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Downward flux of zooplankton faecal pellets and carcasses was studied during and after the spring
bloom in an oligotrophic coastal area of the Western Mediterranean using a ‘swimmer-excluding’
sediment trap. Zooplankton detritus retrieved in the trap were comprised of cylindrical faecal pellets
(from meso- and macrozooplankton) and copepod carcasses with a respective carbon flux of 0.05
—2.69 mg m 2 d ! and 0.42—4.37 mg m 2 d~ . Carbon and nitrogen flux of carcasses always exceeded
that of faecal pellets, except at the beginning of the bloom due to a higher contribution of macro-
zooplankton faecal material. During the peak of phytoplankton biomass, total faecal flux essentially
comprised of copepod faecal pellets (68—86% of the total faecal carbon), whereas before and after this
period, macrozooplankton faecal material dominated (88—91% of total faecal carbon flux). Copepod
faecal flux was positively correlated with phytoplankton biomass. Estimates of non-predatory biomass
mortality rates (from <0.01 to 0.05 d~!) were negatively correlated with chl a with a time lag of 12 days
and were lower than predatory mortality values reported in the same area. The paper discusses the
relative importance of carcasses versus faecal pellet flux and of non-predatory versus predatory
mortality, as well as the potential role of these zooplankton detritus in supporting the production of
benthos in oligotrophic areas.
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1. Introduction

Particulate organic matter downward flux in the ocean is mainly
channelled through the sinking of faecal pellets, marine snow and
phytoplankton, whereas zooplankton carcasses (i.e. dead animals)
are generally considered as being a less important contributor to
this downward flux (Turner, 2002). However, as Roman et al. (2002)
emphasised, mortality and the resulting carcass flux is an “added
source of export that can be important in balancing food-web
carbon models; in explaining the discrepancies between estimates
of new production and export flux and in linking studies of new and
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total primary production to fisheries”. Recent studies concerning
carcass flux above 100 m depth, indicate that it may constitute
a large fraction (up to ~40%) of the total particulate organic carbon
flux (Sampei et al., 2009; Frangoulis et al., 2010b).

Both mortality and the carcass flux are difficult to measure in the
field. Mortality in general is difficult to estimate in the field as it
requires following populations or individual animals over time and
the estimation of apparent loss through passive advective processes
(Ohman et al., 2004). In addition, most mortality rate measurements
(field and lab) concern stage-specific mortality rates of a given
species that cannot be easily extrapolated to the whole zooplankton
population. Few studies exist concerning values of zooplankton
biomass mortality rates (mass of dead organisms over the mass of
whole stock, per unit time) although such values are widely used in
biogeochemical models (e.g. Frangoulis et al., 2010a).

The passive downward flux of carcasses resulting from the non-
predatory component of mortality (i.e. those associated with star-
vation, senescence or disease) is also difficult to measure in the field
and there are few studies measuring it accurately (review by
Buesseler et al., 2007). In fact, despite the fact that zooplankton
animals collected in sediment traps often constitute a large part of
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the collected material, especially in shallow traps (within top
200 m), carcasses are hard to distinguish from live zooplankton
(swimmers) caught accidentally (review by Buesseler et al., 2007).

Among the few accurate measurements of carcass flux, there is
almost no direct quantitative comparison with the faecal flux. In the
Mediterranean open sea, one model (Andersen and Nival, 1988) and
one experimental study (Frangoulis et al., 2010b) found carcass and
faecal flux to be of the same order of magnitude. However, the
model study, estimating these two fluxes at 200 m in the NW
Mediterranean, lacked field flux data for validation (Andersen and
Nival, 1988) whereas the experimental study, using drifting sedi-
ment traps deployed at 16 m depth in the NE Mediterranean, had
a short time scale (days), prevented conclusions regarding the
relative importance of these two fluxes in general (Frangoulis et al.,
2010b).

