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Abstract—Stiction, which results from contact between 

surfaces, is a major failure mode in micro electro-mechanical 
systems (MEMS). Indeed microscopic structures tend to adhere to 
each other when their surfaces enter into contact and when the 
restoring forces are unable to overcome the interfacial forces. 
Since incidental contacts cannot be completely excluded and since 
contacts between moving parts can be part of the normal 
operation of some types of MEMS, stiction prediction is an 
important consideration when designing micro and nano-devices. 
In this paper a micro-macro multi-scale approach is developed in 
order to predict possible stiction. At the lower scale, the unloading 
adhesive contact-distance curves of two interacting rough 
surfaces are established based on a previously presented model 
[L. Wu et al., J. Appl. Phys. 106, 113502, 2009]. In this model, dry 
conditions are assumed and only the van der Waals forces as 
adhesion source are accounted for. The resulting unloading 
adhesive contact-distance curves are dependant on the material 
and on surface properties, such as, elastic modulus, surface 
energy and on the rough surfaces topography parameters; the 
standard deviation of asperity heights and the asperities density. 
At the higher scale, a finite element analysis is considered to 
determine the residual cantilever beam configuration due to the 
adhesive forces once contact happened. Toward this end, the 
adhesive contact-distance curve computed previously is 
integrated on the surface of the finite elements as a contact law. 
Effects of design parameters can then be studied for given 
material and surface properties. 
 

Index Terms—Stiction, Micro-electro-mechanical system, 
Contact, Rough surfaces, Multi-scale  
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I. INTRODUCTION 
 ECENTLY, micro electro-mechanical systems (MEMS) 
 have drawn attention due to their miniature sizes, low 

power requirements and reduced manufacturing costs. In 
industry [1], several applications, such as accelerometers, 
digital mirror devices, pressure sensors, gyroscopes or 
resonators have been realized using MEMS technologies and 
many new applications are under development. In spite of those 
advantages, the inherent characters of MEMS, such as, the 
large surface-area to volume ratio, the relatively smoothness of 
the surfaces, the small interfacial gaps and the small restoring 
forces make them particularly vulnerable to the surface forces 
that could lead to permanent adhesion of MEMS moving parts. 
This stiction phenomenon can severely affect the reliability of 
these devices.  

The term ‘stiction’ is a combination of stick and friction and 
is now used to refer to any kind of adhesion that can occur 
between micro components. There are mainly two kinds of 
stiction in MEMS [1, 2], the ‘release stiction’ and the ‘in-use 
stiction’. Release stiction refers to the kind of stiction 
happening during the fabrication process at etching of the final 
sacrificial layer, in which the suspended structures may adhere 
to the substrate due to the tremendous capillary forces and to 
the relatively low restoring force of the structures. In-use 
stiction occurs during the normal operation of MEMS devices 
when two surfaces enter into contact and permanently adhere to 
each other. This kind of failure typically happens for devices 
involving on-and-off contact of surfaces such as scratch drive 
actuators or RF switches, but also for devices for which 
surfaces always work in contact, such as gears.  

Although release stiction can be avoided by using 
hydrophobic coating and in-use stiction risk can be reduced by 
operating the devices in dry or vacuum environment, where the 
capillary forces can be reduced to the negligible level [3, 4], 
in-use stiction cannot be completely eliminated due to the 
existence of the van der Waals forces.  

Therefore numerical models are required in order to make 
this kind of failure predictable and avoidable. In order to 
predict this failure mode, a micro-macro multi-scale model is 
developed in this paper; at the lower scale the adhesive contact 
forces of two rough surfaces are predicted, and at the higher 
scale a finite element analysis is considered, in which the 
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adhesive contact-distance curve computed at the lower scale is 
integrated on the surface of the finite elements as a contact law.  

In order to model the adhesive contact forces it has been 
revealed that in the dry environment, where the capillary forces 
can be neglected, the surface energies and the related surface 
forces (e.g. van der Waals (VDW) forces) are the key factors to 
be considered [1, 4]. It has been shown in [4] that below 30% of 
relative humidity the force due to capillary condensation is 
reduced and that the adhesion is dominated by the molecular 
van der Waals forces. However, as discussed in [4], and as it 
will be discussed in details in section III.A, the operating 
medium and the surface treatment will have effects on the van 
der Waals adhesion effect, unless experiments are performed in 
ultra-high vacuum and surfaces are previously cleaned. 

In the presence of van der Waals forces, two earlier theories 
of adhesive contact between an elastic sphere and a flat surface 
have been developed, the Johnson-Kendall-Roberts (JKR) 
model [5] and the Derjaguin-Muller-Toporov (DMT) model 
[6]. The JKR model is ideal for soft materials with a large 
contact curvature surface and a high surface energy. The DMT 
theory, in contrast, is well suited for hard materials with a 
reduced contact curvature and a low surface energy. This 
apparent contradiction between the JKR model and the DMT 
model is solved by considering a dimensionless parameter, µΤ 
(Tabor number), introduced by Tabor [7]. This parameter is 
used to characterize the ratio between the elastic deformations 
at pull-out and the interaction range of the surface forces. For 
the JKR model to be valid, µΤ should be larger than 5, while for 
the DMT model, µΤ should be lower than 0.1. Subsequently, 
Maugis, [8], provided a transition solution for intermediate 
cases between JKR and DMT regimes. In this model the 
transition between the two regimes is characterized by the 
Maugis transition parameter, λ, which involves surface and 
material properties. For completeness, note that the adhesive 
contact between a sphere and a flat surface has also been 
studied by numerical analyses [9, 10], where some solutions 
were given using curve fitting of the numerical results. 

Maugis theory, [8], is an analytical theory based on the 
Dugdale assumption of inter-atomic attractions. Within a 
critical distance two surfaces are attracted with a constant force 
per unit area. If the separation exceeds this threshold the 
adhesive traction immediately falls to zero. The induced 
discontinuity resulting from this model can lead to 
inaccuracies, [11], especially in the case of soft materials [12], 
for which the Maugis model is unable to predict pre-contact 
deformations. The use of a Lennard-Jones (LJ) potential, 
substituting the Dugdale assumption for the adhesive part in 
combination to the Hertz theory shows the apparition of 
hysteretic curves during transitions from no-contact to contact 
conditions (jump-into-contact) and from contact to no-contact 
conditions (jump-out-of-contact), [12-17]. In particular, a 
jump-in induced yield criterion was developed in [16] based on 
semi-analytical results. This criterion was exploited in [17] for 
cyclic loadings. Finally, the LJ models can be combined with 
FE methods to study elasto-plastic behaviors during contact, 
see [18] among others.  

These former theories are dealing with the problem of the 

single asperity contact. Owing to the roughness property of real 
micro surfaces, study of the adhesion problems based on rough 
surfaces is mandatory for MEMS. There are mainly two 
approaches used to characterize the surface topography and 
that have been considered in contact mechanics. The first one is 
the statistical approach introduced by Greenwood and 
Williamson (GW) [19] for which the rough surfaces are 
simulated by multi-asperities with random height distribution 
[20]. As an extension to the single asperity contact theories 
mentioned previously, this GW asperity model is widely used 
to study the adhesive contact between two rough 
micro-surfaces [21, 22]. The second approach, based on fractal 
geometry [23], captures the multi-scale nature of the surface 
topography and has been considered by Majumdar and 
Bhushan [24] to develop a fractal-based description of surfaces 
contacts.  

However, these theoretical studies are cumbersome when 
applied directly to predict the stiction in complete MEMS 
structures due to the difficulty of measuring the distance 
between asperities of two interacting surfaces. In order to 
overcome this difficulty several studies have been conducted 
for modeling stiction in MEMS by considering the so-called 
apparent adhesion energy. Tas et al. [25] investigated the 
different mechanisms that contribute to the adhesion forces, 
and considered the effects of the entire adhesive sources in this 
apparent adhesion energy. Based on the energy equilibrium of 
deformed structures they gave the critical length leading to 
in-use stiction of cantilever and double clamped beam 
structures. Boer et al. [26, 27], quantified the apparent adhesion 
energy on micro cantilever beams by measuring the deflected 
shapes of the beams and by reproducing them with the finite 
element method. In these approaches all effects, such as 
environment, roughness of surfaces and material properties are 
included in the apparent adhesion energy.  

The finite element method was also applied by Lie et al. [28], 
to analyze the effect of adhesive contact on MEMS switches. 
They assumed a constant adhesive force between the contacting 
surfaces, which is not always rigorous and has less physical 
basis. For completeness, another approach is to consider finite 
element simulations of a reduced number of interacting 
asperities combined with capillary and van der Waals forces 
interactions, [29]. 

