 7a), a sharp transition of both skews is observed 829
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14 Fractals andWavelets

from about zero values in the intergenic regions to finite830

positive values in transcribed regions ranging between 4831

and 6% for S̄TA and between 3 and 5% for S̄GC. At the832

gene 30- extremities (Fig. 7b), the TA and GC skews also833

exhibit transitions from significantly large values in tran-834

scribed regions to very small values in untranscribed re-835

gions. However, in comparison to the steep transitions ob-836

served at 50- ends, the 30- end profiles present a slightly837

smoother transition pattern extending over �5 kbp and838

including regions downstream of the 30- end likely reflect-839

ing the fact that transcription continues to some extent840

downstream of the polyadenylation site. In pluricellular841

organisms, mutations responsible for the observed biases842

are expected to have mostly occurred in germ-line cells. It843

could happen that gene 30- ends annotated in the databank844

differ from the poly-A sites effectively used in the germ-845

line cells. Such differences would then lead to some broad-846

ening of the skew profiles.847

From Skew Multifractal Analysis to Gene Detection848

In Fig. 8 are reported the results of a statistical analysis849

of the jump amplitudes in human S profiles [129]. For850

maxima lines that extend above a� D 10 kbp in the WT851

skeleton (see Fig. 5c), the histograms obtained for up-852

ward and downward variations are quite similar, especially853

their tails that are likely to correspond to jumps in the S854

profiles (Fig. 8a). When computing the distance between855

upward or downward jumps (j�Sj � 0:1) to the closest856

transcription start (TSS) or end (TES) sites (Fig. 8b), we857

reveal that the number of upward jumps in close prox-858

imity (j�nj . 3 kpb) to TSS over-exceeds the number of859

such jumps close to TES. Similarly, downward jumps are860

preferentially located at TES. These observations are con-861

sistent with the step-like shape of skew profiles induced862

by transcription: S > 0 (resp. S < 0) is constant along863

a (+) (resp. (�)) gene and S D 0 in the intergenic regions864

(Fig. 7) [96]. Since a step-like pattern is edged by one up-865

ward and one downward jump, the set of human genes866

that are significantly biased is expected to contribute to an867

even number of �S > 0 and �S < 0 jumps when explor-868

ing the range of scales 10 . a . 40 kbp, typical of human869

gene size. Note that in Fig. 8a, the number of sharp upward870

jumps actually slightly exceeds the number of sharp down-871

ward jumps, consistently with the experimental observa-872

tion that whereas TSS are well defined, TES may extend873

over 5 kbp resulting in smoother downward skew transi-874

tions (Fig. 7b). This TES particularity also explains the ex-875

cess of upward jumps found close to TSS as compared to876

the number of downward jumps close to TES (Fig. 8b).877

In Fig. 9a, we report the analysis of the distance of 878

TSS to the closest upward jump [129]. For a given up- 879

ward jump amplitude, the number of TSS with a jump 880

within j�nj increases faster than expected (as compared 881

to the number found for randomized jump positions) up 882

to j�nj ' 2 kbp. This indicates that the probability to find 883

an upward jump within a gene promoter region is signif- 884

icantly larger than elsewhere. For example, out of 20 023 885

TSS, 36% (7228) are delineated within 2 kbp by a jump 886

with �S > 0:1. This provides a very reasonable estimate 887

for the number of genes expressed in germline cells as 888

compared to the 31.9% recently experimentally found to 889

be bound to Pol II in human embryonic stem cells [130]. 890

Combining the previous results presented in Figs. 8b 891

and 9a, we report in Fig. 9b an estimate of the effi- 892

ciency/coverage relationship by plotting the proportion 893

of upward jumps (�S > �S�) lying in TSS proximity as 894

a function of the number of so-delineated TSS [129]. For 895

a given proximity threshold j�nj, increasing �S� results 896

in a decrease of the number of delineated TSS, charac- 897

teristic of the right tail of the gene bias pdf. Concomi- 898

tant to this decrease, we observe an increase of the effi- 899

ciency up to a maximal value corresponding to some opti- 900

mal value for�S�. For j�nj < 2 kbp, we reach a maximal 901

efficiency of 60% for �S� D 0:225; 1403 out of 2342 up- 902

ward jumps delineate a TSS. Given the fact that the actual 903

number of human genes is estimated to be significantly 904

larger (� 30 000) than the number provided by refGene, 905

a large part of the the 40% (939) of upward jumps that have 906

not been associated to a refGene could be explained by this 907

limited coverage. In other words, jumps with sufficiently 908

high amplitude are very good candidates for the location 909

of highly-biased gene promoters. Let us point that out of 910

the above 1403 (resp. 2342) upward jumps, 496 (resp. 624) 911

jumps are still observed at scale a� D 200 kbp. We will 912

see in the next section that these jumps are likely to also 913

correspond to replication origins underlying the fact that 914

large upward jumps actually result from the cooperative 915

contributions of both transcription- and replication- as- 916

sociated biases [98,99,100,101]. The observation that 80% 917

(496/624) of the predicted replication origins are co-lo- 918

cated with TSS enlightens the existence of a remarkable 919

gene organization at replication origins [101]. 920

To summarize, we have demonstrated the bifractal 921

character of skew DNA walks in the human genome. 922

When using the WT microscope to explore (repeat- 923

masked) scales ranging from 10 to 40 kbp, we have iden- 924

tified two competing homogeneous scale-invariant com- 925

ponents characterized by Hölder exponents h1 D 0:78 926

and h2 D 1 that respectively correspond to LRC colored 927

noise and sharp jumps in the original DNA composi- 928
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Fractals andWavelets, Figure 7
TA ( ) andGC (green ) skewprofiles in the regions surrounding50 and 30 gene extremities [96]. STA and SGC were calculated in 1 kbp
windows starting from each gene extremities in both directions. In abscissa is reported the distance (n) of each 1 kbp window to the
indicated gene extremity; zero values of abscissa correspond to 50- (a) or 30- (b) gene extremities. In ordinate is reported the mean
value of the skews over our set of 14 854 intron-containing genes for all 1 kbp windows at the corresponding abscissa. Error bars
represent the standard error of the means

