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1 Introduction

Splines are intensively used in different domains (numerical analysis, approximation theory,. . . ) It is
also well known that wavelets which are spline functions have been constructed some years ago; let us
quote the works of Chui and Wang, Mallat, Meyer ([2], [6],[7]).

In some problems of numerical analysis (see for example [3], [8]), deficient splines are prefered to
classical splines. Then a natural question arises in the context of wavelets: is it possible to construct
bases wavelets which are splines of that kind? This problem is treated in a very general aspect in the
papers [4], [5].

Here we present a constructive and direct way to obtain a mutiresolution analysis generated by
deficient splines which are piecewise polynomials of degree 5, regularity 3, and have a compact support.
Then, by a natural procedure, we obtain wavelets which are also functions of that type.

2 The results

Let us denote V0 the following set of quintic splines

V0 := {f ∈ L2(R) : f |[k,k+1] = P
(5)
k , k ∈ Z and f ∈ C3(R)}.

Looking for f ∈ V0 with support [0, 3] (smaller interval does not give anything), we are lead to a
homogenous linear system of 18 unknowns and 16 equations; this make us think that two scaling
functions will be needed to generate V0.

Proposition 2.1 A function f with support [0, 3] belongs to V0 if and only if

f(x) =





nx4 + ax5 if x ∈ [0, 1]
bx5 + cx4 + dx3 + ex2 + fx+ g if x ∈ [1, 2]
h(3 − x)4 + j(3− x)5 if x ∈ [2, 3]
0 if x < 0 or x > 3

with
n = −4

5c−
3
10d a = 7

15c+
8
45d b = −19

75c−
19
450d

e = −−18
5 c− 13

5 d f = 18
5 c+

21
10d g = −27

25c−
29
50d

h = −c− 1
3d j = 46

75c+
91
450d

Theorem 2.2 The following functions ϕa and ϕs

ϕa(x) =





x4 − 11
15x

5 if x ∈ [0, 1]
−9

8(x− 3
2) + 3(x− 3

2)
3 − 38

15(x− 3
2)

5 if x ∈ [1, 2]
−(3− x)4 + 11

15 (3− x)5 if x ∈ [2, 3]
0 if x < 0 or x > 3
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ϕs(x) =





x4 − 3
5x

5 if x ∈ [0, 1]
57
80 − 3

2(x− 3
2)

2 + (x− 3
2)

4 if x ∈ [1, 2]
(3− x)4 − 3

5(3− x)5 if x ∈ [2, 3]
0 if x < 0 or x > 3

are respectively antisymmetric and symmetric with respect to 3
2 and the family

{ϕa(.− k), k ∈ Z} ∪ {ϕs(.− k), k ∈ Z}

constitutes a Riesz basis of V0.

Here is a picture of ϕs, ϕa.

0.5 1 1.5 2 2.5 3

0.2
0.4
0.6
0.8

1

0.5 1 1.5 2 2.5 3

-0.4
-0.2

0.2
0.4

The result is obtained using Fourier techniques for the computations.
To get the Riesz condition, we first show that each of the families {ϕa(.− k), k ∈ Z} and {ϕs(.−

k), k ∈ Z} satisfies this condition. Then, using the fact that the L2(R)-norm of functions of the linear
hull of the union of the families can be written as the L2([0, 1])-norm of functions which belongs to a
linear space of finite dimension, and the fact that, separately, the families satisfies the Riesz condition,
we get the result.

To obtain that these families generate V0, we just solve the equations obtained when we write
down the problem.

Now, we construct multiresolution analysis.
For every j ∈ Z we define

Vj = {f ∈ L2(R) : f(2−j.) ∈ V0}.

Proposition 2.3 We have Vj ⊂ Vj+1 for every j and

⋂

j∈Z

Vj = {0},
⋃

j∈Z

Vj = L2(R).

Moreover, the functions ϕa, ϕs satisfy the following scaling relation




ϕ̂s(2ξ)

ϕ̂a(2ξ)


 =M0(ξ)




ϕ̂s(ξ)

ϕ̂a(ξ)




where M0(ξ) is the matrix (called filter matrix)

M0(ξ) =
e−3iξ/2

64




51 cos( ξ2) + 13 cos(3ξ2 ) −9i(sin( ξ2 ) + sin(3ξ2 ))

i(11 sin(3ξ2 ) + 21 sin( ξ2)) −7 cos(3ξ2 ) + 9 cos( ξ2 ))


 .

And finally, using standard procedure, we get wavelets. We denoteW0 the orthogonal complement
of V0 in V1.