It appears that in order to consider a proper model of 
adhesive forces for rough surfaces interactions when designing 
a deformable or moving MEMS, a multi-scale approach should 
be developed. In this study the higher scale is constituted by a 
finite element analysis of the structures entering into contact. 
The lower scale corresponds to the adhesion/contact model 
previously developed in [22] (based on Maugis and Kim 
formulations). This adhesion/contact model can directly be 
integrated on the surfaces of the finite-elements. In this work, 
the use of the Maugis-Kim formulations instead of a more 
complex LJ-based solution is justified as interest lies only in the 
unloading curves when predicting stiction. The paper also 
focuses on relatively hard materials, as polysilicon, which do 
not exhibit elasto-plastic behavior during contact interactions.  
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This multi-scale model is applied to a clamped/free beam as 
an illustration. Clamped/free beams are usually considered to 
study stiction effect, [26]. Main interest in considering such 
cantilever beams in this work is the possibility to extract the 
apparent adhesion energy from the numerical simulations and 
thus to discuss and compare our micro-macro model with 
literature. In particular it is shown that the approach allows 
considering different design parameters for given surface and 
material properties. 

The layout of the paper is as follows. In section II the theory 
of the statistical adhesive contact model for rough surfaces 
developed in [22] is reviewed. For different Maugis transition 
parameters and for different standard deviations of asperity 
heights the curves of the adhesive-contact forces against 
distances of two rough surfaces are presented as 
demonstrations. In section III, these curves are presented for 
the case of interactions between polysilicon surfaces. In 
particular three samples of polysilicon equivalent surfaces 
obtained from atomic force microscopy (AFM) measurements 
are retrieved from the literature and analyzed. Therefore, the 
adhesive contact model described in section II can be applied to 
obtain the relationship between the contact force and the 
surfaces’ distance. Based on the knowledge of these forces, the 
residual configurations of micro clamped/free beams are 
analyzed using the finite element method. This multi-scale 
approach is described in section IV for a Timoshenko finite 
element model of a beam. The adhesion contact force curves 
obtained in section II are then integrated on the beam surface 
interacting with a planar part (e.g. landing pad). In section V, 
the adhesion contact force curves obtained in section III for 
polysilicon-to-polysilicon interactions are used in the 
multi-scale model in order to predict the design parameter’s 
range of the micro-cantilevers for different surface 
topographies. As way of an example, for different surface gaps, 
the critical height to length ratio of the beam leading to stiction 
is provided. The presented model is compared, in section VI, to 
literature models and in particular the apparent adhesion 
energy, [26-27], is extracted to validate the presented method.  

II. THE ADHESIVE CONTACT BETWEEN TWO ROUGH SURFACES 
In this section, the adhesive contact theory developed in our 

previous work [22] is briefly reviewed. This model is based on 
the combination of Greenwood-Williamson model and Maugis 
transition’s theory. This developed framework is then exploited 
to derive adhesive contact vs. distance curves for different 
material and surface properties. 

A. Greenwood–Williamson Model and Adhesive Contact 
Theory 

 
 
 
 
 
 
 

Based on the research of Greenwood and O’Callaghan [20, 
30], the contact of two rough surfaces can be represented by the 
contact between an equivalent rough surface and a smooth 
plane, with negligible difference (Fig. 1). 

In Greenwood and Williamson ‘asperity-based model’ [19], 
the rough surface is described by a collection of spherical 
asperities with identical end radii, whose heights h have a 
statistical distribution. For  two initial contacting rough 
surfaces with asperity end radii R1 and R2 respectively, and 
standard deviations in asperity heights σ1 and σ2, the equivalent 
rough surface is defined by the asperities end radius 
R=R1R2/(R1+R2) and the standard deviation in asperity heights 
by σs=(σ1

2+σ2
2)1/2. Usually [19], a Gaussian distribution is used 

to describe the asperity heights distribution of the equivalent 
rough surface: 
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The Gaussian distribution (1) characterizes the probability 

density function along the vertical axis (height). Another 
function should be defined to represent the spatial horizontal 
correlation of ordinates. A widely used function, under the 
assumptions of stationary and ergodicity of the surface, is the 
exponential autocorrelation function (ACF), [1]. The ACF 
allows the determination of a characteristic length related to the 
spatial occurrence of given surface heights and thus, of the 
number of interacting asperities. In the present work the spatial 
horizontal distribution is represented by the asperity density, N, 
and the asperity tip radius R as required by Maugis theory [8]. 
These values, as well as the ACF, can be deduced from AFM 
measurements, as explained in section III.B. 

The contact force between the equivalent rough surface and 
a smooth plane can be obtained as a function of the surfaces 
distance defined as the separation between the two rough 
surfaces mean planes of asperity heights. When considering the 
equivalent rough surface, this distance, d, is defined as the 
distance from the equivalent rough surface mean plane of 
asperity heights to the smooth surface (Fig. 1). The total contact 
force FnT can be expressed as the sum of the contact forces Fni  
(i=1,2,…N) on each asperity (see Fig. 2), with  

∑
=

=
N

i
iFF

1
nnT                                 (2) 

The contact forces Fni, which include the Hertz contact 
forces due to the elastic deformations of the asperities at micro 
contacts and the adhesion forces due to van der Waals attractive 

Fig. 1. Contact of two rough surfaces and the equivalent rough surface at a 
separation distance d. 

d d

nTF  

n2F NFn  
iFn … 

1nF

Fig. 2. Schematic view of the contact forces between the equivalent 
rough surface and the smooth plane represented by the dashed line. 
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forces, can be calculated using the Maugis adhesive contact 
theory combined with Kim expansion [8, 31], as it has been 
developed in [22].  

Maugis theory [8] is an analytical model based on the 
Dugdale assumption of inter-atomic attractions. Within a 
critical value of separation z0, two surfaces are attracted with a 
constant force per unit area, σ0. If the separation, z, exceeds this 
threshold z0, the adhesive traction immediately falls to zero. In 
order to characterize the importance of the adhesive traction 
with respect to the Hertz elastic deformation pressure, Maugis 
transition parameter is defined as 
 

3/12
0
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2

RKπϖ
σλ =                                 (3) 

 
where R is the effective radius of the equivalent rough surface 
and K is the reduced elastic modulus. This reduced elastic 
modulus is defined as K=4/3·[(1-v1

2)/E1+(1-v2
2) /E2]-1, where E1, 

E2, v1 and v2 represent the Young’s modulus and Poisson’s ratio 
of the respective materials the two interacting bodies are made 
of. The adhesive energy ϖ is given by ϖ = γ1 + γ2 - γ12, where γ1 
and γ2 represent the surface energies of each interacting body 
and γ12 is the interface energy of the two materials. Under the 
Dugdale assumption the adhesive energy satisfies the relation 
ϖ= σ0z0. The value of λ defined by Eq. (3), ranges from zero to 
infinity, with the limiting case of compliant materials with large 
asperity tips radius and high adhesive energy leading to λ=∞. 
For the limiting case of rigid materials with small asperity tips 
radius and low surface adhesive energy λ=0. 

The three governing equations of Maugis theory [8] for the 
transition solution of two adhesive spheres in contact are 
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where the parameter m is equal to c/a, c being the adhesive 
interaction radius (i.e. the part of the asperity subjected to 
adhesive forces) and a being the intimate contact radius (i.e. the 
part of the asperity subjected to Hertz contact forces), see Fig. 
3(a). A, nF and ∆ are the dimensionless contact radius, load 
(positive if compressive) and approach (interference) 
respectively. They are defined as follows; 
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where the approach (interference) δ is found to be 
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Kim et al., [31], extended the Maugis-Dugdale solution to 

the non-contact regime of a = 0 and c ≠0 (see Fig. 3(b)) by the 
adjustment of Maugis governing equations (4-6), see [22] for 
details. Practically this extension has to be considered when 
λ<0.938. As a general case, the determinations of the contact 
force (8), interference (9) and contact radius (7) can be solved 
with Maugis theory and Kim extension, and, as a result, for a 
given value of λ, the dimensionless contact force nF  is 
obtained as a function of the dimensionless approach, ∆ 
(interference). 