In oligotrophic coastal areas, considering the high nutrient
demand of benthic primary producers, zooplanktonic downward
flux (faecal pellets and carcasses) could be an important source of
nutrients (particularly N and P) for phytobenthos. In the Mediter-
ranean Sea for example, shallow benthic areas (0—40 m depth) are
colonised by very productive benthic primary producers, contrib-
uting significantly to the nutrient and carbon fluxes in the system
(Lepoint et al., 2004; Barron et al., 2006). The seagrass Posidonia
oceanica, the main benthic primary producer in many Mediterra-
nean areas, is known to be effective at trapping suspended partic-
ulate matter (Gacia and Duarte, 2001). Enhanced trapping of
sestonic particles by seagrass canopies can be an efficient nutrient
acquisition in the oligotrophic environments that seagrasses
inhabit (Barron et al., 2006). Moreover, bentho-pelagic coupling is
significant through the filtering action of its associated epiphytic
fauna (Lemmens et al., 1996) and planktonic fish are known to
channel pelagic nutrients to the benthic system via faecal pellets
and excreta when they rest among the substrate during the night
(Pinnegar and Polunin, 2006).

The first aim of the present study was to examine, in the upper
water column of an oligotrophic area, during and after the phyto-
plankton spring bloom, whether the downward flux of zooplankton
carcasses is as important as the one of zooplankton faecal pellets.

The second aim was to compare non-predatory versus predatory
biomass mortality rate. Finally, using published N uptake data in
the same area (Lepoint et al., 2002, 2004), to estimate if these fluxes
could support the production in the Posidonia ecosystem (the main
benthic primary producer of the study area).

2. Material and methods

In the Bay of Calvi (Fig. 1), chlorophyll a (chl a) and meso-
zooplankton biomass were analysed from February to mid-April
and in early-June 2000. For chl a analysis, every 1—3 days, 1.0 L of
subsurface water (~2 m) taken close to the STARESO station (Fig. 1)
was prefiltered through a 200 wm mesh screen, then filtered
through GFJF filters. Filters were stored at —20 °C until pigments
were extracted in methanol, and analysed using the method of
Williams and Claustre (1991). For mesozooplankton biomass
analysis, vertical net hauls were made in the whole water column
above the location (8°45’E, 42°35’N) (Fig. 1) of the sediment trap
(described below), every 2—7 days (except in early-April), using
a 200 um mesh-size WP2 net. A known fraction, briefly rinsed with
distilled water, oven-dried at 60 °C (48 h), weighed for dry weight
(DW) determination and its C, N content analysed using a Carlo-
—Erba analyser (NA 1500).

For sinking speed measurement of faecal pellets and carcasses,
additional vertical net hauls were made to collect animals. To
collect faecal pellets, just after the net haul, the captured animals
were placed inside a hollow cylinder with a 100 pm mesh-size net
on the bottom and the cylinder was placed inside a bucket. After
3 h pellets were concentrated by ladling water from within the
bucket using a smaller cylinder with a 20 um mesh-size net at
the bottom. Then pellets were collected using a 20 pm mesh
and preserved at 4 °C for maximum 24 h. Fresh carcasses were
obtained by placing live animals in a freezer (—20 °C) for more
than 1 h. The sinking speed of faecal pellets was measured as
detailed in Frangoulis et al. (2001). For copepod carcasses, one
carcass at a time was released under the water surface of a glass
burette filled with (GF/F) filtered seawater. Carcasses and intact
pellets were counted and measured (length and width). Estimates
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Fig. 1. Sampling locations in the Bay of Calvi. Seawater samples were taken close to the STARESO station (S). The position of WP2 net vertical hauls and sediment trap is indicated

with a black spot.
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of faecal pellet density were obtained, from faecal pellet length,
width and sinking speed measurements, based on the relationship
of Komar et al. (1981).

