Théme 5 (Rupture et fatigue des matériaux)

Calculs d’endurance par similitude
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Introduction

La difficulté essentielle des calculs de fatigue réside dans
le fait que I’endurance des piéces entaillées ne dépend pas
que du matériau, mais également de I’échelle. Il est vrai que
des modéles théoriques existent de longue date, mais ils
sont limités a des géométries dont on connait a la fois le
coefficient de concentration de contraintes et le gradient.
Or, il existe un certain nombre de situations ou ces deux
paramétres sont inconnus, le cas le plus évident étant celui
de I’assemblage par frettage. C’est ce que nous appellerons
des entailles non calculables. L’objet de la présente
communication est de présenter une méthode de similitude
permettant une évaluation fiable du comportement de ces
entailles, a partir de données expérimentales partielles. La
comparaison des résultats de cette méthode avec les
résultats de la littérature montre un bon agrément entre la
présente approche et I’expérience.

La méthode du gradient

Nous nous appuierons sur la méthode du gradient, telle
qu’elle a été développée en Allemagne par Siebel [1] et
Petersen [2]. L’idée fondamentale de cette méthode est que
la limite d’endurance, exprimée en termes de la contrainte
maximale, est une fonction du gradient relatif
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d étant le diamétre, et R, le rayon & fond d’entaille. B, a

pour valeur 0 en extension et 2 en flexion et torsion. Quant
a B,, en extension et flexion, il vaut, selon Schijve [3]
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contrainte, mais il est d’usage de le prendre égal a 2, ce qui
va dans le sens de la sécurité ; en torsion, on lui donne
généralement la valeur 1. La contrainte locale d’endurance
est alors de la forme
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ol op est la limite d’endurance du matériau en extension

et 4, une constante du matériau. La contrainte nominale
d’endurance est alors
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La valeur de 4 varie quelque peu selon les auteurs, mais

dans chaque cas, on constate que cette valeur est

approximativement identique pour tous les aciers. Du reste,
une étude de la compatibilité de ce modele avec la
mécanique de la rupture [3] nous a permis de confirmer la
quasi-unicité de la valeur de 4 pour les aciers. Enfin, la
comparaison des résultats de ce modéle avec 292 cas
expérimentaux donnés par Heywood [5] a conduit & un bon
agrément.

Malheureusement, cette méthode souffre d’une sévére
limitation : pour pouvoir I"utiliser, il faut pouvoir chiffrer a
la fois K, et y, ce qui, comme nous allons le voir, est loin
d’étre toujours le cas.

Entailles non calculables

Il'y a en effet un grand nombre d’entailles de la pratique qui
ne peuvent étre calculées par le schéma précédent du fait de
I’impossibilité de calculer directement soit le coefficient de
concentration de contrainte, soit le gradient, soit les deux.
Parmi celles-ci, il faut classer

e Les entailles vives (R =0), pour lesquelles K, et y

tendent vers I’infini. 1l est cependant bien connu
des praticiens que ce genre d’entailles conduit a
une endurance non nulle, méme si elle est faible.

e Une série d’entailles pour lesquelles les données
sont insuffisantes, ou dont le rayon a fond
d’entaille est mal défini. Parmi celles-ci, on trouve
les rainures de clavettes, les cannelures, les
filetages sur arbre, etc.

e Les assemblages frettés, dans lesquels I’état de
contrainte est complexe et n’est nullement régi par
un quelconque rayon.

Ces entailles, que nous appellerons non calculables, sont
malheureusement parmi les plus courantes. Elles ne
peuvent étre traitées qu’a partir de I’expérience, et c’est la
que se trouve la difficulté, car les résultats expérimentaux
répertoriés dans la littérature sont extrémement peu
nombreux et se limitent le plus souvent a un seul diametre,
ce qui rend les résultats peu exploitables, en raison de
I’effet d’échelle qui peut étre zrés marqué.

En s’inspirant des méthodes classiques de la mécanique des
fluides, on peut se demander s’il n’est pas possible de
travailler par similitude, de maniére a permettre I’extra-
polation de résultats sur modeles aux pieces réelles. En
effet, on peut considérer qu’une famille donnée d’entailles
conserve a peu pres ses proportions indépendamment de la
taille de la piece. Ainsi, une rainure de clavette est, a peu de
chose prés, proportionnée au diamétre de I’arbre.
Considérons donc une famille de piéces géométriquement
semblables. Cette famille peut étre caractérisée par une
valeur identique des deux nombres sans dimension
suivants :

e Le coefficient de concentration de contrainte XK.

e Le nombre de gradient G=./xd , ou d est une
dimension caractéristique de la piéce.



Définissons alors le facteur d’affaiblissement

y =24 () (en torsion, y = 222N ()3 ) (5)
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Il découle de la méthode du gradient que
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ou C; et C, sont deux nombres caractéristiques de la
famille, et ou I’on voit apparaitre un nouveau nombre sans
dimension

A

,
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qui rend compte du matériau par 4 et op, et de la taille de
la piece a travers la dimension caractéristique d.
Physiquement, C; est le facteur d’affaiblissement
correspondant & une dureté infinie ou une dimension
infinie ; c’est la plus petite valeur possible de y. Quant au
nombre C,, il est responsable de I’effet d’échelle et de la
dépendance vis-a-vis du matériau. Plus ce nombre est
grand, plus marqué est I’effet d’échelle, qui apparait ici
comme un bonus de résistance pour les petites tailles.