From the definition of the distance, d, the approach 
(interference) δ, of an asperity of height, h, is equal to h-d and 
using similar normalizations as for Eqs. (8) and (9), the contact 
force per unit area, (2), between the two rough surfaces can be 
rewritten in the dimensionless way as 

    )()(n
1

nnT ∫∑
∞
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−== hdhdhFNFF
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i
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where the density of asperities N is the number of asperities per 
unit surface area. However, as some asperities located further 
than a critical approach ∆1 are not subjected to adhesive-contact 
forces, the integration interval of Eq. (11) can be reduced. It 
should be noted that due to adhesion during the unloading 
process, asperities may remain in contact even if the initial 
height of asperities is lower than the equilibrium separation. 
Moreover, due to these adhesive forces the deformed position 
may be maintained within the distance z0 in which the adhesive 
forces are still acting. Therefore, the lower limit of integration 
∆1 has a negative value in order to take into account this 
adhesion effect. For λ ≥ 0.938, ∆1 corresponds to the abrupt 
pull-out approach ∆C, defined by Kim extension theory, and for 
λ < 0.938, ∆1 equals -2/(πλ) [22].  

 

Fig. 3. Illustration of the physical parameters. (a) Contact 
radius a and adhesive contact radius c, the interference δ is a 
positive value for original Maugis theory. (b) In Kim et al. 
extension, interference δ is a negative value. 

Original profile 
of the sphere 

δ (-)

c2  
0z 0z  

nF  

(b) 

δ (+)

(a) 

Original profile 
of the sphere 

c2  

a2  

nF  

0z  



JMEMS-2010-0243  5

Removing the part of asperities on which contact forces are 
zero and using the asperity heights distribution of the 
equivalent rough surface (1), Eq. (11) can be written in terms of 
the dimensionless approach (interference) ∆ 
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where sσ equals the standard deviation of asperity heights σs 
divided by (π2ϖ2R/K2)1/3.  

It should be noted that Eq. (12) is valid only during the 
unloading part following a contact configuration. 

B. Analysis of Results and Discussion 
From Eq. (12), it can be found that the dimensionless contact 

force, nF , per unit area at a certain contact distance, d, depends 
on the Maugis transition parameter, λ, and on the rough surface 
topography parameters: the density of asperities, N, and the 
standard deviation of asperity heights, σs. In this section, Eq. 
(12) is applied in order to analyze the relation between the 
adhesive contact force and the contact distance during the 
unloading process. As a way of illustrating this process, Maugis 
transition parameter of the equivalent rough surface is 
successively set to be 0.1, 0.5 and 1.0. Fig. 4 (a)-(c) show the 
contact force vs. contact distance curves (described by Eq. 
(12)) for these three values of λ and for standard deviations of 
asperity heights, σs, equal to 0.5, 0.6, 0.7 and 1.0 nm 
respectively. 

In Fig.4, the contact force is presented in a dimensionless 
way with FnT /(NπϖR) (which equals NF /n ) and the distance 
is represented by d /σs. Positive forces represent compression 
and negative forces represent adhesion between the two 
interacting surfaces. In the curves it clearly appears that when 
the surfaces are in contact Hertz forces lead to a resulting 
positive compressive force. When the distance increases, the 
contact compressive forces are progressively released, but as 
adhesive forces are still acting, the resulting force becomes 
negative at a given distance. This corresponds to surface 
attraction. Finally if the distance keeps increasing, the adhesion 
forces are decreasing and the resulting force tends toward zero. 

From Fig. 4(a-c) it can be observed that the lower the value 
of λ of the equivalent rough surface, the lower the amplitude of 
the adhesive force. This was expected as a low value of λ 
corresponds to a low work of adhesion, ϖ, of the surfaces. 
Another result is that when λ decreases, the maximum adhesive 
force (in module) is reached for higher non-dimensional 
distances and the compressive forces are more important at low 
distance. This means that the asperities on rough surfaces with 
high λ are easier to be deformed than asperities of rough 
surfaces with low λ. The effect of the standard deviation of 
asperity heights, σs, is similar for the different values of λ; 
adhesive forces between the surfaces decrease with the increase 
of σs, as the number of asperities interacting rapidly decreases. 

 
 

 
 
   
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 All the curves presented in Fig. 4 correspond to unloading 

contact - distance curves. As generating these curves for a 
given set of parameters is time consuming, they are fitted with 
polynomial approximations before being used in finite element 
simulations. 
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Fig. 4. The normalized adhesive contact force vs. the 
normalized distance between the rough surfaces for different 
λ. 
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III. POLYSILICON TO POLYSILICON INTERACTION 
Polysilicon, which consists into an aggregate of 

mono-crystalline silicon grains, is widely used in MEMS due to 
the well-mastered deposition manufacturing process and to its 
excellent material properties (high Young modulus, good 
rupture resistance, low thermal expansion coefficient, etc)[34].  
 However, especially for polished surfaces, polysilicon to 
polysilicon interactions happening in MEMS devices can lead 
to stiction. This justifies its study in the present paper. 
Non-exhaustive typical applications are the support-spring of 
comb-drive actuators [25] (in which stiction between comb 
teeth could be induced by mechanical shocks) or the 
micro-machined flaps [35] (in which stiction could occur 
between the movable plates and substrate).  

Moreover, depending on the surface state, interaction 
between asperities can remain mainly elastic, as it will be 
shown later on, which fits the use of our Maugis-based model.  

In order to generate the curves presented in section II for this 
particular case, the material and surface properties have to be 
determined. 

A. Adhesive Parameters  
According to the descriptions of Maugis theory and Dugdale 

assumption, the adhesive energy per unit area, ϖ, is the energy 
per unit area required to separate two bodies (1 and 2), of 
perfectly flat surfaces, in contact. Based on the Lennard-Jones 
potential, the expression of adhesive energy is deduced from 
the work expended to move the two half-spaces from the 
equilibrium distance D0, to infinity [8, 33], leading to 

 

2
016 D

A
π

ϖ =                                (13) 

where A = 4επ2ρ1ρ2r0
6 is the Hamaker constant, ε is the 

potential energy between two atoms at equilibrium distance, r0 

is the (finite) distance at which the inter-particle potential is 
zero, and where ρ1 and ρ2 are the numbers of atoms per unit 
volume of the two bodies respectively. In the case of pure 
silicon to pure silicon interactions, these parameters can be 
found in the literature: ε = 3.47 × 10−19 J [36], r0 = 2.09 Å [33, 
36], and ρ1 = ρ2 =4.975 × 1028 /m3, leading to a Hamaker 
constant of A=2.83 × 10−18 J. The equilibrium distance D0, at 
which the force between two half-spaces is zero, is given by D0 
= (2/15)1/6r0 [33], leading to D0 = 1.49 Å. Using these values the 
adhesive energy (13) can be computed as ϖ  2.54 J/m2.  

The adhesive energy can also be calculated from the surface 
energy γ. If two bodies in contact are made of the same 
material, the adhesive energy is twice the surface energy γ of 
the material. Theoretically, for crystals, this energy can be 
estimated by considering cleavage in the lattice. It will depend 
on the lattice structure but also on the cleavage plane 
orientation. An experimental result of surface energy γ = 1.24 
J/m2 is given in [37] for silicon. This value agrees with 
numerically computed and experimental results found in [36, 
38], which gives values ranging from 1.14 to 1.9 J/m2 for 
different lattice planes of silicon crystal. Therefore, the 

adhesive energy, ϖ,  is chosen as  2.54 J/m2 for polysilicon 
surfaces in this work. 
 Note that the Hamaker constant considered, thus the above 
deduced surface energy, are valid for the contact of surfaces 
made of pure silicon only, meaning not contaminated by a 
medium. In wafer bonding literature, this range of values was 
reported from molecular dynamic simulations and was 
measured experimentally at room temperature in ultra-high 
vacuum environment for perfectly cleaned surfaces, [39, 40], 
where adhesion energy can reach 3.6 to 4.8 J/m2 for some 
lattice planes [40].  

In the presence of a medium, the surface can be contaminated 
by radicals (e.g. OH-) or oxides (SiO2) and the adhesive energy 
will be drastically decreased. The nature of these radicals and 
oxides depends on the manufacturing process and/or on the 
room environment. This is briefly described here below, a 
complete description can be found in [40]. The surfaces will be 
covered by an oxide terminated by silanol (SI-OH) groups, 
which are highly hydrophilic. As a result, at room temperature, 
the bonding is mainly due to OH-groups and the resulting 
adhesive energy for hydrophilic silicon surfaces have been 
measured in dry environment to be of the order of 160-320 
mJ/m2, [40] (without considering capillary forces). Upon 
thermal treatment, hydrophilic surfaces evaporate water 
molecules and the resulting siloxane (Si-O-Si) bonds result in 
an adhesion energy of about ϖ  = 2.5 J/m2 [40]. For 
completeness, if the oxide is removed by fluoride-base etching, 
e.g., the resulting hydrophobic surfaces bond at room 
temperature due to the Si-H groups exhibiting an adhesive 
energy of the order of 40-60 mJ/m2 and bond at high 
temperature as pure silicon with an adhesive energy ϖ  > 2 J/m2 
[40]. However, hydrophobic surfaces can, in some cases, be 
contaminated by hydrocarbons that may be present in air. In 
clean-room bonding processes, the contaminants may become 
nucleation sites at which interface bubbles can form [40]. 