A sediment trap was fixed on the sea floor at ~38 m in the Bay
of Calvi (Fig. 1). It was deployed during February, March, and early-
June 2000 with sampling periods lasting 6 days (except one lasting
17 days). CTD casts were performed every 7—14 days in the water
column above the trap. The trap was cylindrical and had an aspect
ratio of ~5 with an inner diameter of 25 cm. The trap entrance was
~2 m above the sea floor and covered with a net (~2 cm mesh-
size) to avoid the penetration by very large detritus and animals.
Samples were collected manually by a scuba diver. To reduce the
‘swimmer’ effect, the lower part of the trap, included a series of 3
steep glass funnels ending to a collection flask, based on a Coale
device (Coale, 1990). The flask was filled with a solution of ~2%
formalin in filtered (GF/F) seawater with a ca 5 salinity increase by
addition of NaCl (Lee et al.,, 1992). Hydrodynamic biases were
considered small since the trap had an aspect ratio >5, horizontal
advection is generally low in the area (e.g. Skliris et al., 2001) and
during the sediment trap deployment period Doppler current
profile measurements close to the trap indicated very low current
velocities (average ~3 cm s~!) (Fig. 2).

Trap samples were divided into two fractions. The first one was
dried at 60 °C for 24 h and weighed to determine the dry weight.
Then it was finely ground and the carbon and nitrogen composition
was measured using a Carlo-Erba analyser (NA 1500). The second
fraction was placed in 4% formalin. The number of carcasses and
faecal pellets in this fraction was counted, and the size (length
and width) of carcasses (cephalothorax) and faecal pellets was
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measured under an inverted microscope. Based on maximum
mesozooplankton pellet size values reported in the area (Frangoulis
and Hecq, 2010), pellets up to 450 pm long were assumed to
originate from mesozooplankton and above that from macro-
zooplankton. Since the sediment trap reduced the swimmer effect
(but may not have excluded it completely), the carcasses trapped
were also identified based on carcass characteristics (Weikert,
1977). Faecal pellet volume was converted to an amount of C or N
using mean zooplankton faecal pellet density (estimated as
described above), and from Western Mediterranean literature
values of pellet DW to wet weight ratio (Elder and Fowler, 1977) and
carbon or nitrogen content per pellet DW (Marty et al., 1994).
Carcasses size measurements were converted to C and N, based on
Alcaraz et al. (2003).

Non-predatory biomass mortality rate (M) of mesozooplankton
was estimated based on the method of Gries and Giide (1999)
which calculates the sedimentation losses using the downward
flux (VF) of carcasses (measured by the sediment trap) and the
mesozooplankton biomass (AB) integrated above the trap and over
the time interval (t) of the sediment trap sampling (M(t) = VF/AB).
To compensate for the uneven sampling interval, linear interpola-
tion was used (i.e. the sample interval was used as a weight variable
in the average biomass calculation).

The correlations of downward fluxes and mortality rate with
phyto- or mesozooplankton biomass above the trap were exam-
ined. The data were checked and transformed in order to verify the
assumptions of normality and homogeneity. As these assumptions
were not respected, the non-parametric Spearman rank correlation
coefficient was used.
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Fig. 2. Seasonal variations of a) mesozooplankton biomass above the sediment trap b) horizontal current speed (at 38 m) c) chl a concentration d) total carbon flux in the trap.

Shadowed areas indicated the periods when the sediment trap was deployed.
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3. Results and discussion
3.1. Copepod carcasses versus faecal pellets downward export

Concerning carbon export from zooplankton particulate prod-
ucts on a global scale, it is usually faecal pellets, especially those of
macrozooplankton, that are considered the most important in
terms of downward carbon flux. Zooplankton carcasses are gener-
ally considered as being less important in comparison with faecal
pellets with regard to the passive downward transport of matter, as
most carcasses originating from the upper layer of the water
column decompose faster than faecal pellets (review by Frangoulis
et al.,, 2005). Therefore scientific attention has generally focused on
zooplankton faecal pellets rather than other zooplankton particu-
late products.

Mesozooplankton mortality as an export flux from the water
column is generally not taken into consideration (Roman et al.,
2002), despite the numerous studies on carcasses abundance
relative to live copepods (e.g. Tang et al., 2006 and references
therein), as well as the high abundances of copepod carcasses
observed to accumulate near bottom topographic structures (Genin
et al, 1995; Haury et al.,, 2000) and in traps placed in the upper
200 m layer (Miquel et al., 1994; Gacia et al., 2002; Pantoja et al.,
2004). In addition most of these flux studies did not examine the
contribution of both carcasses and faecal pellets or did not use
swimmer excluding traps in order to distinguish carcasses per se
(dead animals) from “swimmers” (e.g. Miquel et al., 1994; Romero
et al., 2000).