First we define the matrix W (ξ) as follows

W (ξ) =

(
ωs(ξ) ωm(ξ)

ωm(ξ) ωa(ξ)

)
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with

ωa(ξ) =

+∞∑

l=−∞

|ϕ̂a(ξ + 2lπ)|2 =
23247 − 21362 cos ξ − 385 cos(2ξ)

311850

ωs(ξ) =

+∞∑

l=−∞

|ϕ̂s(ξ + 2lπ)|2 =
14445 + 7678 cos ξ + 53 cos(2ξ)

34650

ωm(ξ) =
+∞∑

l=−∞

ϕ̂s(ξ + 2lπ)ϕ̂a(ξ + 2lπ) = −
i

51975
sin ξ (6910 + 193 cos ξ).

Proposition 2.4 A function f belongs to W0 if and only if there exists p, q ∈ L2
loc, 2π− periodic such

that
f̂(2ξ) = p(ξ)ϕ̂s(ξ) + q(ξ)ϕ̂a(ξ)

and

M0(ξ)W (ξ)

(
p(ξ)
q(ξ)

)
+M0(ξ + π)W (ξ + π)

(
p(ξ + π)
q(ξ + π)

)
= 0 a.e.

We explicitely solved this matrix equation and find

Proposition 2.5 there exist symmetric and antisymmetric solutions with support in [0, 5].

We use the notations
ψs(2ξ) = ps(ξ)ϕ̂s(ξ) + qs(ξ)ϕ̂a(ξ)

ψa(2ξ) = pa(ξ)ϕ̂s(ξ) + qa(ξ)ϕ̂a(ξ).

We have (with natural definition of M1)

(
ψ̂s(2ξ)

ψ̂a(2ξ)

)
= M1(ξ)

(
ϕ̂s(ξ)
ϕ̂a(ξ)

)
.

Here are ψs, ψa (up to a multiplicative constant)
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Proposition 2.6 The family

{ψa(.− k) : k ∈ Z} ∪ {ψs(.− k) : k ∈ Z}

form a Riesz basis of W0.

To obtain this result, we proceed as follows, using essentially techniques of Goodman and Lee.
Define

Wψ(ξ) =

(
ωψs

(ξ) ωψs,ψa
(ξ)

ωψs,ψa
(ξ) ωψa

(ξ)

)
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where

ωψa
(ξ) =

+∞∑

l=−∞

|ψ̂a(ξ + 2lπ)|2,

ωψs
(ξ) =

+∞∑

l=−∞

|ψ̂s(ξ + 2lπ)|2,

ωψs,ψa
(ξ) =

+∞∑

l=−∞

ψ̂s(ξ + 2lπ)ψ̂a(ξ + 2lπ).

The Riesz condition is satisfied if and only if there are A,B > 0 such that

A ≤ λ1(ξ), λ2(ξ) ≤ B

where λi(ξ) are the eigenvalues of Wψ(ξ).
The functions form a basis if and only if for every ξ, the matrix

(
M0(ξ) M0(ξ + π)

M1(ξ) M1(ξ + π)

) (
W (ξ) 0

0 W (ξ + π)

)

is not singular.
The properties above are easily obtained using the three relations

W (2ξ) = M0(ξ)W (ξ)M∗

0 (ξ) +M0(ξ + π)W (ξ + π)M∗

0 (ξ + π)

0 = M1(ξ)W (ξ)M∗

0 (ξ) +M1(ξ + π)W (ξ + π)M∗

0 (ξ + π)

Wψ(2ξ) = M1(ξ)W (ξ)M1
∗(ξ) +M1(ξ + π)W (ξ + π)M1

∗(ξ + π)

which are consequences of the previous constructions and properties of multiresolution analysis and
functions in W0.

Theorem 2.7 It follows that the functions

2j/2ψs(2
jx− k), 2j/2ψa(2

jx− k) (j, k ∈ Z)

form a Riesz basis of compactly supported deficient splines of L2(R) with symmetry properties.

To conclude, let us mention a result of Gilson, Faure, Laubin ([3]) concerning an application of
splines (deficient splines) in approximation theory of singular functions.

For q ≥ 1, let SN3,q the space of classical cubic splines on the interval [0, 1] with respect to the
subdivision (j/N)q, j = 0, . . . , N .

Proposition 2.8 If [α0, α1] ⊂ R with α0 > −1/2 and q(1 + 2α0) > 8, then there exists C > 0 such
that

inf
u∈SN

3,q

‖u− xα‖L2(]0,1[) ≤
C

N4

for every N ∈ N and α ∈ [α0, α1].
There is an extension of this result to DEFICIENT SPLINES of odd degree and to Sobolev spaces.
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