Fractals andWavelets, Figure 8
Statistical analysis of skew variations at the singularity positions determined at scale 1 kbp from themaxima lines that exist at scales
a � 10kbp in the WT skeletons of the 22 human autosomes [129]. For each singularity, we computed the variation amplitudes
�S D S̄(30) � S̄(50) over two adjacent 5 kbp windows, respectively in the 30 and 50 directions and the distances�n to the closest
TSS (resp. TES). a Histograms N(j�Sj) for upward (�S > 0, red) and downward (�S < 0, black) skew variations. bHistograms of the
distances�n of upward (red) or downward (black) jumps with j�Sj � 0:1 to the closest TSS ( , red ) and TES (�, red �)

tional asymmetry profiles. Remarkably, the so-identified929

upward (resp. downward) jumps are mainly found at the930

TSS (resp. TES) of human genes with high transcription931

bias and thus very likely highly expressed. As illustrated in932

Fig. 6a, similar bifractal properties are also observed when933

investigating the 19 mouse autosomes. This suggests that934

the results reported in this section are general features of935

mammalian genomes [129].936

From the Detection of RelicationOrigins Using 937

theWavelet TransformMicroscope to the Modeling 938

of Replication inMammalianGenomes 939

DNA replication is an essential genomic function re- 940

sponsible for the accurate transmission of genetic in- 941

formation through successive cell generations. Accord- 942

ing to the so-called “replicon” paradigm derived from 943

prokaryotes [131], this process starts with the binding of 944

some “initiator” protein to a specific “replicator” DNA se- 945
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16 Fractals andWavelets

Fractals andWavelets, Figure 9
a Number of TSS with an upward jump within j�nj (abscissa) for jump amplitudes�S > 0.1 (black), 0.15 (dark gray) and 0.2 (light
gray). Solid lines correspond to true jump positions while dashed lines to the same analysis when jump positions were randomly
drawn along each chromosome [129]. b Among the Ntot(�S�) upward jumps of amplitude larger than some threshold �S�, we
plot the proportion of those that are found within 1 kbp ( ), 2 kbp ( ) or 4 kbp ( ) of the closest TSS vs. the number NTSS of the so-
delineated TSS. Curveswere obtained by varying�S� from0.1 to 0.3 (from right to left).Open symbols correspond to similar analyzes
performed on randomupward jump and TSS positions

quence called origin of replication. The recruitment of ad-946

ditional factors initiate the bi-directional progression of947

two divergent replication forks along the chromosome.948

One strand is replicated continuously (leading strand),949

while the other strand is replicated in discrete steps to-950

wards the origin (lagging strand). In eukaryotic cells, this951

event is initiated at a number of replication origins and952

propagates until two converging forks collide at a termi-953

nus of replication [132]. The initiation of different repli-954

cation origins is coupled to the cell cycle but there is955

a definite flexibility in the usage of the replication ori-956

gins at different developmental stages [133,134,135,136,957

137]. Also, it can be strongly influenced by the distance958

and timing of activation of neighboring replication ori-959

gins, by the transcriptional activity and by the local chro-960

matin structure [133,134,135,137]. Actually, sequence re-961

quirements for a replication origin vary significantly be-962

tween different eukaryotic organisms. In the unicellular963

eukaryote Saccharomyces cerevisiae, the replication ori-964

gins spread over 100–150 bp and present some highly con-965

served motifs [132]. However, among eukaryotes, S. cere-966

visiae seems to be the exception that remains faithful to the967

replicon model. In the fission yeast Schizosaccharomyces968

pombe, there is no clear consensus sequence and the repli-969

cation origins spread over at least 800 to 1000 bp [132].970

In multicellular organisms, the nature of initiation sites of971

DNA replication is evenmore complex. Metazoan replica-972

tion origins are rather poorly defined and initiation may973

occur at multiple sites distributed over a thousand of base974

pairs [138]. The initiation of replication at random and975

closely spaced sites was repeatedly observed in Drosophila 976

and Xenopus early embryo cells, presumably to allow for 977

extremely rapid S phase, suggesting that any DNA se- 978

quence can function as a replicator [136,139,140]. A de- 979

velopmental change occurs around midblastula transition 980

that coincides with some remodeling of the chromatin 981

structure, transcription ability and selection of preferen- 982

tial initiation sites [136,140]. Thus, although it is clear that 983

some sites consistently act as replication origins in most 984

eukaryotic cells, the mechanisms that select these sites and 985

the sequences that determine their location remain elu- 986

sive in many cell types [141,142]. As recently proposed by 987

many authors [143,144,145],the need to fulfill specific re- 988

quirements that result from cell diversification may have 989

led multicellular eukaryotes to develop various epigenetic 990

controls over the replication origin selection rather than to 991

conserve specific replication sequence. This might explain 992

that only very few replication origins have been identified 993

so far in multicellular eukaryotes, namely around 20 in 994

metazoa and only about 10 in human [146]. Along the line 995

of this epigenetic interpretation, one might wonder what 996

can be learned about eukaryotic DNA replication from 997

DNA sequence analysis. 998

Replication Induced Factory-Roof Skew Profiles 999

in Mammalian Genomes 1000

The existence of replication associated strand asymmetries 1001

has been mainly established in bacterial genomes [87,90, 1002

92,93,94]. SGC and STA skews abruptly switch sign (over 1003

TS4 Please check. Fig. 13 is cited before Fig. 10.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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Fractals and Wavelets 17