Therefore the choice ϖ  =  2.54 J/m2 is a particular case of 
high-vacuum or high temperature bonding, while in the air a 
Hamaker constant of 1.865 10-19 J was measured [41, page 50], 
leading to an adhesion energy due to the van der Waals effect in 
the range of  ϖ  = 0.167 J/m2.  

In this paper we will consider these two last cases, 
remembering that, as capillary forces are neglected, the later 
case will be valid below 30% of relative humidity [4]. 

In the definition of the Dugdale assumption, the critical value 
of separation z0 satisfies ϖ = σ 0 z0, with σ0 the maximum 
adhesive traction resulting from the inter-atomic potential 
derivation (e.g. Lennard-Jones). Therefore, for usual potential 
descriptions [32, 33], it can be deduced that z0 ≈ 0.97×21/6×r0, 
and z0 ≈ 0.97×21/6×2.09 Å ≈ 2.28 Å for silicon to silicon 
contact. 

B. Statistical Characters of Surface Topography 
In the Greenwood-Williamson (GW) model the three 

important parameters are; the assumed constant radius of the 
spherical asperities R, the standard deviation of the asperity 
heights σs (assumed to be a Gaussian distribution), and the 
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surface density of asperities N. In the study of Poon and 
Bhushan [42], the standard deviation of the asperity heights is 
referred to as the root-mean-square (RMS) roughness, Rq, when 
the reference plane is the same as the mean plane. In the 
following model the standard deviation of asperity heights, σs, 
considers only the tip of asperity heights according to GW 
model, and not the whole profile of the asperity as for 
evaluating Rq. According to the research of McCool [43], these 
three parameters can be extracted from the three spectral 
moments of the surface topography z(x ,y). The three spectral 
moments include the variance of heights m0, slope m2 and 
curvature m4, which are expressed as [44] 

 

2

2

42
2

0    ,   ,
dx

zdm
dx
dzmzm ===             (14) 

 
where x is an arbitrary direction and brackets < > represent a 
statistical average. As m0 is the mean square surface height, the 
RMS roughness is Rq = (m0)1/2.  
    The three statistical surface parameters of the GW model can 
then be calculated from the following expressions [43]: 
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Since the surface topography z(x ,y) can be obtained directly 

from atomic force microscopy (AFM) measurements, all these 
statistical surface parameters can be derived from AFM 
measurements. Evidently, apparatus resolutions and sample 
lengths will affect these surface parameters, which, in turn, will 
affect the application of the rough surface contact theory [45]. 
In order to predict the in-use stiction of MEMS devices, a 
sample of length, L, comparable to the characteristic dimension 
of MEMS structures, is suggested during the measurements of 
the statistical characters of the surface. 

For the polysilicon contact problem considered in this paper, 
although a rather important number of typical surface 
roughness measurements are available in the literature, usually 
only the RMS (Rq) of the surfaces is reported. For example, a 
typical polysilicon surface RMS roughness between 2 and 5 nm 
was obtained by Delrio et al.  [46], while Legtenberg [47] 
measured an RMS roughness between 1 and 3 nm, depending 
on polysilicon and sacrificial (PECVD) silicon oxide 
thicknesses.  

However, only an amplitude description of the surface is 
insufficient for modeling purposes. For this reason, topography 
measurements using AFM need to be performed on 
micro-surfaces fabricated by commercial micro-foundries. 
Based on the AFM measurements, the statistical characters of 
two interacting surfaces can be obtained from Eqs. (15). 
Therefore, the statistical characters of the equivalent rough 

surface can be deduced from the properties of the two surfaces; 
σs, R and K can be directly obtained from the definitions of 
section II A, and Eqs. (15) are then used in order to extract the 
missing property N of the equivalent rough surface. 

Such analyses were achieved in [48] for a polished silicon 
film of roughness Rq = 1 nm. This sample will be referred to as 
sample A in the following.  Sample B was analyzed in [49] and 
consists in an array of polysilicon cantilevers, of different 
lengths, interacting with landing polysilicon pads. The array 
was fabricated by repeated deposition, lithographic definition, 
annealing and etching of polysilicon and sacrificial silicon 
oxide layers. After dissolution of the sacrificial oxide layers, 
critical-point drying was performed. A roughness of Rq = 2.67 
nm was found for the equivalent rough surface of the two 
interacting polysilicon surfaces. The original purpose of   this 
cantilever beams array [49, 50] is to study the stiction 
phenomenon between polysilicon surfaces. In [35], 
micromachined flaps were fabricated using a three-layer 
polysilicon surface micromachining process; silicon wafers, 
deposited silicon nitride and alternating layers of low pressure 
chemical vapor deposition of sacrificial (silicon dioxide) and 
structural (polysilicon) layers. This process was followed by a 
released procedure; etching of the silicon oxide layer using 
49% HF, DI water and isopropyl alcohol (IPA) rinses and 
finally drying. For sample C, the interaction of 2 rough surfaces 
corresponding to the bottom of the first structural polysilicon 
layers, having a roughness of Rq = 2.455 nm, is considered. The 
statistical characters of the equivalent rough surfaces of the 
samples A-C are reported in Tab. I.  

The validity of the elastic contact model, based on a 
Gaussian distribution assumption, can be ascertained by 
considering the plastic parameter proposed by GW [19, 20] 

 

RH
E sσψ '

=                         (16) 

where E’=E/2/(1-v2) and where H is the hardness [49].  
When ψ < 0.6 the deformations remain elastic and when ψ >1, 

the deformations are predominantly plastic. Using the typical 
values for polysilicon: H = 11 GPa, E = 163 GPa and Poisson’s 
ratio = 0.22 [49, 50], the plastic parameters of the three 
equivalent rough surfaces are evaluated and presented in Tab. I. 
The maximum plastic parameter is 0.77, corresponding to an 
amount of plasticity that can be neglected during contact [49]. 
In cases of polysilicon with higher roughness, or other 
materials as gold, elasto-plastic behavior could happen, 
modifying the surface topography [51].  

For completeness, the jump-in induced yield criterion 
developed in [16] is also verified. Although this criterion was 
developed for the interaction of two spheres of identical tip 
radii and with a FCC crystal pattern, it gives an estimation of 
the risk of plasticity in our case. In order to evaluate this 
criterion the Tabor number [7] is computed first 
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In Eq. (17), two new dimensionless parameters R~ and E~ are 
defined, [16], as 

ϖ
0

6
1

2~ rEE
′

=                         (18) 

0
6

1
2

~

r

RR =                         (19) 

Using these formulas, the dimensionless Young modulus E~  is 
found to be equal to 7.9 for all the samples with ϖ  =  2.54 J/m2, 
and equal to 120 for all the samples with ϖ  = 0.167 J/m2. The 
Tabor parameters (17) and the dimensionless radii (19) are 
reported in Tab. I. Following [16] for two identical asperities, if 
the dimensionless Young modulus E~  is much larger than 4, or 
if the dimensionless radius R~  is larger than 600, jump-in will 
not induce plasticity, validating our elasticity assumption. 

 
TABLE I 

STATISTICAL CHARACTERS AND THE MECHANICAL 
PROPERTIES OF THE SI EQUIVALENT ROUGH SURFACE 

Equivalent 
rough 

surface 

Rq  

nm 
σs  

nm 
R  

µm 
N  

µm-2 Ψ µΤ R~  

A. Polished 
Polysilicon 

[48] 
1.40 1.23 1.70 17 0.21 4.87 7246 

B. 
Deposited 
Polysilicon 

[49] 

2.67 2.50 0.26 80.1 0.77 2.61 1108 

C. 
Deposited 
Polysilicon 

[35] 

3.47 3.37 0.62 37.8 0.58 3.48 2643 

 

C. Adhesive Contact Force between Polysilicon-Polysilicon 
Rough Surfaces 
In order to predict the adhesive-contact vs. distance curve of 

polysilicon-to-polysilicon interactions, the parameters of the 
equivalent rough surfaces reported in Tab. I are substituted into 
Eq. (3) to evaluate the Maugis transition parameters λ. For the 
adhesive parameters ϖ =2.54 J/m2 and z0 = 2.28 Å, accordingly 
to the discussion of the previous section, values of λ=5.6536, 
λ=3.0234 and λ= 4.0393 can be obtained for the samples A, B 
and C respectively, while standard deviations of asperity 
heights σs=1.23 nm, σs=2.50 nm and σs=3.37 nm have been 
reported for the samples A, B and C respectively.  

