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Chapter 1

Introduction

From the earliest times on man asked questions about the origin of the world,
its meaning and purpose. Science confronts these mysteries with questions,
doubts, curiosity and exploratory endeavours, a philosophy that goes back as
far as ancient Greece. Pre-Socrates philosophers seeked natural explanations in
terms of observable forces (such as fire, water, air etc.). Such a explanation is
in principle a model of how we think about the world. In modern terms, we can
therefore understand science as the identification of models from observed data
(Ljung, 1999). Ayala (1968) puts it this way

Science seeks to organise knowledge in a systematic way, endeav-
ouring to discover pattern of relationship among phenomena and
processes.

Further, Ayala (1968) gave two more characteristics for science: First, a theory
(or hypothesis or model) should be explanatory, i.e. it should explain what we
already know, and it should in addition predict something we do not yet know.
Second, a theory (or hypothesis or model) should be testable, i.e. it should in
principle be possible to invalidate the model by comparing its predictions to
new experimental data.

In the public eye, science is often viewed in terms of discoveries. When
Alfred Nobel wrote about the conditions of the Nobel price, he was thinking
in terms of discoveries, particularly those that are beneficial to humankind.
However, viewing science just as the collection of new facts is misleading. Often,
scientific progress is more elevated by the introduction of new concepts. In
the biological sciences, a new concept was for example introduced by Charles
Darwin with the (nowadays seemingly trivial) idea that populations consist of
different individuals, which led to the theory of natural selection and evolution.
Another example is Erwin Schrodinger with the idea that biological systems
follow physical (and chemical) and not metaphysical laws (Schrédinger, 1944),
which lay the foundation of modern molecular biology.

Concepts possess more or less abstract representation in form of models.
Models are nothing new in biology. An example of a model in the physical
sense of the word are laboratory rats. Often, rats in the laboratory act as
model organisms used to study diseases that are difficult to study in humans
directly. Another, very nice example is provided by James Watson and Francis
Crick when discovering the structure of DNA. In their lab, they built a physical,
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three dimensional model of the involved chemical elements and their bounds,
which they used to guide their intuition into finding the correct configuration
(Watson, 1968). Here we also have an example of a mathematical model, in
which Crick used the theory of physical chemistry to calculate the stability of
the arrangement.

Generally, mathematical models are a vital component of science. Differ-
ent models or model frameworks often require a different sort of mathematics.
I already mentioned the mathematics of physical chemistry, dedicated to the
calculation of forces between atoms and molecules. Another example is the ap-
plication of graph theory to gene regulation and protein interaction networks,
where nodes represent genes and proteins and vertices their interactions. Rather
recently, another branch of mathematics, namely systems theory spread into bi-
ology. In contrast to classical, reductionist biological thinking in which the focus
is on studying individual parts, systems theory offers a wholistic approach, in
which the focus is on the behaviour emerging from the interaction patterns of
the different constituents.

Systems theory was pioneered with the works of Norbert Wiener (1948) and
Ludwig von Bertalanffy (1968). Interestingly, Norbert Wiener was inspired by
biology. When working on the design of fire control devices during World War II,
Wiener observed that anti-aircraft guns exhibit erratic behaviour very similar
to tremors in humans. Consulting with Arturo Rosenblueth, a colleague in the
neurosciences, he came to the conviction that the behaviour of servomechanisms,
of computing machines and of the nervous system, could all be regarded from
a unified overall viewpoint. Despite that biological inspiration, systems theory
had little impact on biology and most of its success in was engineering. In
contrast to engineered systems, facts are often unknown or uncertain in biology.
In molecular biology for instance, it is often not known which genes interact
with each other, or which proteins are involved in a certain process. This lack of
knowledge explains at least partly the long absence and slow progress of systems
theory in biology. Further, biology was (and still is) very busy identifying and
characterising the components that make up the system, whereas systems theory
was busy solving engineering and automatic control problems. Now, in the post
genomic era, biology begins to experience a shift in thinking toward a systems
perspective; partly driven by the limitations of the reductionist approach, partly
driven by a control theoretical community in search of new application areas
(Ljung, 2010; Wellstead et al., 2008).