In the present study, the relative importance of the downward
flux of zooplankton faecal pellets versus the one of carcasses during
the spring bloom in the oligotrophic Bay of Calvi is examined. During
the present study period phytoplankton biomass (chl a) varied from
0.02 to 0.58 mg m > and mesozooplankton biomass varied from 0.75
to 36.17 mg DW m 3 (Fig. 2). The phytoplankton spring bloom is not
always strong in this area (i.e. increase may be only up to 0.4 pg L1
chl a), but is distinguishable as chl a shows higher values (i.e.
>0.2 pg L™Y) in early spring than during the rest of the year
(Velimirov and Walenta-Simon, 1992; Goffart et al., 2002).

During the present study, at the depth of 36 m, the total faecal
pellet carbon and nitrogen downward flux varied respectively from
0.05 to 2.69 mg C m2 d~! and from 0.01 to 0.38 mg N m~2 d~!
(Fig. 3). All carcasses found in the sediment trap were from cope-
pods and their carbon and nitrogen vertical flux varied respectively
from 0.42 to 4.37 mg C m~2d~! and from 0.08 to 1.07mgNm 2d !
(Fig. 3), with minima in mid-February and maxima between
end-February and mid-March. As material losses occur due to
degradation before pellets and carcasses arrive into the trap, these
estimations of downward flux overestimate the amount of C and N,
since they are based on the C and N content of theoretically “fresh”
faecal pellets and carcasses (respectively Marty et al., 1994; Alcaraz
et al.,, 2003). These studies (Marty et al., 1994; Alcaraz et al., 2003)
were chosen due to their proximity to the present study area;
however, they do not exactly represent a fresh faecal pellet and
carcass. Alcaraz et al. (2003) collected animals using a net tow and
apparently did not remove dead animals before C, N analysis, which
always constitute an important fraction of such a sample (Elliot and
Tang, 2009 and references therein). Similarly, Marty et al. (1994)
collected the pellets overnight (maximum 8 h) thus some losses
before C measurement had occurred. The measured sinking speed
and temperature as well as literature degradation rates were used
to evaluate the C losses of faecal pellets and carcasses before
arriving in the trap. The measured sinking speed of faecal pellets
(14-57 m d~!, mean 35 m d~') and of copepod carcasses
(17—324 m d~!, mean 107 m d~!), indicated that a fresh carcass
needs <8 h to reach the trap and a fresh faecal pellet <1 day. The

measured mean temperature of the water column (0—36 m) varied
from 12.98 to 14.20 °C during the spring bloom (February—April)
and from 17.21 to 18.90 °C in early-June. Considering the possible
overestimation of the C content of “fresh” carcasses and pellets,
their sinking speed and the literature C degradation rates for both
carcasses and faecal pellets at the closest temperature conditions
(equation 1 of Lee and Fisher, 1994 at 18 °C), it can be estimated that
>80% of the initial carcass carbon and >50% of the initial faecal
carbon reaches the depth of 36 m during the study period.
However, it is important to say that in June, when mean water
column temperature increases, higher C losses for carcasses could
occur within 8 h as reported in terms of carcass DW (up to 50% of
carcass DW, Elliot et al., 2010) or proteins (at 20 °C 70%, Bickel and
Tang, 2010).

The measured carcass carbon flux exceeded, for most of the
time, the faecal pellet carbon flux (faecal/carcass flux ratio <1). A
model study in the same region (Andersen and Nival, 1988) esti-
mated that at 200 m these two fluxes are of the same order of
magnitude (i.e. faecal/carcass flux ratio ~1). The conceptual
diagram presented in Fig. 4, illustrates the variability of the relative
importance of faecal pellets versus carcasses passive (i.e. not due to
migration) flux over depth and over time, in a stable water column
and assuming faecal pellet and carcasses production is decreasing
with depth. In this figure, the results of the present study and these
of Andersen and Nival (1988) are presented as examples of the flux
at two depths in a simplified (unimodal) way. The increase of the
faecal/carcass flux ratio with depth can be explained by the
different sinking speeds and degradation times of carcasses and
faecal pellets. Although the degradation rate is faster for carcasses
than faecal pellets (Lee and Fisher, 1994; Urban-Rich, 1999), the
opposite occurs for sinking speed. The present study was carried
out at a depth where carcasses, due to their higher sinking speed,
can arrive faster than pellets before being notably degraded.