few kbp) from negative to positive values at the replica-1004

tion origin and in the opposite direction from positive1005

to negative values at the replication terminus. This step-1006

like profile is characteristic of the replicon model [131]1007

(see Fig. 13 TS4 , left panel). In eukaryotes, the existence1008

of compositional biases is unclear and most attempts to1009

detect the replication origins from strand compositional1010

asymmetry have been inconclusive. Several studies have1011

failed to show compositional biases related to replication,1012

and analysis of nucleotide substitutions in the region of1013

the ˇ-globin replication origin in primates does not sup-1014

port the existence of mutational bias between the leading1015

and the lagging strands [92,147,148]. Other studies have1016

led to rather opposite results. For instance, strand asym-1017

metries associated with replication have been observed in1018

the subtelomeric regions of Saccharomyces cerevisiae chro-1019

mosomes, supporting the existence of replication-coupled1020

asymmetric mutational pressure in this organism [149].1021

As shown in Fig. 10a for TOP1 replication origin [146],1022

most of the known replication origins in the human1023

genome correspond to rather sharp (over several kbp)1024

transitions from negative to positive S (STA as well as1025

SGC) skew values that clearly emerge from the noisy back-1026

ground. But when examining the behavior of the skews1027

at larger distances from the origin, one does not observe1028

a step-like pattern with upward and downward jumps at1029

the origin and termination positions respectively as ex-1030

pected for the bacterial replicon model (Fig. 13, left panel).1031

Surprisingly, on both sides of the upward jump, the noisy1032

S profile decreases steadily in the 50 to 30 direction with-1033

out clear evidence of pronounced downward jumps. As1034

shown in Figs. 10b–10d, sharp upward jumps of amplitude1035

�S & 15%, similar to the ones observed for the known1036

replication origins (Fig. 10a), seem to exist also at many1037

other locations along the human chromosomes. But the1038

most striking feature is the fact that in between two neigh-1039

boring major upward jumps, not only the noisy S profile1040

does not present any comparable downward sharp tran-1041

sition, but it displays a remarkable decreasing linear be-1042

havior. At chromosome scale, we thus get jagged S pro-1043

files that have the aspect of “factory roofs” [98,100,146].1044

Note that the jagged S profiles shown in Figs. 10a–10d1045

look somehow disordered because of the extreme variabil-1046

ity in the distance between two successive upward jumps,1047

from spacing � 50–100 kbp (� 100–200 kbp for the na-1048

tive sequences) mainly in GC rich regions (Fig. 10d), up1049

to 1–2Mbp (� 2–3Mbp for native sequences) (Fig. 10c)1050

in agreement with recent experimental studies [150] that1051

have shown that mammalian replicons are heterogeneous1052

in size with an average size � 500 kbp, the largest ones be-1053

ing as large as a few Mbp. But what is important to no-1054

tice is that some of these segments between two successive 1055

skew upward jumps are entirely intergenic (Figs. 10a, 10c), 1056

clearly illustrating the particular profile of a strand bias re- 1057

sulting solely from replication [98,100,146]. In most other 1058

cases, we observe the superimposition of this replication 1059

profile and of the step-like profiles of (+) and (�) genes 1060

(Fig. 7), appearing as upward and downward blocks stand- 1061

ing out from the replication pattern (Fig. 10c). Impor- 1062

tantly, as illustrated in Figs. 10e, 10f, the factory-roof pat- 1063

tern is not specific to human sequences but is also observed 1064

in numerous regions of themouse and dog genomes [100]. 1065

Hence, the presence of strand asymmetry in regions that 1066

have strongly diverged during evolution further supports 1067

the existence of compostional bias associated with replica- 1068

tion in mammalian germ-line cells [98,100,146]. 1069

Detecting Replication Origins 1070

from the SkewWT Skeleton 1071

We have shown in Fig. 10a that experimentally deter- 1072

mined human replication origins coincide with large-am- 1073

plitude upward transitions in noisy skew profiles. The 1074

corresponding �S ranges between 14% and 38%, ow- 1075

ing to possible different replication initiation efficiencies 1076

and/or different contributions of transcriptional biases 1077

(Sect. “Bifractality of Human DNA Strand-Asymmetry 1078

Profiles Results from Transcription”). Along the line of the 1079

jump detection methodology described in Sect. “Bifrac- 1080

tality of Human DNA Strand-Asymmetry Profiles Results 1081

from Transcription”, we have checked that upward jumps 1082

observed in the skew S at these known replication ori- 1083

gins correspond to maxima lines in the WT skeleton that 1084

extend to rather large scales a > a� D 200 kbp. This ob- 1085

servation has led us to select the maxima lines that ex- 1086

ist above a� D 200 kbp, i. e. a scale which is smaller than 1087

the typical replicon size and larger than the typical gene 1088

size [98,100]. In this way, we not only reduce the effect of 1089

the noise but we also reduce the contribution of the up- 1090

ward (50 extremity) and backward (30 extremity) jumps 1091

associated to the step-like skew pattern induced by tran- 1092

scription only (Sect. “Bifractality of Human DNA Strand- 1093

Asymmetry Profiles Results from Transcription”), to the 1094

benefit of maintaining a good sensitivity to replication in- 1095

duced jumps. The detected jump locations are estimated 1096

as the positions at scale 20 kbp of the so-selected max- 1097

ima lines. According to Eq. (11), upward (resp. down- 1098

ward) jumps are identified by the maxima lines corre- 1099

sponding to positive (resp. negative) values of the WT as 1100

illustrated in Fig. 5c by the green solid (resp. dashed) max- 1101

ima lines. When applying this methodology to the total 1102

skew S along the repeat-masked DNA sequences of the 1103
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Fractals andWavelets, Figure 10
S profiles along mammalian genome fragments [100,146].a Fragment of human chromosome 20 including the TOP1 origin (red ver-
tical line). b and c Human chromosome 4 and chromosome 9 fragments, respectively, with low GC content (36%). d Human chromo-
some 22 fragment with larger GC content (48%). In a and b, vertical lines correspond to selected putative origins (see Subsect. “De-
tecting Replication Origins from the Skew WT Skeleton”); yellow lines are linear fits of the S values between successive putative
origins. Black intergenic regions; red, (+) genes; blue, (�) genes. Note the fully intergenic regions upstream of TOP1 in a and from
positions 5290–6850kbp in c. e Fragment of mouse chromosome 4 homologous to the human fragment shown in c. f Fragment of
dog chromosome 5 syntenic to the human fragment shown in c. In e and f, genes are not represented