Dans le cas courant des aciers, nous avons vu que la
grandeur A est approximativement constante, ce qui permet
d’introduire une nouvelle constante C;=C,4 qui a la

dimension d’un facteur d’intensité de contrainte
(MPa~ mm) et raméne I’équation (6) a la forme plus simple
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Entailles vives

Les entailles vives sont caractérisées par la nullité du rayon
a fond d’entaille. Dans ce cas, K, -, G — 0, mais
généralement, G/K, a une valeur finie. Comme, dans ce cas,
C; =0, c’est ce type d’entaille qui donne lieu au plus fort
effet d’échelle, puisque
C3 CS
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Fait important, la limite d’endurance est ici indépendante
de la dureté de ’acier.
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Figure 1 — Saignée vive en flexion [7]

Ce résultat est en bonne concordance avec la courbe publiée
par Kohler et Rognitz [7] pour une saignée vive en V a 60°

(d=10mm) pour laquelle ils donnent une endurance
différant peu de 100MPa, quel que soit I’acier (fig.1), ce

qui correspond a C; =0 et Cy =316,2MPaNmm .

Certes, les entailles vives sont un peu une vue de I’esprit,
dans la mesure ou les outils ont toujours un certain rayon de
bec, mais le calcul ci-dessus peut étre considéré comme une
approximation dans le sens de la sécurité, dans le cas ou un
seul résultat expérimental est connu.

Frettage

L’assemblage fretté est probablement le cas le plus typique
d’une entaille non calculable, puisque personne n’a jamais
donné de méthode de calcul justifiée pour ce probleme. Des
données dues a Lehr [6] indiquent un tres fort effet
d’échelle, comme le montre la figure 2 relative a des
essieux de chemin de fer en acier DIN-St50.
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Figure 2 — Essieux frettés [6]

Ces résultats conduisent aux valeurs suivantes des

constantes :
C,=02373, C, =341,4MPa/mm

D’autres valeurs de I’endurance sont données dans le
mémento Dubbel [8] pour 9 aciers différents, et un diamétre
de 40mm. L’application de notre modeéle avec les
coefficients ci-dessus donne des résultats qui en différent de
moins de 3,6 %. D’autres vérifications sur des résultats
isolés ont conduit a des différences de moins de 4%. C’est
le seul cas ou nous disposions de résultats avec des
variations du diametre et des aciers, mais il confirme
clairement notre point de vue.

Autres résultats expérimentaux

Une vaste campagne d’identification des parametres C; et
C; pour diverses géométries utiles a été menée a partir de
résultats de la littérature, le plus souvent pour un diamétre,
mais différents aciers [13]. Chaque fois que nous disposions
de plus de deux résultats expérimentaux, la corrélation
obtenue s’est trouvée exceptionnellement bonne. Les
résultats sont consignés dans le tableau 1. Dans ce dernier,
le cas de la gorge a circlips, pour lequel nous ne disposions
que d’un résultat expérimental, a été considéré comme une
entaille vive, ce qui va dans le sens de la sécurité.

Utilisation du tableau

L utilisation de ce tableau est extrémement simple. Soit par
exemple a calculer la contrainte nominale d’endurance en



torsion d’un arbre dentelé de 40mm de diamétre. L’arbre est
réalisé en acier DIN-St60, dont la limite d’endurance en
extension est de 273MPa pour une piece lisse. Le tableau 1
donne, pour ce cas,

C,=0,3638, C;=2838MPa\mm
Le coefficient d’affaiblissement est donné par

G 03638+ -2238 _ (5082

opovd 73J40

Il en découle
7,513 = yopp = 0,5282 % 273 =144, 2MPa

soit
T,p = % =83,25MPa
Cs
Tablean 1 - v=C
Whlean Y 1+ - \/E
(Cs en MPa/mm)

Entaille Ol Cg
Rainure de clavette, Bexion [10] 0,2853 | 346,5
o = 2
T— %_i'i _ bt(d;t)2
belargeur, t—profondeur
Tdem, torsion [10] 0.282¢ | 380.6

_ Md
e = p

_ omdt bd—)?
Li=5%——5—
Assemblage fretté, flesion [6,8.9) 02373 | 3414
Assemblage fretté, torsion [§] 0,4006 | 456,2
Agsemblage par boulon métrique 0,0854 | 1546
extension |10
Assemblage par boulon Withworth | 0,1202 | 2066
extension [10]
Filetage Withworth sur arbre [11]
- extension 0.1556 | 176.8
- floxdon 0.1610 | 437.3
Filetage métrique sur arbre [11]
- extension 0,1446 | 1584
- flexdon 0,1436 | 1299
Cannelures en flexion {10 04508 | 235.3
o = My/Wy

wd? .
- développante :W; = —=
- droites :W; = £ %
9/8 : strie logére
£= 6/5 série moyenne
5/4 strie lourde

Cannelures en torsion [10]
7 = gt Wy comme ci-dessus
- droites 0.2736 | 1674
- en développante 0.5578 | 1704
Gorge & circlips 19]
- floxion & 368.1
- LoTsion {0 449.7
Arbre dentelé, torsion [12] 0.3628 | 283.8
73 section brute
Saignée vive en V (607) |7 0 316.2

Conclusion

La méthode de similitude que nous proposons ici constitue
une tentative de solution rationnelle pour les entailles non
calculables qui, jusqu’ici, résistaient a toute analyse.
Fondée sur la théorie du gradient, elle permet d’obtenir des
résultats relatifs a des familles entiéres de pieces
semblables, a partir d’au moins deux résultats expéri-
mentaux relatifs soit & des tailles distinctes, soit a des aciers
différents. Les excellentes corrélations que nous avons
obtenues sont un gage du bien-fondé de la méthode.

Trés simple a utiliser, notre tableau pourrait évidemment
étre amélioré par I’addition de nouveaux résultats.
L’applicabilité a des matériaux autres que I’acier reste une
voie de recherche ouverte.
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