The total faecal pellet numerical downward flux varied from
1.2 x 10° to 49.7 x 10> pellets m—2 d~! (Fig. 3). Mesozooplankton
faecal pellets constituted the majority of the faecal pellet numeri-
cally (75—95%) and as carbon and nitrogen flux (68—86%) from
mid-February to end-March. By contrast, in early-February and in
June (Fig. 3), the dominant faecal pellet numerically (50—60%) as
well as carbon and nitrogen flux (88—91%) was from macro-
zooplankton. The absolute values of faecal pellet flux of the present
study are close to the ones found in the open Ligurian Sea (Medi-
terranean Sea) (Miquel et al., 1994, 1995; Carroll et al., 1998). In
addition, the present study indicated an increase of faecal flux
values from mid-February to end-March, compared to June, and
a positive relationship of the numerical downward flux of meso-
zooplankton faecal pellets with chl a (> = 0.78, P < 0.01), which
supports the assumption that the faecal pellet downward flux in
this period, corresponds either partially or totally, to the spring
‘bloom’ of faecal matter downward flux described by other studies
in the open Ligurian Sea (January—March in Buat-Ménard et al.,
1989; January—April in Fowler et al.,, 1991; February in Miquel
et al., 1994; April-May in Carroll et al., 1998). The main difference
between the present study with the open Ligurian Sea is that faecal
pellets constitute a much lower percentage of the total carbon flux
(<6%) than in the open sea (>20%) (Miquel et al., 1994, 1995; Carroll
et al., 1998). This could be due to two reasons (in addition to the
different trap deployment depth). First in the present study, only
cylindrical pellets were found (their length varying from 25 to
2940 pm) that could be attributed to copepods and probably
euphausiids, whereas in the open Ligurian Sea, cylindrical pellets
constituted only part of the faecal flux (e.g. maximum 40% in Miquel
et al,, 1994), meaning that other organisms’ pellets contributed too
to the faecal flux. Secondly, our sediment trap was deployed in
a coastal area and the total downward flux of carbon at 36 m varied
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Fig. 3. Seasonal variation of the numerical, carbon and nitrogen downward flux of zooplankton faecal pellets (a, c, e respectively) and carcasses (b, d, f respectively). f.p.: faecal

pellet.

between 29 and 1195 mg C m~2 d~! (Fig. 2). In such coastal areas
values of total organic carbon (30—5200 mg C m~2 d~!) are an order
of magnitude higher (e.g. in the same trap location: Dauby et al.,
1995; in the north-east Spain: Gacia et al., 2002) than in the open
Ligurian Sea (2—50 mg C m~2 d~') (Miquel et al., 1994, 1995; Carroll
et al., 1998).

The numerical downward flux of the carcasses varied from 260
to 2360 carcasses m—2 d~! (Fig. 3) and was in the same range as at

15 m depth in a shallow oligotrophic coastal area of the Western
Mediterranean (North-eastern Spain; ~500 to 2500 carcasses
m~2 d~'; Gacia et al., 2002).

3.2. Non-predatory and predatory biomass mortality rate

Mesozooplankton depth-mean non-predatory biomass mortality
rate varied between <0.01 and 0.05 d~! (Fig. 5). The range of
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Fig. 4. Conceptual diagram illustrating the variability of the relative importance of faecal pellets and carcasses fluxes with depth and with time (during and after a bloom period) in
a stable water column. Faecal pellet and carcasses production is assumed decreasing with depth. The two depth examples are based on a simplification of a) the present study

results at 36 m and of b) Andersen and Nival (1988) results at 200 m.

non-predatory mortality found in the present study is close to
the range of literature studies on zooplankton biomass mortality
rate (Table 1). Most existing mortality rate data are stage-specific
mortality rates of given species which may give patterns of what
biomass mortality looks like in copepods globally (Hirst and Kigrboe,
2002), but cannot be easily extrapolated to a local zooplankton
population.

