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Thème 5 (Rupture et fatigue des matériaux) 
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Introduction 
 
La difficulté essentielle des calculs de fatigue  réside dans 
le fait que l’endurance des pièces entaillées ne dépend pas 
que du matériau, mais également de l’échelle. Il est vrai que 
des modèles théoriques existent de longue date, mais ils 
sont limités à des géométries dont on connaît à la fois le 
coefficient de concentration de contraintes et le gradient. 
Or, il existe un certain nombre de situations où ces deux 
paramètres sont inconnus, le cas le plus évident étant celui 
de l’assemblage par frettage. C’est ce que nous appellerons 
des entailles non calculables. L’objet de la présente 
communication est de présenter une méthode de similitude 
permettant une évaluation fiable du comportement de ces 
entailles, à partir de données expérimentales partielles. La 
comparaison des résultats de cette méthode avec les 
résultats de la littérature montre un bon agrément entre la 
présente approche et l’expérience. 
 
La méthode du gradient 
 
Nous nous appuierons sur la méthode du gradient, telle 
qu’elle a été développée en Allemagne par Siebel [1] et 
Petersen [2]. L’idée fondamentale de cette méthode est que 
la limite d’endurance, exprimée en termes de la contrainte 
maximale, est une fonction du gradient relatif 
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dont la forme générale est  
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d étant le diamètre, et R, le rayon à fond d’entaille. 1B  a 
pour valeur 0 en extension et 2 en flexion et torsion. Quant 
à 2B , en extension et flexion, il vaut, selon Schijve [3] 

tK
B 122 += , tK étant le coefficient de concentration de 

contrainte, mais il est d’usage de le prendre égal à 2, ce qui 
va dans le sens de la sécurité ; en torsion, on lui donne 
généralement la valeur 1. La contrainte locale d’endurance 
est alors de la forme 
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où 0Dσ est la limite d’endurance du matériau en extension 
et A, une constante du matériau. La contrainte nominale 
d’endurance est alors  

t

D

t
nD K

A
K

χσχσ
+

=
Σ

= 0)(                      (4) 

La valeur de A varie quelque peu selon les auteurs, mais 
dans chaque cas, on constate que cette valeur est 

approximativement identique pour tous les aciers. Du reste, 
une étude de la compatibilité de ce modèle avec la 
mécanique de la rupture [3] nous a permis de confirmer la 
quasi-unicité de la valeur de A pour les aciers. Enfin, la 
comparaison des résultats de ce modèle avec 292 cas 
expérimentaux donnés par Heywood [5] a conduit à un bon 
agrément.  
Malheureusement, cette méthode souffre d’une sévère 
limitation : pour pouvoir l’utiliser, il faut pouvoir chiffrer à 
la fois Kt et χ, ce qui, comme nous allons le voir, est loin 
d’être toujours le cas. 
 
Entailles non calculables 
 
Il y a en effet un grand nombre d’entailles de la pratique qui 
ne peuvent être calculées par le schéma précédent du fait de 
l’impossibilité de calculer directement soit le coefficient de 
concentration de contrainte, soit le gradient, soit les deux. 
Parmi celles-ci, il faut classer 

• Les entailles vives )0( =R , pour lesquelles Kt et χ 
tendent vers l’infini. Il est cependant bien connu 
des praticiens que ce genre d’entailles conduit à 
une endurance non nulle, même si elle est faible. 

• Une série d’entailles pour lesquelles les données 
sont insuffisantes, ou dont le rayon à fond 
d’entaille est mal défini. Parmi celles-ci, on trouve 
les rainures de clavettes, les cannelures, les 
filetages sur arbre, etc. 

• Les assemblages frettés, dans lesquels l’état de 
contrainte est complexe et n’est nullement régi par 
un quelconque rayon.  

Ces entailles, que nous appellerons non calculables, sont 
malheureusement parmi les plus courantes. Elles ne 
peuvent être traitées qu’à partir de l’expérience, et c’est là 
que se trouve la difficulté, car les résultats expérimentaux 
répertoriés dans la littérature sont extrêmement peu 
nombreux et se limitent le plus souvent à un seul diamètre, 
ce qui rend les résultats peu exploitables, en raison de 
l’effet d’échelle qui peut être très marqué.  
En s’inspirant des méthodes classiques de la mécanique des 
fluides, on peut se demander s’il n’est pas possible de 
travailler par similitude, de manière à permettre l’extra-
polation de résultats sur modèles aux pièces réelles. En 
effet, on peut considérer qu’une famille donnée d’entailles 
conserve à peu près ses proportions indépendamment de la 
taille de la pièce. Ainsi, une rainure de clavette est, à peu de 
chose près, proportionnée au diamètre de l’arbre. 
Considérons donc une famille de pièces géométriquement 
semblables. Cette famille peut être caractérisée par une 
valeur identique des deux nombres sans dimension 
suivants : 