22 human autosomal chromosomes, 2415 upward jumps1104

are detected and, as expected, a similar number (namely1105

2686) of downward jumps. In Fig. 11a are reported the1106

histograms of the amplitude j�Sj of the so-identified up-1107

ward (�S > 0) and downward (�S < 0) jumps respec-1108

tively. These histograms no longer superimpose as previ-1109

ously observed at smaller scales in Fig. 8a, the former be- 1110

ing significantly shifted to larger j�Sj values. When plot- 1111

ting N(j�Sj > �S�) versus �S� in Fig. 11b, we can see 1112

that the number of large amplitude upward jumps overex- 1113

ceeds the number of large amplitude downward jumps. 1114

These results confirm that most of the sharp upward tran- 1115
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sitions in the S profiles in Fig. 10 have no sharp downward1116

transition counterpart [98,100]. This excess likely results1117

from the fact that, contrasting with the prokaryote repli-1118

con model (Fig. 13, left panel) where downward jumps1119

result from precisely positioned replication terminations,1120

in mammals termination appears not to occur at specific1121

positions but to be randomly distributed. Accordingly the1122

small number of downward jumps with large j�Sj is likely1123

to result from transcription (Fig. 5) and not from replica-1124

tion. These jumps are probably due to highly biased genes1125

that also generate a small number of large-amplitude up-1126

ward jumps, giving rise to false-positive candidate repli-1127

cation origins. In that respect, the number of large down-1128

ward jumps can be taken as an estimation of the number1129

of false positives. In a first step, we have retained as ac-1130

ceptable a proportion of 33% of false positives. As shown1131

in Fig. 11b, this value results from the selection of up-1132

ward and downward jumps of amplitude j�Sj � 12:5%,1133

corresponding to a ratio of upward over downward jumps1134

R D 3. Let us notice that the value of this ratio is highly1135

variable along the chromosome [146] and significantly1136

larger than 1 for GCC . 42%.1137

In a final step, we have decided [98,100,146] to re-1138

tain as putative replication origins upward jumps with1139

j�Sj � 12:5% detected in regions with G+C � 42%. This1140

selection leads to a set of 1012 candidates among which1141

our estimate of the proportion of true replication origins1142

is 79% (R D 4:76). In Fig. 12 is shown the mean skew pro-1143

file calculated in intergenic windows on both sides of the1144

1012 putative replication origins [100]. This mean skew1145

profile presents a rather sharp transition from negative to1146

positive values when crossing the origin position. To avoid1147

any bias in the skew values that could result from incom-1148

pletely annotated gene extremities (e. g. 50 and 30 UTRs),1149

we have removed 10-kbp sequences at both ends of all an-1150

notated transcripts. As shown in Fig. 12, the removal of1151

these intergenic sequences does not significantly modifies1152

the mean skew profile, indicating that the observed val-1153

ues do not result from transcription. On both sides of the1154

jump, we observe a linear decrease of the bias with some1155

flattening of the profile close to the transition point. Note1156

that, due to (i) the potential presence of signals implicated1157

in replication initiation and (ii) the possible existence of1158

dispersed origins [151], one might question the meaning-1159

fulness of this flattening that leads to a significant underes-1160

timate of the jump amplitude. Furthermore, according to1161

our detection methodology, the numerical uncertainty on1162

the putative origin position estimate may also contribute1163

to this flattening. As illustrated in Fig. 12, when extrapo-1164

lating the linear behavior observed at distances > 100 kbp1165

from the jump, one gets a skew of 5.3%, i. e. a value consis-1166

tent with the skew measured in intergenic regions around 1167

the six experimentally known replication origins namely 1168

7:0 ˙ 0:5%. Overall, the detection of sharp upward jumps 1169

in the skew profiles with characteristics similar to those 1170

of experimentally determined replication origins and with 1171

no downward counterpart further supports the existence, 1172

in human chromosomes, of replication-associated strand 1173

asymmetries, leading to the identification of numerous pu- 1174

tative replication origins active in germ-line cells. 1175

AModel of Replication in Mammalian Genomes 1176

Following the observation of jagged skew profiles similar 1177

to factory roofs in Subsect. “Replication Induced Factory- 1178

Roof Skew Profiles in Mammalian Genomes”, and the 1179

quantitative confirmation of the existence of such (piece- 1180

wise linear) profiles in the neighborhood of 1012 putative 1181

origins in Fig. 12, we have proposed, in Touchon et 1182

al. [100] and Brodie of Brodie et al. [98], a rather crude 1183

model for replication in the human genome that relies 1184

on the hypothesis that the replication origins are quite 1185

well positioned while the terminations are randomly dis- 1186

tributed. Although some replication terminations have 1187

been found at specific sites in S. cerevisiae and to some ex- 1188

tent in Schizosaccharomyces pombe [152], they occur ran- 1189

domly between active origins inXenopus egg extracts [153, 1190

154]. Our results indicate that this property can be ex- 1191

tended to replication in human germ-line cells. As illus- 1192

trated in Fig. 13, replication termination is likely to rely 1193

on the existence of numerous potential termination sites 1194

distributed along the sequence. For each termination site 1195

(used in a small proportion of cell cycles), strand asym- 1196

metries associated with replication will generate a step- 1197

like skew profile with a downward jump at the position 1198

of termination and upward jumps at the positions of the 1199

adjacent origins (as in bacteria). Various termination po- 1200

sitions will thus correspond to classical replicon-like skew 1201

profiles (Fig. 13, left panel). Addition of these profiles will 1202

generate the intermediate profile (Fig. 13, central panel). 1203

In a simple picture, we can reasonably suppose that ter- 1204

mination occurs with constant probability at any position 1205

on the sequence. This behavior can, for example, result 1206

from the binding of some termination factor at any posi- 1207

tion between successive origins, leading to a homogeneous 1208

distribution of termination sites during successive cell cy- 1209

cles. The final skew profile is then a linear segment de- 1210

creasing between successive origins (Fig. 13, right panel). 1211

Let us point out that firing of replication origins during 1212

time interval of the S phase [155] might result in some 1213