The present mortality rate range is also very similar to the values
used in modelling studies of the Ligurian Sea ecosystem, which
vary between 0.02 and 0.05 day~!, and are based on model cali-
bration (i.e. not measurements) (Andersen and Nival, 1988;
Andersen et al., 1988; Lacroix and Nival, 1998). These model
studies expressed mortality rate as depending on food availability
(phytoplankton biomass). In the present study, during February and
March a significant negative correlation of mortality rate with chl
a (r* = 0.77, P < 0.05) was found when data were integrated in
equal time steps (6 days) and a time lag of 12 days was applied. This
time lag ( ~ 10 days) was reproduced in the model of Andersen and
Nival (1998). The relationship of food amount (chl a) with non-
predatory mortality rate supports the need to consider food limi-
tation as a key component of the mortality function in models
(review by Carlotti et al., 2000) in order to better reproduce
mortality fluxes. The time lag of the relationship mortality-chl
a indicates no immediate effect of food limitation to biomass
mortality rate. One reason for this lag could be a negative effect of
food limitation on copepod egg production and/or on hatching rate,
that may cause an increase of non-predatory biomass mortality
(Kierboe and Nielsen, 1994). There are also many other potential
reasons for this time lag, because biomass mortality is the output of
the interactions within a mixed population (e.g. mortalities of
several species, stages and sexes) (reviews by: Ohman and Wood,
1995; Aksnes, 1996; Gries and Giide, 1999).

Predatory mortality in the Bay of Calvi is mainly due to plank-
tivorous fishes which represent ~32% of the total fish biomass, of

which the planktivorous damselfish Chromis chromis makes up the
larger part (Pinnegar and Polunin, 2006). In fact, macrozooplankton
predators of mesozooplankton (chaetognaths) are scarce or appear
sporadically (cnidarians, ctenophores) (Dauby, 1985). C. chromis
feeding rates in the same area during the spring bloom period,
suggest a consumption of copepods of 42.1 mg C fish™! d~! or
9.7 mg N fish~! d~! (Pinnegar et al., 2007). Based on this, the mean
predatory mortality rate of mesozooplankton is estimated to be
close to 0.2 d~, using the present depth-integrated spring mean
values of mesozooplankton biomass and assuming a density of 1
fish.m 2 (Spyker and van den Berghe, 1995) for the Bay of Calvi.
Over the coastal rocky littoral predatory mortality rate could be
higher as densities of planktonic fish may reach 4.6 ind.m™2
(Pinnegar, 2000). Therefore, zooplankton predatory mortality los-
ses appear to be an order of magnitude higher than non-predatory
losses during spring in the Bay of Calvi.
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Fig. 5. Seasonal variation of mesozooplankton non-predatory biomass mortality rate
in the Bay of Calvi.



462 C. Frangoulis et al. / Estuarine, Coastal and Shelf Science 92 (2011) 456—463

Table 1
Mesozooplankton non-predatory biomass mortality rate studies (methodology and values).
Method Mortality rate (d~1) Area Reference
Changes of copepod biomass and specific growth rates 0.03-0.15 Coastal, Southern Kattegat, Denmark Kigrboe and Nielsen,
over time 1994
Changes of copepod abundance and carcass flux <0.01-0.12 Lake Constance, Germany Gries and Giide, 1999
over time
Changes of biomass and growth rate over time 0.06—0.08° Open ocean, HOT and BATS station Roman et al., 2002
Time series of size-weight structure analysis 0.03—0.05 Fjord, Sorfjorden, Northern Norway Edvardsen et al., 2002
Fraction of dead biomass and carcasses degradation 0.12 Coastal, Chesapeake Bay, USA Tang et al., 2006
rate
Changes of biomass and carcass flux over time <0.01-0.05 Coastal, Bay of Calvi, NW Mediterranean Present study