• Le coefficient de concentration de contrainte Kt. 
• Le nombre de gradient dG χ= , où d est une 

dimension caractéristique de la pièce.  
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Définissons alors le facteur d’affaiblissement 
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Il découle de la méthode du gradient que 
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où C1 et C2 sont deux nombres caractéristiques de la 
famille, et où l’on voit apparaître un nouveau nombre sans 
dimension 
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qui rend compte du matériau par A et σD0, et de la taille de 
la pièce à travers la dimension caractéristique d. 
Physiquement, C1 est le facteur d’affaiblissement 
correspondant à une dureté infinie ou une dimension 
infinie ; c’est la plus petite valeur possible de γ. Quant au 
nombre C2, il est responsable de l’effet d’échelle et de la 
dépendance vis-à-vis du matériau. Plus ce nombre est 
grand, plus marqué est l’effet d’échelle, qui apparaît ici 
comme un bonus de résistance pour les petites tailles.  
Dans le cas courant des aciers, nous avons vu que la 
grandeur A est approximativement constante, ce qui permet 
d’introduire une nouvelle constante ACC 23 =  qui a la 
dimension d’un facteur d’intensité de contrainte 

)( mmMPa et ramène l’équation (6) à la forme plus simple 
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Entailles vives 
 
Les entailles vives sont caractérisées par la nullité du rayon 
à fond d’entaille. Dans ce cas, ∞→∞→ GKt , , mais 
généralement, G/Kt a une valeur finie. Comme, dans ce cas, 
C1 = 0, c’est ce type d’entaille qui donne lieu au plus fort 
effet d’échelle, puisque 
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Fait important, la limite d’endurance est ici indépendante 
de la dureté de l’acier.  
 

 
Figure 1 – Saignée vive en flexion [7] 

  
Ce résultat est en bonne concordance avec la courbe publiée 
par Köhler et Rögnitz [7] pour une saignée vive en V à 60° 

(d=10mm) pour laquelle  ils   donnent   une   endurance   
différant  peu  de  100MPa, quel que soit l’acier (fig.1), ce 
qui correspond à 01 =C  et  mmMPaC 2,3163 = . 
Certes, les entailles vives sont un peu une vue de l’esprit, 
dans la mesure où les outils ont toujours un certain rayon de 
bec, mais le calcul ci-dessus peut être considéré comme une 
approximation dans le sens de la sécurité, dans le cas où un 
seul résultat expérimental est connu.    
 
Frettage 
 
L’assemblage fretté est probablement le cas le plus typique 
d’une entaille non calculable, puisque personne n’a jamais 
donné de méthode de calcul justifiée pour ce problème. Des 
données dues à Lehr [6] indiquent un très fort effet 
d’échelle, comme le montre la figure 2 relative à des 
essieux de chemin de fer en acier DIN-St50.  
 

 
Figure 2 – Essieux frettés [6] 

 
Ces résultats conduisent  aux valeurs suivantes des 
constantes : 

mmMPaCC 4,341,2373,0 31 ==  
D’autres valeurs de l’endurance sont données dans le 
mémento Dubbel [8] pour 9 aciers différents, et un diamètre 
de 40mm. L’application de notre modèle avec les 
coefficients ci-dessus donne des résultats qui en diffèrent de 
moins de 3,6 %. D’autres vérifications sur des résultats 
isolés ont conduit à des différences de moins de 4%. C’est 
le seul cas où nous disposions de résultats avec des 
variations du diamètre et des aciers, mais il confirme 
clairement notre point de vue. 
 
Autres résultats expérimentaux 
 
Une vaste campagne d’identification des paramètres C1 et 
C3  pour diverses géométries utiles a été menée à partir de 
résultats de la littérature, le plus souvent pour un diamètre, 
mais différents aciers [13]. Chaque fois que nous disposions 
de plus de deux résultats expérimentaux, la corrélation 
obtenue s’est trouvée exceptionnellement bonne. Les 
résultats sont consignés dans le tableau 1. Dans ce dernier, 
le cas de la gorge à circlips, pour lequel nous ne disposions 
que d’un résultat expérimental, a été considéré comme une 
entaille vive, ce qui va dans le sens de la sécurité. 
 
Utilisation du tableau 
 
L’utilisation de ce tableau est extrêmement simple. Soit par 
exemple à calculer la contrainte nominale d’endurance en 
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torsion d’un arbre dentelé de 40mm de diamètre. L’arbre est 
réalisé en acier DIN-St60, dont la limite d’endurance en 
extension est de 273MPa pour une pièce lisse. Le tableau 1 
donne, pour ce cas,  

mmMPaCC 8,283,3638,0 31 ==  
Le coefficient d’affaiblissement est donné par 

5282,0
40273
8,2833638,0
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Il en découle 
MPaDnD 2,1442735282,03 0 =×== γστ  

soit 

MPanD 25,83
3

2,144
==τ  

 
 

 
 

Conclusion 
 
La méthode de similitude que nous proposons ici constitue 
une tentative de solution rationnelle pour les entailles non 
calculables qui, jusqu’ici, résistaient à toute analyse. 
Fondée sur la théorie du gradient, elle permet d’obtenir des 
résultats relatifs à des familles entières de pièces 
semblables, à partir d’au moins deux résultats expéri-
mentaux relatifs soit à des tailles distinctes, soit à des aciers 
différents. Les excellentes corrélations que nous avons 
obtenues sont un gage du bien-fondé de la méthode.  
Très simple à utiliser, notre tableau pourrait évidemment 
être amélioré par l’addition de nouveaux résultats.  
L’applicabilité à des matériaux autres que l’acier reste une 
voie de recherche ouverte.    
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