flattening of the skew profile at the origins as sketched 1214

in Fig. 13 (right panel, gray curve). In the present state, 1215
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Fractals andWavelets, Figure 11
Statistical analysis of the sharp jumps detected in the S profiles of the 22 human autosomal chromosomes by the WT microscope at
scale a� D 200kbp for repeat-masked sequences [98,100]. j�Sj D jS̄(30) � S̄(50)j, where the averages were computed over the two
adjacent 20 kbp windows, respectively, in the 30 and 50 direction from the detected jump location. a Histograms N(j�Sj) of j�Sj
values. b N(j�Sj > �S�) vs.�S�. In a and b, the black (resp. red) line corresponds to downward�S < 0 (resp. upward�S > 0)
jumps. R D 3 corresponds to the ratio of upward over downward jumps presenting an amplitude j�Sj � 12:5% (see text)

Fractals andWavelets, Figure 12
Mean skew profile of intergenic regions around putative repli-
cation origins [100]. The skew S was calculated in 1 kbp win-
dows (Watson strand) around the position (˙300 kbp without
repeats) of the 1012detected upward jumps; 50 and 30 transcript
extremities were extended by 0.5 and 2 kbp, respectively ( ),
or by 10 kbp at both ends (�). The abscissa represents the dis-
tance (in kbp) to the corresponding origin; the ordinate repre-
sents the skews calculated for thewindows situated in intergenic
regions (mean values for all discontinuities and for 10 consec-
utive 1 kbp window positions). The skews are given in percent
(vertical bars, SEM). The lines correspond to linear fits of the val-
ues of the skew (�) for n < �100kbp and n > 100kbp

our results [98,100,146] support the hypothesis of random1216

replication termination in human, and more generally in1217

mammalian cells (Fig. 10), but further analyzes will be nec-1218

essary to determine what scenario is precisely at work.1219

AWavelet-BasedMethodology to Disentangle 1220

Transcription- and Replication-AssociatedStrand 1221

Asymmetries Reveals a RemarkableGene 1222

Organization in the Human Genome 1223

During the duplication of eukaryotic genomes that occurs 1224

during the S phase of the cell cycle, the different replica- 1225

tion origins are not all activated simultaneously [132,135, 1226

138,150,155,156]. Recent technical developments in ge- 1227

nomic clone microarrays have led to a novel way of de- 1228

tecting the temporal order of DNA replication [155,156]. 1229

The arrays are used to estimate replication timing ratios 1230

i. e. ratios between the average amount of DNA in the S 1231

phase at a locus along the genome and the usual amount 1232

of DNA present in the G1 phase for that locus. These ra- 1233

tios should vary between 2 (throughout the S phase, the 1234

amount of DNA for the earliest replicating regions is twice 1235

the amount during G1 phase) and 1 (the latest replicating 1236

regions are not duplicated until the end of S phase). This 1237

approach has been successfully used to generate genome- 1238

wide maps of replication timing for S. cerevisiae [157], 1239

Drosophila melanogaster [137] and human [158]. Very re- 1240

cently, two new analyzes of human chromosome 6 [156] 1241

and 22 [155] have improved replication timing resolution 1242

from 1Mbp down to � 100 kbp using arrays of overlap- 1243

ping tile path clones. In this section, we report on a very 1244

promising first step towards the experimental confirma- 1245

tion of the thousand putative replication origins described 1246

in Sect. “From the Detection of Relication Origins Using 1247

the Wavelet Transform Microscope to the Modeling of 1248
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Fractals andWavelets, Figure 13
Model of replication termination [98,100]. Schematic representation of the skew profiles associated with three replication origins
O1, O2, and O3; we suppose that these replication origins are adjacent, bidirectional origins with similar replication efficiency. The
abscissa represents the sequence position; the ordinate represents the S value (arbitrary units). Upward (or downward) steps corre-
spond to origin (or termination) positions. For convenience, the termination sites are symmetric relative to O2. (Left) Three different
termination positions Ti , Tj , and Tk , leading to elementary skew profiles Si, Sj, and Sk as predicted by the repliconmodel [146]. (Cen-
ter) Superposition of these three profiles. (Right) Superposition of a large number of elementary profiles leading to the final factory-
roof pattern. In the simple model, termination occurs with equal probability on both sides of the origins, leading to the linear pro-
file (thick line). In the alternative model, replication termination is more likely to occur at lower rates close to the origins, leading to
a flattening of the profile (gray line)

Replication in Mammalian Genomes”. The strategy will1249

consist in mapping them on the recent high-resolution1250

timing data [156] and in checking that these regions repli-1251

cate earlier than their surrounding [114]. But to provide1252

a convincing experimental test, we need as a prerequisite1253

to extract the contribution of the compositional skew spe-1254

cific to replication.1255

Disentangling Transcription- and Replication-1256

Associated Strand Asymmetries1257

The first step to detect putative replication domains1258

consists in developing a multi-scale pattern recognition1259

methodology based on the WT of the strand compo-1260

sitional asymmetry S using as analyzing wavelet �R(x)1261

(Eq. (12)) that is adapted to perform an objective segmen-1262

tation of factory-roof skew profiles (Fig. 1c). As illustrated1263

in Fig. 14, the space-scale location of significant max-1264

ima values in the 2D WT decomposition (red areas in1265

Fig. 14b) indicates the middle position (spatial location)1266

of candidate replication domains whose size is given by1267

the scale location. In order to avoid false positives, we then1268

check that there does exist a well-defined upward jump at1269

each domain extremity. These jumps appear in Fig. 14b as1270

blue cone-shape areas pointing at small scale to the jumps1271

positions where are located the putative replication ori-1272

gins. Note that because the analyzing wavelet is of zero1273

mean (Eq. (2)), the WT decomposition is insensitive to1274

(global) asymmetry offset.1275

But as discussed in Sect. “Bifractality of Human DNA 1276

Strand-Asymmetry Profiles Results from Transcription”, 1277

the overall observed skew S also contains some contri- 1278

bution induced by transcription that generates step-like 1279

blocks corresponding to (+) and (�) genes [96,97,129]. 1280

Hence, when superimposing the replication serrated and 1281

transcription step-like skew profiles, we get the following 1282

theoretical skew profile in a replication domain [114]: 1283

S(x0) D SR(x0) C ST (x0)