Following the argument presented in section II, for each 
couple of λ, σs completed by the asperity radius R and the 
surface density N reported in Tab. I, the unloading adhesive 
contact-force, FnT, of the equivalent rough surface can be 
deduced for any separation distance, d. Indeed, from the 
dimensionless value of d, integral (12) can be performed 
numerically in terms of the dimensionless approach 
(interference) ∆ (9), while the dimensionless force Fn (8) of a 
single asperity evaluated at ∆ is obtained by solving the set of 
Eqs. (4-6). This set of equations holds as Kim et al. [31] 
extended solution should be considered when λ<0.938 only, 
which is not the case here. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The resulting normalized adhesive contact forces vs. the 

normalized distance are presented in Fig. 5. From this figure it 
can be seen that the adhesive contact force vs. the normalized 
distance curves for samples B and C almost coincide. This is 
due to the counter-balanced effects of λ (larger for sample C) 
and σs (larger for sample C) when curves are normalized. 
Sample A, which was obtained after surface polishing, exhibits 
a different normalized curve. 

Generating the curves illustrated in Fig. 5 is time consuming. 
To overcome this, the multiscale model will use a fitting of the 
computed curves in order to use finite-element simulations in 
an efficient way. For example, sample A is fitted using a 
polynomial approximation of coefficients pi, following  
 

∑
=

−×=
10

1

10nT )/(
i

i
si dp

RN
F σ
πϖ

                   (20) 

The polynomial coefficients are listed in Tab. II, and a good 
agreement between the analytical results and the curve fitting 
results can be observed in Fig. 5.  

 
 
 
 
 
 
 
 
 
These results are related to a work of adhesion 

ϖ  =  2.54 J/m2, which can be obtained in ultra-high vacuum 
environment for perfectly cleaned surfaces only [39, 40]. In 
order to study the environmental effects, the same 
computations are performed with a Hamaker constant equal to 
1.865 10-19 J, which is a measured value for contact between 2 
silicon surfaces in air [41], yielding a work of adhesion 
ϖ  =  0.167 J/m2. 

TABLE II  
POLYNOMIAL CURVE FITTING COEFFICIENTS FOR THE NORMALIZED 

ADHESIVE CONTACT FORCE VS. THE NORMALIZED DISTANCE BETWEEN 
THE ROUGH SURFACES OF SAMPLE A, WITH ϖ =2.54 J/M2 

i 1 2 3 4 5 

pi 3.283e-006 -6.351e-006 -0.0002217 0.0003907 0.005789 

i 6 7 8 9 10 
pi -0.00932 -0.08042 0.1926 0.1545   -0.5047   
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RN
F
πϖ

nT

sd σ/
Fig. 5. The normalized adhesive contact force vs. the 
normalized distance between the rough surfaces for ϖ 
=2.54 J/m2: A. λ=5.6536, σs=1.23 nm; B. λ=3.0234, 
σs=2.50 nm and C. λ= 4.0393 and σs=3.37 nm. 
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Following the same argument, the resulting normalized 

adhesive contact force vs. the normalized distance curves can 
be computed. These are presented in Fig. 6. For these lower 
values of adhesion energy, the maximum adhesion forces are 
lower and always happen for positive interacting distances, 
even for polished polysilicon (sample A). Let us note that in 
this case Kim extension [31] should be considered as λ<0.938 
for the three samples. 

IV. MULTI-SCALE FINITE ELEMENT ANALYSIS 

A. Problem Description 
A typical MEMS problem, which consists of a cantilever 

suspended above a surface, is considered as an example in this 
work. Indeed such applications are commonly used to study 
stiction problems, [25, 26, 49, 50], and will be used to compare 
our results to data found in literature. Assuming contact 
between the cantilever and the surface has been established, 
accidentally or on purpose, the beam is subjected to an 
unloading process during which the adhesive-contact forces, 
described in section II, rule the beam-surface interaction. There 
are three possible equilibrium configurations of the beam 
corresponding to the end of this unloading process; initial 
configuration, arc-shaped configuration and S-shaped 
configuration, Fig. 7. The last two configurations correspond to 
a stiction state. Clearly, the final configurations depend on the 
degree of adhesion that is established between the two surfaces 
in contact. In order to avoid in-use stiction, a stiffer cantilever, 
which can store enough elastic energy to break the contact, is 
required.  

In this section, a finite element analysis is presented based on 
the adhesive contact model presented in the previous sections. 
This finite element analysis can be used to predict the stiction 
of the cantilever beam and to deduce the structure critical 
geometrical dimensions avoiding this phenomenon. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Finite Element Model 
In this study, a two-dimensional finite element model is used 

to simulate the deformation of the micro-cantilever beam under 
the adhesive contact between the beam and the pad. The 
numerical simulations are performed using a finite element 
package developed by the authors. 

The Timoshenko equations [53] with unknowns w, the 
transverse displacement, and θ, the angular rotation, for a 
straight beam directed toward x-axis, are given as 
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where, I is the second moment of inertia, A’ is the reduced 
cross-section area (5/6 of section area for rectangular 
cross-sections), E and µ are the Young and shear modulus 
respectively, and f is the force per unit length applied to the 
beam.  

Validity of Timoshenko beam theory is ensured for low 
slenderness as long as no geometrical or material 
non-linearities should be considered. For MEMS with rather 
thin beam thicknesses geometrical non-linearities can be 
observed due to axial constrains. For this reason, beams are 
restricted to clamped/free cantilever beams. 

The locking-free finite element discretization is based on the 
interdependent interpolation model presented by Reddy [53]. 
This model is based on the exact polynomial solution satisfying 
(21), leading, for one element, to the elementary system 

z

x 
g
 

0
(a) Initial configuration 
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(b) Arc-shaped configuration 
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0
(c) S-shaped configuration 

Fig. 7. Three possible equilibrium configurations of the 
cantilever beam after unloading. 

Fig. 6. The normalized adhesive contact force vs. the 
normalized distance between the rough surfaces for ϖ 
=0.167 J/m2: A. λ=0.921, σs=1.23 nm; B. λ=0.4925, 
σs=2.50 nm and C. λ= 0.6580 and σs=3.37 nm. 

1 2 3 4-0.05

0

0.05

0.1

0.15
RN

F
πϖ

nT  

sd σ/

1.5 2 2.5 3 3.5

-0.01

0

0.01

0.02

+ A, □ B, × C Analytical results 
Curve fitting 



JMEMS-2010-0243  10

 
 

 

( ) ( )

( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

Ω+

Ω+

Ω+Ω+

Ω−

Ω+

−
Ω+Ω+Ω+Ω+

−

Ω+

Ω−

Ω+Ω+

Ω+

Ω+

−
Ω+

−

Ω+

−

Ω+

−

Ω+

2
2
1
1

2
2
1
1

)121(
314

2)121(

6
)121(

612
2)121(

6

2)121(

6
3)121(

12
2)121(

6
3)121(

12
)121(

612
2)121(

6
)121(

314
2)121(

6

2)121(

6
3)121(

12
2)121(

6
3)121(

12

θ

θ

θ

θ

f
wf
f
wf

w

w

l
EI

l

EI
l

EI

l

EI
l

EI

l

EI

l

EI

l

EI
l

EI

l

EI
l

EI

l

EI
l

EI

l

EI

l

EI

l

EI

(22) 

 
where 

2'lA

EI

µ
=Ω  represents the effect of shearing on the beam’s 

deflection, and where w1, w2, θ1, θ2 are the nodal displacements 
and rotations of the beam element of length l.  
 The loading vector is evaluated from a linear distribution of 
force per unit length: f = f0 + (f1-f0) x/l. Following an integration 
of shape functions presented in [53], this leads to 
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for the constant and linear parts of the applied force 
respectively. 

 
 
 
 
 
 
 
 
 
 
A schematic of the beam element is reported in Fig. 8. It is 

clear that the nodal distance di between the lower face of the 
beam and the pad can be deduced from the nodal displacement 
wi  

ii wgd +=         (24) 
 
Therefore, the force per unit length fi at node i can be deduced 
from the curve fitting of the adhesive contact analysis presented 
in sections II and III, and Eq. (20) yields 
 

)(nT ii dbFf =         (25) 
 

where b is the beam width. Assuming a linear distribution of 
force on one beam element, which is a reasonable 
approximation if the mesh is fine enough, the elementary forces 
can be evaluated from Eqs. (23). 