2 Approximate values based on figures 1 and 4 from Roman et al. (2002).

3.3. Potential importance for benthos

Zooplankton mortality may also constitute an important
nutrient vector linking the pelagic and benthic ecosystems, often
more important than faecal pellets. It is estimated above that, at
least during the bloom period when temperature reaches the
minimum values in our study area, >80% of the initial carcass
carbon and >50% of the initial faecal carbon reaches the depth of
36 m, but afterwards carcasses liberate carbon to the dissolved pool
faster than pellets as the former degrade faster. Assuming a similar
situation for the nitrogen liberated to the benthos dissolved pool,
this nitrogen is thus available for benthic primary producers,
especially those living at great depths. At shallow depths (10 m) the
nitrogen (NH4 and NOs3) uptake flux of Posidonia oceanica leaves
(8.9 mg N m~2 d~!; Lepoint et al., 2004) is such that the potential
contribution of copepod faecal pellets and carcasses is <12% from
February to June. However, nitrogen uptake flux by P. oceanica at
the trap depth (36 m) is estimated to be 0.5 mg N m~2d~! based on
measured uptake rates (Lepoint et al., 2002) and biomass (Gobert
et al,, 2003). In this case the potential contribution from copepod
faecal pellets and carcasses could be from 50% to >100% during the
bloom period, although this is probably an overestimation, because
other benthic primary producers co-exist with P. oceanica (e.g. their
epiphytes) and may uptake nutrients and, of course, because
benthic heterotrophs (bacteria, infauna and epiphytic suspended
feeders) may use this material directly. Nevertheless, zooplankton
carcasses and faecal pellets undoubtedly contribute to the func-
tioning of benthic ecosystems. As discussed previously, the amount
of nitrogen arriving to that depth in the form of carcasses is usually
higher than that of pellets and in addition is liberated more rapidly
to the dissolved pool. Therefore mesozooplankton carcasses appear
to be a more important and rapid contributor to the dissolved pool
(except at the early bloom when macrozooplankton pellets have
a more important contribution). There is also a second significant
indirect nutrient contribution of zooplankton carcasses to the
benthos in the area through planktivorous fish faeces consisting
primarily of densely packed copepod carcasses (Pinnegar and
Polunin, 2006) laid into fish resting shelters during the night,
which are usually consumed by benthic scavengers such as
shrimps, crabs and small fish. Similarly, zooplankton detritus
deposited on the bottom is also a potential food source for detri-
tivorous benthic organisms (Yamaguchi et al., 2002).

4. Conclusions

The carcasses C and N flux in the upper column can be more
important than that of faecal pellets, not only as a C and N export but
also as an amount of nitrogen liberated to the water column. Here we
estimated that >80% of carcasses and >50% of faecal pellets material
reached 36 m depth during the bloom period, suggesting a signifi-
cant element of the bentho-pelagic coupling in an oligotrophic

coastal area. There are few studies dealing with faecal pellet and
carcasses (rate, flux, degradation, sinking etc) simultaneously to
allow deriving conclusions in a wider context. However, as in general
copepod weight-specific faecal pellet production and non-preda-
tory mortality rates have similar range of values, with carcass
sinking speed being higher and degradation lower than the one of
faecal pellets (Frangoulis et al., 2005 and references therein), it is
likely that the conceptual model (Fig. 4) applies in many other areas.
Therefore zooplankton mortality as an export flux from the water
column should be taken into consideration together with faecal
pellets at least in the upper water column.

The present study also demonstrates the importance of swimmer
excluding shallow traps for measurement of carcass fluxes and also
for estimation of non-predatory biomass mortality rates. Non-
predatory biomass mortality rate was related to phytoplankton
biomass (chl a) indicating the need to consider food limitation into
biogeochemical ecosystem model parameterisation.

Further mortality studies are necessary to evaluate the impor-
tance of mortality fluxes in biogeochemical cycles in other areas. Such
studies are also necessary to explain biomass mortality link with
environmental conditions. An hypothesis to examine is whether
enclosed areas susceptible to eutrophication (e.g. Southern Kattegat,
Lake Constance) reach higher values of mortality rates than open
areas (HOT, BATS, Bay of Calvi) (Table 1).
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