D �2ı �
�
x0 � 1

2

�
C

X
gene

cg�g
�
x0� ; (23) 1284

where position x0 within the domain has been rescaled 1285

between 0 and 1, ı > 0 is the replication bias, �g is the 1286

characteristic function for the gth gene (1 when x0 points 1287

within the gene and 0 elsewhere) and cg is its transcrip- 1288

tional bias calculated on the Watson strand (likely to be 1289

positive for (+) genes and negative for (�) genes). The ob- 1290

jective is thus to detect human replication domains by de- 1291

lineating, in the noisy S profile obtained at 1 kbp resolution 1292

(Fig. 15a), all chromosomal loci where S is well fitted by the 1293

theoretical skew profile Eq. (23). 1294

In order to enforce strong compatibility with themam- 1295

malian replicon model (Subsect. “A Model of Replication 1296

in Mammalian Genomes”), we will only retain the do- 1297

mains the most likely to be bordered by putative repli- 1298

cation origins, namely those that are delimited by up- 1299

ward jumps corresponding to a transition from a nega- 1300
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Fractals andWavelets, Figure 14
Wavelet-based analysis of genomic sequences. a Skew profile S
of a 9Mbp repeat-masked fragment of human chromosome 21.
b WT of S using 'R (Fig. 1c); T�R [S](n;a) is color-coded from
dark-blue (min; negative values) to red (max; positive values)
through green (null values). Light-blue and purple lines illustrate
the detection of two replication domains of significantly differ-
ent sizes. Note that in b, blue cone-shape areas signing upward
jumps point at small scale (top) towards the putative replica-
tion origins and that the vertical positions of the WT maxima
(red areas) corresponding to the two indicated replication do-
mains match the distance between the putative replication ori-
gins (1.6Mbp and 470kbp respectively)

tive S value< �3% to a positive S value > C3%. Also, for1301

each domain so-identified, we will use a least-square fitting1302

procedure to estimate the replication bias ı, and each of1303

the gene transcription bias cg . The resulting �2 value will1304

then be used to select the candidate domains where the1305

noisy S profile is well described by Eq. (23). As illustrated1306

in Fig. 15 for a fragment of human chromosome 6 that1307

contains 4 adjacent replication domains (Fig. 15a), this1308

method provides a very efficient way of disentangling the1309

step-like transcription skew component (Fig. 15b) from1310

the serrated component induced by replication (Fig. 15c).1311

Applying this procedure to the 22 human autosomes,1312

we delineated 678 replication domains of mean length1313

hLi D 1:2 ˙ 0:6Mbp, spanning 28.3% of the genome and1314

predicted 1060 replication origins.1315

DNA Replication Timing Data Corroborate in silico1316

Human Replication Origin Predictions1317

Chromosome 22 being rather atypical in gene and GC1318

contents, we mainly report here on the correlation analy-1319

Fractals andWavelets, Figure 15
a Skew profile S of a 4.3Mbp repeat-masked fragment of human
chromosome 6 [114]; each point corresponds to a 1 kbp win-
dow: Red, (+) genes; blue, (�) genes; black, intergenic regions
(the color was defined by majority rule); the estimated skew
profile (Eq. (23)) is shown in green; vertical lines correspond to
the locations of 5 putative replication origins that delimit 4 ad-
jacent domains identified by the wavelet-based methodology.
b Transcription-associated skew ST obtained by subtracting the
estimated replication-associated profile (green lines in c) from
the original S profile in a; the estimated transcription step-like
profile (second term on the rhs of Eq. (23)) is shown in green.
c Replication-associated skew SR obtained by subtracting the es-
timated transcription step-like profile (green lines in b) from the
original S profile in a; the estimated replication serrated profile
(first term in the rhs of Eq. (23)) is shown in green; the light-blue
dots correspond to high-resolution tr data

sis [114] between nucleotide compositional skew and tim- 1320

ing data for chromosome 6 which is more representative 1321

of the whole human genome. Note that timing data for 1322

clones completely included in another clone have been re- 1323

moved after checking for timing ratio value consistency 1324

leaving 1648 data points. The timing ratio value at each 1325

point has been chosen as themedian over the 4 closest data 1326

points to remove noisy fluctuations resulting from clone 1327

heterogeneity (clone length 100 ˙ 51 kbp and distance be- 1328

tween successive clone mid-points 104 ˙ 89 kbp), so that 1329

the spatial resolution is rather inhomogeneous � 300 kbp. 1330

Note that using asynchronous cells also results in some 1331

smoothing of the data, possibly masking local maxima. 1332
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Our wavelet-based methodology has identified 541333