In order to simulate accurately the variation of the adhesive 
contact forces under important gradient of contact distances, a 
much finer finite element mesh size is required at the contact 
part of the micro cantilever beam. Typically, the beam is 
discretized into 128 elements with elements at beam’s tip 
having a size ten times smaller than at the built-in end. 

Note that Eq. (25) is correct only during the unloading 
process. In order to simulate the happening of contact an extra 
force is applied on the top beam surface until the cantilever 
enters into the contact with the surface. Thereafter, this extra 
force is removed step by step until reaching zero. At this stage 
only the adhesive contact forces are acting on the beam. The 
possible configurations of the beam under the adhesive contact 
forces can be obtained afterwards. The geometrical effects of 
the micro cantilever beams such as the initial gap size, the 
thickness and length, which are critical in order to avoid 
stiction, can now be studied for different adhesive contact 
conditions of rough surfaces. 

V. RESULTS AND DISCUSSION 
The adhesive contact between polysilicon cantilever beams 

and polysilicon surfaces is considered in this section. A typical 
value of 163 GPa [49, 50] for the elastic modulus of polysilicon 
is used in the finite element simulations of the beam. Relative 
parameters of the adhesive contact, which include surface 
characters and material properties, have been established in 
Section III. 

First, a 4-µm thick and 20-µm wide beam is considered. The 
initial gap between the beam and the surface is 2 µm, and the 
surface parameters of cleaned silicon surfaces in an ultra-high 
vacuum (ϖ =2.54 J/m2) correspond to sample A. The beam 
deflection due to self-weight is neglected. Figs. 9(a-c) illustrate 
the final results obtained for beam lengths of 50, 90 and 120 µm 
successively.  

Depending on its length, the beam is either, not subject to 
stiction during the unloading process (Fig. 9(a)), or subject to 
stiction with an arc-shaped configuration or an S-shaped 
configuration (Figs. 9(b-c)). From the simulations it can be 
concluded that; (1) when the length of the beam is larger than a 
certain value l1, stiction with an arc-shaped configuration will 
be obtained, (2) increasing the length of the beam up to a 
certain value l2 will lead to stiction with an S-shaped 
configuration, (3) for beam lengths l1 < l < l2 [26, 27], the final 
configuration may shift between the arc-shaped and the 
S-shaped configurations, depending on the initial contact 
configurations. 

Both arc-shaped and S-shaped configurations correspond to 
stiction. Therefore, as l1 < l2, the beam length l1 is set to be the 
critical design length. For the same contact conditions the 
design limitations avoiding in-use stiction are now calculated in 
terms of the beam’s geometrical dimensions. Fig. 10 presents 

Fig. 8. Schematic of the beam element. 

d2(>0) 

w2(<0) 

d1(>0) 

w1(<0) 

z 

x 

 

 

g



JMEMS-2010-0243  11

the design limitations in terms of thickness vs. length of the 
beam for initial gap sizes equal to 1, 2 and 3µm successively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The design range of the ratio thickness/length, avoiding 

stiction, is defined as the area above the design limitations for 
given initial gap sizes. From Fig. 10, it can be seen that, at 
constant thickness, a smaller initial gap size requires a shorter 
beam length in order to avoid in-use stiction.   

Considering the initial gap size of 2 µm, the effect of surface 
roughness on stiction can also be studied by considering the 
different surface samples A-C, the characteristics of which are 
reported in Tab I. Fig. 11 illustrates the limitations in terms of 
the thickness vs. length of the beam obtained from the finite 
element simulations for the different surface states. As 
expected, the polished silicon surface is more prone to stiction 
as its roughness is lower. Although dimensionless adhesive 
contact curves for surfaces B and C are similar, Fig. 5, 
numerical results exhibit different safe design parameters, Fig. 
11. Indeed, although the sample C has a higher roughness than 
sample B, the combined effect of asperity tip radius and 
asperity density per unit area leads to a higher maximum 
adhesive force for sample C, thus more subject to stiction.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Similar results can be obtained readily for ϖ =0.167 J/m2, by 

considering the unloading force-distance curves of Fig. 6 
instead of Fig. 5. Fig. 12 illustrates the new limitations in terms 

Fig. 9. Final configurations of the micro-cantilever 
beams for different lengths, for ϖ =2.54 J/m2. 
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Fig. 11. The design limitations to avoid stiction for the 
different surface samples (the marks correspond to finite 
element results and the curves to quadratic fitting results) 
for ϖ =2.54 J/m2. 
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Fig. 12. The design limitations to avoid stiction for the 
different surface samples (the marks correspond to finite 
element results and the curves to quadratic fitting results) 
for ϖ =0.167 J/m2. 
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Fig. 10. The design limitations to avoid stiction of the 
micro cantilever beams with different initial gap sizes 
(the marks correspond to finite element results and the 
curves to quadratic fitting results) for ϖ =2.54 J/m2. 
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of the thickness vs. length of the beam obtained from the finite 
element simulations for the different surface states, and shows 
similar behaviors as when ϖ =2.54 J/m2 , Fig. 11. The only 
difference is the critical lengths of the beam, which, as expected, 
are approx ten times higher with the low adhesion energy. 

From Fig. 11 and Fig. 12, it can be concluded that the 
roughness and asperities tip radius of the surfaces in contact 
have an important nonlinear effect on the stiction in MEMS 
devices. For the MEMS with polished surfaces in contact, a 
thick and short beam is required to avoid stiction.  

VI. RESULTS COMPARISON 
In order to compare our model and our results with models 

and experimental measurements from the literature, the 
apparent adhesion energy resulting from the interacting rough 
surfaces is extracted from the numerical results presented in 
section V. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In [26], it is shown that the apparent adhesion energy Γ can 

be deduced from studying an array of cantilevers of different 
lengths. Indeed from the sticking beams of the array, either in 
an S-shaped configuration, Fig. 13(a), or in an arc-shaped 
configuration at critical length (shortest length), Fig 13(b), the 
apparent adhesion energy, Γ, can be evaluated in terms of the 
un-adhered length, s, with  

 4

32

2
3

s
tgE=Γ           (26) 

and 

4

32

8
3

s
tgE=Γ          (27) 

respectively. 
In section V, critical lengths leading to arc-shaped 

configurations have been evaluated numerically with our 
model for different beam thicknesses and for the 3 different 
surface samples A-C. Using relation (27), the apparent 
adhesion energy, Γ, can be directly computed from Fig. 11. The 
results are reported on Fig. 14.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It can be seen that, with the exception of the shortest beam, 

which does not obey the Euler-Bernoulli assumption used in 
(27), the apparent surface energies evaluated are constant for a 
given surface sample. Due to the important effect of surface 
properties which include the surface roughness, but also the 
asperities tip radius and the asperities density, the apparent 
adhesion energies of sample  A, B and C differ from each other. 
Although it is admitted that Γ should decrease with an increase 
of the roughness, the sample C, which has a higher roughness 
than sample B, yields higher apparent adhesion energy than B 
due to the larger asperities tip radius of its surface. 

 
 
 
 

 
 
 
 
 
In order to confirm results of Fig. 14, data for S-shaped 

sticking cantilevers are also analyzed. Resulting sticking 
configurations of beams for an initial gap size of 2 µm, and for 
a beam thickness of 4 µm, are illustrated, Fig. 15, for the 3 

Fig. 15. Final configurations of the 
micro-cantilevers for different beam lengths. s = 
115, 280, 250 µm for sample A, B and C 
respectively, and for ϖ =2.54 J/m2. 
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Fig. 13. Schematics of adhered micro-cantilevers.

TABLE III  
APPARENT ADHESION ENERGY FOR THE THREE ROUGH SURFACES 

 A B C 
Rq (nm) 1.4 2.67 3.47 

Γ (mJ/m2) for ϖ 
=2.54 J/m2 357 10.2 16.0 

Γ (mJ/m2) for ϖ 
=0.167 J/m2 0.22 0.0105 0.0184 
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Fig. 14. Apparent surface energy Γ deduced from the 
critical arc-shaped configurations for ϖ =2.54 J/m2.  
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different surface samples. The respective apparent adhesion 
energies (26) are reported in Table III.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These previous results are related to a work of adhesion 

ϖ  =  2.54 J/m2. In order to study the environmental effect, the 
same computations are performed for contaminated surfaces in 
air with low relative humidity (ϖ  =  0.167 J/m2). In order to 
avoid the effect of capillary forces, the relative humidity should 
be lower than 30%. From critical lengths from Fig. 12, the 
apparent adhesion energies Γ can be directly computed from 
Eq. (27) and are shown in Fig. 16. It can be seen that for each 
surface sample this energy is rather constant but much lower 
than for the case of pure silicon contact. The average values are 
reported in Table III.  

