Combination of different techniques and multi-scale approach to understand CO₂ budget in a temperate beech forest

Bernard Longdoz¹, D. Epron¹, S. Goffin², A. Granier¹, E. Granier¹, P. Gross¹, N. Heydt¹, J. Ngao³, C. Plain¹, N. Marron¹, F. Parent¹, M. Schrumpf⁴

¹ INRA, Centre INRA de Nancy, UMR1137, 54280 Champenoux, France Nancy University, INRA, UMR 1137, Vandoeuvre les Nancy, France

Nancy-Université

² Liège University, Gembloux Agro-Bio Tech, Belgium

³ Paris-Sud University, CNRS, UMR 8079, Orsay, France

⁴ MPI Biogeochemistry, Jena, Germany

Context

Quantification C storage Understanding C processes

European Beech (*Fagus Sylvatica*), French forest Hesse site

Material

Automatic measurements :

• Net Ecosystem Exchange NEE (Eddy Cov., 30 min)

- Micro-climate (T°, radiation, humidity, precipitations)
- Soil T° and water content
- Trunk circumferences (dendrometers) C biomass

<u>Measurement campaigns</u> :

- Soil Respiration (Rs)LAI
- Aerial (Stems, leaves, fruits,...) and below ground (roots) Biomass
- Soil composition & characteristics (density, C & N contents...
- $\delta^{13}C$ of sampled materials (IRMS) and gaz (TDLS + IRMS)

NEE partitioning : GPP – TER

GPP & TER have difference in response to changes in environmemental conditions

1st approach:

1. TER (t°, SWC) determination from night and leafless data

- 2. **TER** (t° , SWC) extrapolation to leafy daytime
- 3. Daytime :

GPP = **NEE** (data) – **TER** (extrapolation)

2nd approach: Combining 2 equations

1. NEE = **GPP** + **TER**

2. NEE $\delta^{13}C_{\text{NEE}} = \text{GPP} \delta^{13}C_{\text{atm}} + \text{TER} \delta^{13}C_{\text{TER}}$

8

Soil sampling for $(\rho_S)_A$ and $(C/N)_A$ mapping

Soil sampling points (>100) in footprint area

Rs spatial variability

$$R_{10} = -1.47 \cdot (\rho_{\rm S})_{\rm A} + 0.19 \cdot (C_{\rm N})_{\rm A}$$

Rs spatial variability

10

2nd Approach Uncertainties

2nd approach: Combining 2 equations

- 1. NEE = GPP + TER
- 2. NEE $\delta^{13}C_{\text{NEE}} = \text{GPP} \delta^{13}C_{\text{atm}} + \text{TER} \delta^{13}C_{\text{TER}}$

Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only.

NPP from Eddy covariance (NPPec)

NPP = NEE - Rs hetero

Rs : soil chambers Rs autotrophic-heterotrophic partitioning: Trenched plots Li-6252 01

> Corrections: - trenched roots decomposition - higher SWC in trenched plot

Pourcentage from GPP = 1404 gC m^{-2}

On 10 years : difference of 1%

General good reproduction of inter-annual variability but large divergences unexplained (1998 & 2001)

Work in progress on allocation (CATS) et modelling (soil)