replication domains in human chromosome 6 [114]; these1334

domains are bordered by 83 putative replication origins1335

among which 25 are common to two adjacent domains.1336

Four of these contiguous domains are shown in Fig. 15.1337

In Fig. 15c, on top of the replication skew profile SR, are1338

reported for comparison the high-resolution timing ratio1339

tr data from [156]. The histogram of tr values obtained1340

at the 83 putative origin locations displays a maximum1341

at tr ' htri ' 1:5 (data not shown) and confirms what is1342

observed in Fig. 15c, namely that a majority of the pre-1343

dicted origins are rather early replicating with tr & 1:4.1344

This contrasts with the rather low tr ('1.2) values ob-1345

served in domain central regions (Fig. 15c). But there is1346

an even more striking feature in the replication timing1347

profile in Fig. 15c: 4 among the 5 predicted origins cor-1348

respond, relatively to the experimental resolution, to lo-1349

cal maxima of the tr profile. As shown in Fig. 16a, the1350

average tr profile around the 83 putative replication ori-1351

gins decreases regularly on both sides of the origins over1352

a few (4–6) hundreds kbp confirming statistically that do-1353

main borders replicate earlier than their left and right sur-1354

roundings which is consistent with these regions being1355

true replication origins mostly active early in S phase. In1356

fact, when averaging over the top 20 origins with a well-de-1357

fined local maximum in the tr profile, htri displays a faster1358

decrease on both sides of the origin and a higher max-1359

imum value � 1.55 corresponding to the earliest repli-1360

cating origins. On the opposite, when averaging tr pro-1361

files over the top 10 late replicating origins, we get, as ex-1362

pected, a rather flat mean profile (tr � 1:2) (Fig. 16a). In-1363

terestingly, these origins are located in rather wide regions1364

of very low GC content (. 34%, not shown) correlat-1365

ing with chromosomal G banding patterns predominantly1366

composed of GC-poor isochores [159,160]. This illustrates1367

how the statistical contribution of rather flat profiles ob-1368

served around late replicating origins may significantly af-1369

fect the overall mean tr profile. Individual inspection of1370

the 38 replication domains with L � 1Mbp shows that, in1371

those domains that are bordered by early replicating ori-1372

gins (tr & 1:4 �1:5), the replication timing ratio tr and the1373

absolute value of the replication skew jSR j turn out to be1374

strongly correlated. This is quantified in Fig. 16b by the1375

histogram of the Pearson’s correlation coefficient values1376

that is clearly shifted towards positive values with a maxi-1377

mum at � 0.4. Altogether the results of this comparative1378

analysis provide the first experimental verification of in1379

silico replication origins predictions: The detected puta-1380

tive replication domains are bordered by replication ori-1381

gins mostly active in the early S phase, whereas the central1382

regions replicate more likely in late S phase.1383

Gene Organization 1384

in the Detected Replication Domains 1385

Most of the 1060 putative replication origins that bor- 1386

der the detected replication domains are intergenic (77%) 1387

and are located near to a gene promoter more often than 1388

would be expected by chance (data not shown) [101]. The 1389

replication domains contain approximately equal num- 1390

bers of genes oriented in each direction (1511 (+) genes 1391

and 1507 (�) genes). Gene distributions in the 50 halves 1392

of domains contain more (+) genes than (�) genes, re- 1393

gardless of the total number of genes located in the half- 1394

domains (Fig. 17b). Symmetrically, the 30 halves contain 1395

more (�) genes than (+) genes (Fig. 17b). 32.7% of half- 1396

domains contain one gene, and 50.9% contain more than 1397

one gene. For convenience, (+) genes in the 50 halves 1398

and (�) genes in the 30 halves are defined as R+ genes 1399

(Fig. 17a): Their transcription is, in most cases, oriented 1400

in the same direction as the putative replication fork pro- 1401

gression (genes transcribed in the opposite direction are 1402

defined as R� genes). The 678 replication domains contain 1403

significantly more R+ genes (2041) than R� genes (977). 1404

Within 50 kbp of putative replication origins, the mean 1405

density of R+ genes is 8.2 times greater than that of R� 1406

genes. This asymmetryweakens progressively with the dis- 1407

tance from the putative origins, up to� 250 kbp (Fig. 17b). 1408

A similar asymmetric pattern is observed when the do- 1409

mains containing duplicated genes are eliminated from 1410

the analysis, whereas control domains obtained after ran- 1411

domization of domain positions present similar R+ and 1412

R� gene density distributions (Supplementary in [101]). 1413

The mean length of the R+ genes near the putative ori- 1414

gins is significantly greater (� 160 kbp) than that of the 1415

R� genes (� 50 kbp), however both tend towards similar 1416

values (� 70 kbp) at the center of the domain (Fig. 17c). 1417

Within 50 kbp of the putative origins, the ratio between 1418

the numbers of base pairs transcribed in the R+ and R� di- 1419

rections is 23.7; this ratio falls to � 1 at the domain centers 1420

(Fig. 17d). In Fig. 17e are reported the results of the anal- 1421

ysis of the breadth of expression, Nt (number of tissues in 1422

which a gene is expressed) of genes located within the de- 1423

tected domains [101]. As measured by EST data (similar 1424

results are obtained by SAGE or microarray data [101]), 1425

Nt is found to decrease significantly from the extremities 1426

to the center in a symmetrical manner in the 50 and 30 half- 1427

domains (Fig. 17e). Thus, genes located near the putative 1428

replications origins tend to be widely expressed whereas 1429

those located far from them are mostly tissue-specific. 1430

To summarize, the results reported in this section pro- 1431

vide the first demonstration of quantitative relationships 1432

in the human genome between gene expression, orienta- 1433
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24 Fractals andWavelets