In [4], the van der Waals energy was integrated using a 
Gaussian asperity height distribution. A Hamaker constant of 2 
10-19 J was assumed in order to compute the resulting apparent 
adhesion energy in the absence of capillary forces. This curve is 
given in Fig. 17 in terms of the RMS-roughness characterizing 
the height distribution. Numerical results obtained with the 
presented model seem to correlate with the curve, at least when 
using the measured Hamaker constant, [41]. Although the 
analytical prediction is monotonically decreasing with the 
RMS-roughness, as more surface properties (density, tip 
radius, etc) are accounted for in the developed model, this trend 
is not reproduced. 

Surface properties of sample A were considered to study the 
effect of the sub-lubrication on the adhesion model in [48]. In 
this model the lubricant is too thin to produce meniscus, but 
leads to adhesion forces. Adhesion forces are modeled using a 
Lennard-Jones attractive potential coupled with a GW asperity 
model extended to elasto-plasticity [54]. This model allows 
extracting force-distance curves, and could theoretically be 
used in a micro-macro model (as presented here). The presence 
of a lubricant film in [48] prevents comparison of results as dry 
contact is assumed herein, lowering the adhesion forces. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In [27, 49], experiments were conducted on cantilevers with 

hydrophilic surfaces obtained from deposited polysilicon, 
corresponding to sample B. Although the purpose of these 
papers was to study the effect of capillary forces, experiments 
were also conducted in dry-nitrogen environment to annihilate 
the capillary effect. For an RMS-roughness of 2.67 nm, the 
measured apparent adhesion energies were reported between 
0.017 and 0.068 mJ/m2. This interval is also shown in Fig. 17. 
In the works [27,49], the van der Waals contribution to the 
apparent adhesion energy (main interest of the papers is to 
account for the capillary forces) is obtained by combining a 
DMT model [6] with a Gaussian height distribution. However, 
these numerical results exhibit lower apparent adhesion 
energies by a few orders of magnitude than the experiments, 
unless the Gaussian distribution is cut-off [27, 49]. In contrast, 
the presented model, based on the Maugis transition solution 
and on Kim extension, seems to corroborate the experimental 
results, although it can be seen that the result is still slightly 
below the experiments. This can be explained by the fact that 
the capillary forces were neglected and that they might still be 
present in the experiments.  

Surface sample C was considered in [35] to predict the 
adhesion energy resulting from a meniscus and results cannot 
be compared with our predictions as dry environment was 
assumed. 

The main advantage of the presented model is its ability to 
account for a wide variety of micro-scale parameters (surface 
topography, surface cleanness, etc), while still allowing 
complete modeling of MEMS structures using a finite element 
method. If asperities remain elastic the use of the Maugis 
solution combined with Kim extension ensures a wide range of 
validity in terms of surface properties. However, the current 
limitation of the model is the assumption of dry environment 
and the effect of capillary forces will have to be accounted for 
in the near future.   
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Fig. 16. Apparent surface energy Γ deduced from the 
critical arc-shaped configurations for ϖ =0.167 J/m2.  
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VII. CONCLUSIONS 
A micro-macro multi-scale approach was developed in order 

to predict possible in-use stiction of MEMS devices resulting 
from the van der Waals interaction forces.  

At the lower scale the unloading adhesive contact-distance 
curves of two interacting rough surfaces were established from 
a combination of the Greenwood-Williamson asperity model 
and the Maugis transition theory. The computed unloading 
adhesive contact-distance curves are dependent on the material 
and surface properties as well as on the rough surfaces 
topography parameters. This model was integrated at the higher 
scale as an adhesive-contact force at the beam-substrate 
interface, using a finite element analysis.  

By way of illustration the parameters required to define the 
micro adhesive contact curves were identified for 
polysilicon-to-polysilicon interactions. These parameters were 
either evaluated from theoretical models, surface energy 
measurements or from AFM measurements.  

Prediction of stiction of cantilever beams in terms of 
thickness, beam-to-surface gap and length, for 
polysilicon-to-polysilicon interacting surfaces was then 
achieved. Critical thickness curves in terms of beam length 
could then be obtained for different initial gaps. The effect of 
the surface topography on these design parameters was also 
studied by considering different surface states.  

From the critical lengths of the beam the apparent surface 
energies could be computed and were shown to be in good 
agreement with experimental data from the literature, when 
contaminated polysilicon surfaces in dry air were considered. 

In the current work the multi-scale approach was developed 
to predict stiction in MEMS devices in dry working 
environments. The main advantage of this approach is its 
ability to account for different surface and material properties, 
which can be measured for a given structure. Also, a simple 
linear cantilever beam was studied, but the approach can be 
generalized to other kinds of MEMS devices.   

REFERENCES 
[1] A. Hariri, J. W. Zu and R. Ben Mrad, “Modeling of dry stiction in micro 

electro-mechanical systems (MEMS),” IEEE J. Micromech. Microeng, 
vol. 16, pp. 1195–1206, 2006. 

[2] W. Robert Ashurst, C. Yau, C. Carraro, R. Maboudian, and M. T. Dugger, 
“Dichlorodimethylsilane as an Anti-Stiction Monolayer for MEMS: A 
Comparison to the Octadecyltrichlosilane Self-Assembled Monolayer,” 
IEEE J. Micromech. Systems, vol. 10, pp. 41-49, 2001. 

[3] W. M. van Spengen, R. Puers and I. De Wolf, “A physical model to 
predict stiction in MEMS,” J. Micromech. Microeng., vol. 12, pp. 
702-713, 2002. 

[4] W. M. van Spengen,, R. Puers and I. De Wolf, “On the physics of stiction 
and its impact on the reliability of microstructures,” J. Adhesion Sci. 
Technol., vol. 17, no. 4, pp. 563–582, 2003.    

[5] K. L. Johnson, K. Kendall and A. D. Roberts, “Surface Energy and the 
Contact of Elastic Solids,” Proc. R. Soc. Lond. A, vol. 324, pp. 301-313, 
1971. 

[6] B. V. Derjaguin, V. M. Muller and Y. P. Toporov, “Effect of contact 
deformation on the adhesion of elastic solids,” J. Colloid Interface Sci. 
vol. 53, pp. 314–26, 1975. 

[7] D. Tabor, “Surface forces and surface interactions,” J. Colloid Interface 
Sci., vol. 58, pp. 2-13, 1977. 

[8] D. Maugis, “Adhesion of Spheres: The JKR-DMT Transition Using a 
Dugdale Model,” J. Colloid and Interface Sci., vol. 150, pp. 243-269, 
1992. 

[9] L. Kogut and I. Etsion, “Adhesion in elastic–plastic spherical 
microcontact,” J. Colloid and Interface Sci., vol.261, pp. 372–378, 2003. 

[10] Y. Kadin, Y. Kligerman, and I. Etsion, “Loading–unloading of an 
elastic–plastic adhesive spherical microcontact,” J. of Colloid and 
Interface Sci., vol. 321, pp. 242–250, 2008. 

[11] L. Johnson and J. A. Greenwood, “An Adhesion Map for the Contact of 
Elastic Spheres,” J. Colloid Interface Sci., vol. 192, pp. 326-333, 1997. 

[12] P. Attard and J. L. Parker, “Deformation and adhesion of elastic bodies in 
contact,” Phys. Rev. A, vol. 46, pp. 7959-7971, 1992. 

[13] V. M. Muller, V. S. Yushchenko, and B. V. Derjaguin, “On the influence 
of molecular forces on the deformation of an elastic sphere and its sticking 
to a rigid plane,” Progress in Surface Sci., vol. 45, pp. 157-167, 1994. 

[14] J. A. Greenwood, “Adhesion of elastic spheres,” Proc. R. Soc. London A, 
vol. 453, pp. 1277-1297 ,1997. 

[15] R. Gissi, and P. Decuzzi, “The effect of shape and size in 
micro-/nanodimples adhesion,” ASME J. Appl. Phys., vol. 98, Paper 
014310, 2005. 

[16] Y. Kadin, Y. Kligerman, and I. Etsion, “Jump-in induced plastic yield 
onset of approaching microcontacts in the presence of adhesion,”  ASME 
J. Appl. Phys., vol. 103, Paper 013513, 2008. 

[17] Y. Kadin, Y. Kligerman, and I. Etsion, “Cyclic loading of an 
elastic-plastic adhesive spherical microcontact,” ASME J. Appl. Phys., 
vol. 104, Paper 073522, 2008. 

[18] Y. Du, L. Chen, N. E. McGruer, G. G. Adams, I. Etsion, “A finite element 
model of loading and unloading of an asperity contact with adhesion and 
plasticity,” J. Colloid Interface Sci., vol. 312, pp. 522-528, 2007. 

[19] J. A. Greenwood and J. B. P. Williamson, “Contact of nominally flat 
surfaces,” Proc. R. Soc. Lond. A, vol. 295, pp. 300–19, 1966. 

[20] J. A. Greenwood and J. H. Tripp, “The contact of two nominally flat 
rough surfaces,” Proc. Instn Mech. Eng., vol. 185, pp. 625–33, 1971. 

[21] S. Patra, S.M. Ali and P. Sahoo, “Elastic–plastic adhesive contact of 
rough surfaces with asymmetric distribution of asperity heights,” Wear, 
vol. 265, pp. 554–559, 2008. 

[22] L. Wu, V. Rochus, L. Noels, and J. C. Golinval, “Influence of adhesive 
rough surface contact on microswitches,” ASME J. Appl. Phys., vol. 106, 
Paper 113502, 2009. 

[23] B. B. Mandelbrot, The Fractal Geometry of Nature. Freeman, New York, 
1983. 

[24] A. Majumdar and B. Bhushan, “Fractal model of elastic–plastic contact 
between rough surfaces,” ASME J. Tribol., vol. 113, pp. 1–11, 1991. 

[25] N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg and M. Elwenspoek, 
“Stiction in surface micromachining,” IEEE J. Micromech. Microeng., 
vol. 6, pp. 385–397, 1996. 

[26] M. P. de Boer,  T. A. Michalske, “Accurate method for determining 
adhesion of cantilever beams,” ASME J. of Appl. Phys., vol. 86, no. 2, pp. 
817-827, 1999. 

[27] M. P. de Boer, J. A. Knapp, T. M. Mayer and T. A. Michalske, “The role 
of interfacial properties on MEMS performance and reliability,” in Proc. 
SPIE/EOS Conference on Microsystems Metrology and Inspection, 
Munich, June 15, 1999. 

[28] L. L. Mercado, S.-M. Koo, T.-Y. Tom Lee, L. Liu, “A mechanical 
approach to overcome RF MEMS switch stiction problem,” in Proc. 53rd 
Electronic Components and Technology Conference, 2003, pp. 377- 384. 

[29] R. Ardito, A. Corigliano and A. Frangi, “Finite element modelling of 
adhesion phenomena in MEMS,” in Proc. 11Th Int. Conf. on Thermal, 
Mechanical and Multiphysics Simulation in MEMS, EuroSimE, 2010, 
Bordeau, France, ISBN: 978-1-4244-7024-2. 

[30] M. O’Callaghan and M. A. Cameron, “Static contact under load between 
nominally flat surfaces in which deformation is purely elastic,” Wear, vol. 
36, pp. 79–97, 1976. 

[31] K. S. Kim, R. M. McMeeking and K. L. J. Johnson, “Adhesion, Slip, 
Cohesive Zones and Energy Fluxes for Elastic Spheres in Contact,” Mech. 
Phys. Solids, vol. 46 pp. 243–66, 1998. 

[32] R. J. Stokes and D. F. Evans, Fundamentals of Interfacial Engineering, 
Wiley–VCH, New York, 1997. 

[33] N. Yu, A. A. Polycarpou, “Adhesive contact based on the Lennard–Jones 
potential: a correction to the value of the equilibrium distance as used in 
the potential,” J. of Colloid and Interface Sci., vol. 278, pp. 428–435, 
2004. 



JMEMS-2010-0243  15

[34] F. Cacchione, “Mechanical characterization and simulation of fracture 
processes in Polysilicon Micro Electro Mechanical Systems (MEMS),” 
Ph.D. dissertation, Dipartimento di Ingegneria Srutturale, Politechnico di 
Milano, 2007. 

[35] X. Xue, L. M. Phinney and A. A. Polycarpou, “Asymmetric surface 
roughness measurements and meniscus modeling of polysilicon surface 
micromachined flaps,” Microsyst. Technol., vol. 14, pp. 17–29, 2007. 

[36] K. C. Fang and C. I. Weng, “An investigation into the melting of silicon 
nanoclusters using molecular dynamics simulations,” Nanotechnol., vol. 
16, pp 250–256, 2005. 

[37] J. J. Gilman, “Direct Measurements of the Surface Energies of Crystals,” 
ASME J. Appl. Phys., vol 31, no. 12, pp. 2208-2218, 1960. 

[38] C. Messmer and J. C. Bilello, “The surface energy of Si, GaAs, and GaP”, 
ASME J. Appl. Phys., vol. 52, no. 7, pp. 4623-4629, 1981. 

[39] U. Gösele, Y. Bluhm, G. Kästner, P. Kopperschmidt, G. Kräuter, R. 
Scholz, L.-J. Huang, Y.-L. Chao, and T. H. Lee, “Fundamental issues in 
wafer bonding,” J. Vac. Sci. Technol., vol. A 17, no. 4, pp. 1145-1152, 
1999. 

[40] A. Plöβl, G. Kräuter, “Wafer direct bonding: tailoring adhesion between 
brittle materials,” Mat. Sci. and Engineer, vol. R25, pp 1-88, 1999. 

[41] B. Cappela and G. Dietler, “Force-distance curves by atomic force 
microscopy,” Surf. Sci. Reports, vol 34, pp. 1-104, 1999. 

[42] C. Y. Poon and B. Bhushan, “Comparison of surface roughness 
measurements by stylus profile AFM and non-contact optical profiler,” 
Wear, vol. 190, pp. 76–88, 1995 

[43] J. I. McCool, “Predicting Microfracture in Ceramics Via a Microcontact 
Model,” ASME J. Tribol., vol. 108, pp. 380–386, 1986. 

[44] R. W. Carpick, E. E. Flater, J. R. VanLangendon and M. P. de Boer, 
“Friction in MEMS: from single to multiple asperity contact,” in Proc. Int. 
Congress and Exposition on Experimental and Applied Mechanics, 2002, 
pp. 282–287. 

[45] L. Kogut and R. L. Jackson, “A Comparison of Contact Modeling 
Utilizing Statistical and Fractal Approaches,” J. 
Tribol., vol.128, pp. 213-217, 2006. 

[46] F. W. Delrio, M. P. de Boer, J. A. Knapp,  E. D. Reedt Jr, P. J. Clews and 
M. L. Dunn, “The role of van der Waals forces in adhesion of 
micromachined surfaces,” Nature Materials, vol. 4, pp. 629-634, 2005. 

[47] R. Legtenberg, “Electrostatic actuators fabricated by surface 
micromachining technique,s” Ph.D. dissertation, University of Twente, 
1996. 

[48] A. Y. Suh and A. A. Polycarpou, “Adhesion and pull-off forces for 
polysilicon MEMS surfaces using the sub-boundary lubrication model,” 
J. of Tribology, vol. 125, pp. 193-199, 2003. 

[49] M.P. de Boer, “Capillary adhesion between elastically hard rough 
surfaces,” Experim. Mech., vol. 47, pp. 171–183, 2007. 

[50] F. W. Del Rio, M. L. Dunnb and M. P. de Boer, “Capillary adhesion 
model for contacting micromachined surfaces,” Scripta Materialia, vol. 
59 pp. 916–920, 2008. 

[51] O. Rezvanian, M. A. Zikry, C. Brown and J. Krim, “Surface roughness, 
asperity contacxt and gold RF MEMS switch behavior,” J. Micromech. 
Microeng., vol. 17, pp. 2006-2015, 2007. 

[52] J. H. Kim, D. J. Srolovitz, P.-R. Cha and J.-K. Yoon, “Capillarity and 
electromigration effects on asperity contact evolution in 
microelectromechanical systems switches,” ASME J. Appl. Phys., vol. 
100, Paper 054502, 2006. 

[53] J.N. Reddy, “On locking-free shear deformable beam finite elements,” 
Comp. Meth. in Appl. Mech. and Engin., vol. 149, pp 113-132, 1997. 

[54] A. Tayebi and A. Polycarpou, “Adhesion and contact modeling and 
experiments in microelectromechanical systems including roughness 
effects,” Microsyst. Technol., vol. 12, pp. 854-869, 2006. 

 

 
 