Fractals andWavelets, Figure 16
a Average replication timing ratio (˙SEM) determined around the 83 putative replication origins ( ), 20 origins with well-defined
local maxima (�) and 10 late replicating origins (4). �x is the native distance to the origins in Mbp units [114]. b Histogram of
Pearson’s correlation coefficient values between tr and the absolute value of SR over the 38 predicted domains of length L � 1Mbp.
The dotted line corresponds to the expected histogram computed with the correlation coefficients between tr and jSj profiles over
independentwindows randomly positioned along chromosome 6 andwith the same length distribution as the 38 detected domains

tion and distance from putative replication origins [101].1434

A possible key to the understanding of this complex archi-1435

tecture is the coordination between replication and tran-1436

scription [101]. The putative replication origins would1437

mostly be active early in the S phase in most tissues. Their1438

activity could result from particular genomic context in-1439

volving transcription factor binding sites and/or from the1440

transcription of their neighboring housekeeping genes.1441

This activity could also be associated with an open chro-1442

matin structure, permissive to early replication and gene1443

expression in most tissues [161,162,163,164]. This open1444

conformation could extend along the first gene, possi-1445

bly promoting the expression of further genes. This ef-1446

fect would progressively weaken with the distance from1447

the putative replication origin, leading to the observed de-1448

crease in expression breadth. Thismodel is consistent with1449

a number of data showing that in metazoans, ORC and1450

RNA polymerase II colocalize at transcriptional promoter1451

regions [165], and that replication origins are determined1452

by epigenetic information such as transcription factor1453

binding sites and/or transcription [166,167,168,169]. It is1454

also consistent with studies inDrosophila and humans that1455

report correlation between early replication timing and1456

increased probability of expression [137,155,156,165,170].1457

Furthermore, near the putative origins bordering the repli-1458

cation domains, transcription is preferentially oriented in1459

the same direction as replication fork progression. This co-1460

orientation is likely to reduce head-on collisions between 1461

the replication and transcription machineries, which may 1462

induce deleterious recombination events either directly or 1463

via stalling of the replication fork [171,172]. In bacteria, 1464

co-orientation of transcription and replication has been 1465

observed for essential genes, and has been associated with 1466

a reduction in head-on collisions between DNA and RNA 1467

polymerases [173]. It is noteworthy that in human replica- 1468

tion domains such co-orientation usually occurs in widely- 1469

expressed genes located near putative replication origins. 1470

Near domain centers, head-on collisions may occur in 50% 1471

of replication cycles, regardless of the transcription ori- 1472

entation, since there is no preferential orientation of the 1473

replication fork progression in these regions. However, in 1474

most cell types, there should be few head-on collisions due 1475

to the low density and expression breadth of the corre- 1476

sponding genes. Selective pressure to reduce head-on col- 1477

lisions may thus have contributed to the simultaneous and 1478

coordinated organization of gene orientation and expres- 1479

sion breadth along the detected replication domains [101]. 1480

Future Directions 1481

From a statistical multifractal analysis of nucleotide strand 1482

asymmetries in mammalian genomes, we have revealed 1483

the existence of jumps in the noisy skew profiles result- 1484

ing from asymmetries intrinsic to the transcription and 1485
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Fractals andWavelets, Figure 17
Analysis of the genes located in the identified replication domains [101]. a Arrows indicate the R+ orientation, i. e. the same orienta-
tion as the most frequent direction of putative replication fork progression; R� orientation (opposed direction); red, (+) genes; blue,
(�) genes. b Gene density. The density is defined as the number of 50 ends (for (+) genes) or of 30 ends (for (�) genes) in 50-kbp
adjacent windows, divided by the number of corresponding domains. In abscissa, the distance, d, in Mbp, to the closest domain
extremity. c Mean gene length. Genes are ranked by their distance, d, from the closest domain extremity, grouped by sets of 150
genes, and the mean length (kbp) is computed for each set. d Relative number of base pairs transcribed in the + direction (red),� di-
rection (blue) and non-transcribed (black) determined in 10-kbp adjacent sequence windows. eMean expression breadth using EST
data [101]

replication processes [98,100]. This discovery has led us1486

to extend our 1D WTMM methodology to an adapted1487

multi-scale pattern recognition strategy in order to de-1488

tect putative replication domains bordered by replication1489

origins [101,114]. The results reported in this manuscript1490

show that directly from the DNA sequence, we have been1491

able to reveal the existence in the human genome (and very1492

likely in all mammalian genomes), of regions bordered by1493

early replicating origins in which gene position, orienta-1494

tion and expression breadth present a high level of organi-1495

zation, possibly mediated by the chromatin structure.1496

These results open new perspectives in DNA sequence1497

analysis, chromatin modeling as well as in experiment.1498

From a bioinformatic and modeling point of view, we1499

plan to study the lexical and structural characteristics of1500

our set of putative origins. In particular we will search for1501

conserved sequence motifs in these replication initiation1502

zones. Using a sequence-dependent model of DNA-his-1503

tones interactions, we will develop physical studies of nu-1504

cleosome formation and diffusion along the DNA fiber1505

around the putative replication origins. These bioinfor-1506

matic and physical studies, performed for the first time on 1507

a large number of replication origins, should shed light on 1508

the processes at work during the recognition of the replica- 1509

tion initiation zone by the replication machinery. From an 1510

experimental point of view, our study raises new opportu- 1511

nities for future experiments. The first one concerns the 1512

experimental validation of the predicted replication ori- 1513

gins (e. g. bymolecular combing of DNAmolecules [174]), 1514

which will allow us to determine precisely the existence of 1515

replication origins in given genome regions. Large scale 1516

study of all candidate origins is in current progress in 1517

the laboratory of O. Hyrien (École Normale Supérieure, 1518

Paris). The second experimental project consists in us- 1519

ing Atomic Force Microscopy (AFM) [175] and Surface 1520

PlasmonResonanceMicroscopy (SPRM) [176] to visualize 1521

and study the structural and mechanical properties of the 1522

DNA double helix, the nucleosomal string and the 30 nm 1523

chromatin fiber around the predicted replication origins. 1524

This work is in current progress in the experimental group 1525

of F. Argoul and C. Moskalenko at the Laboratoire Joliot– 1526

Curie (ENS, Lyon) [83]. Finally the third experimental 1527
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perspective concerns in situ studies of replication origins.1528

Using fluorescence techniques (FISH chromosome paint-1529

ing [177]), we plan to study the distributions and dynam-1530

ics of origins in the cell nucleus, as well as chromosome1531

domains potentially associated with territories and their1532

possible relation to nuclear matrix attachment sites. This1533

study is likely to provide evidence of chromatin rosette1534

patterns as suggested in [146]. This study is under progress1535

in the molecular biology experimental group of F. Monge-1536

lard at the Laboratoire Joliot–Curie.1537
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