Systems theory is based on dynamic models, and therewith implicitly de-
mands the collection of dynamic data in the form of time series measurements.
Recent and ongoing advances in measurement techniques (de Graauw (2009);
Szallasi (2006), see also Section 2.2) enable experimental biologists to collect
time series data in ever increasing dimension, putting the successful applica-
tion of systems theory to biology into reachable scope and bringing us back
to the beginning of this chapter and the question of how to build these mod-
els. Following Ayala’s demands on science mentioned earlier, we can lay down
some ground rules. To make valuable predictions, we should use experimentally
collected data to built a model. Hereby, the complexity of model depends on
the amount and quality of data available. In that spirit, my thesis addresses
two important questions. First, can we use existing system-theoretical tools to
identify biological models? Second, can we develop novel systems theoretical
identification methods that are particularly tailored to biology?

PhD Thesis (submitted version) 8



About this thesis

This thesis is structured into two parts. Both concern building dynamic mod-
els from observed data, but are quite different in perspective, rationale and
mathematics.

The first part considers the development of novel identification techniques
that are particularly tailored to (molecular) biology and considers two ap-
proaches. The first approach reformulates the parameter estimation problem
as a feasibility problem. This reformulation allows the invalidation of models
by analysing entire parameter regions. The second approach utilises nonlin-
ear observers and a transformation of the model equations into parameter free
coordinates. The parameter free coordinates allow the design of a globally con-
vergent observer, which in turn estimates the parameter values, and further,
allows to identify modelling errors or unknown inputs/influences. Both ap-
proaches are bottom up approaches that require a mechanistic understanding of
the underlying processes (in terms of a biochemical reaction network) leading
to complex nonlinear models.

The second part is an example of what can be done with classical, well
developed tools from systems identification when applied to hitherto unattended
problems. In particular, part two of my thesis develops a modelling framework
for rat movements in an experimental setup that it widely used to study learning
and memory. The approach is a top down approach that is data driven resulting
in simple linear models.

Applying systems theoretical tools to biology is often not straightforward,
and requires consideration of multiple different aspects. As a consequence, this
thesis takes a problem oriented approach that asks at any particular point what
is required to solve the problem? Therefore, there is no exhaustive background
chapter at the beginning. Rather, the preliminary knowledge for the problems
at hand are introduced directly where necessary. I feel this approach fosters the
readability of the document.

Part I: Develop theory tailored to biochemical reaction sys-
tems

Biochemical reaction systems are a means of understanding biology on a molec-
ular level using dynamic models of intra- and extracellular processes. The ques-
tion arise of how we can construct these models based on observations in exper-
iments. The systems and control community has developed several methodolo-
gies to build dynamic models from experimental data. The theory around these
methodologies is commonly referred to as systems identification and enables the
user to asses the reliability, quality and predictive power of the identified mod-
els. Most, if not all, of systems identification has been developed for technical
system and is not applicable to biology. The idea of this thesis is to see the
peculiarities of biological systems not as obstacle, but as stepping stone. More
concretely, the nonlinearity of biological systems has a certain form, which this
thesis exploits to develop novel identification methodologies. As a result these
methodologies are particularly tailed to biochemical reaction systems.

9 Dirk Fey
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Aim:

Develop reliable identification methods that guarantee accuracy by mathemat-
ical proof.

Strategy:

Exploit peculiarities of biological systems, in particular the special form of non-
linearity.

Techniques:

The techniques used to achieve the goal are mostly borrowed from systems
theory and adjacent fields:

e Sum of squares representation of polynomials

e Linear matrix inequalities and semidefinite programming

State space transformations

Observability and nonlinear observers

Differential geometry and Lie algebraic computations

e Lyapunov and dissipativity theory

Contributions:
The main contributions of Part I can be summarised as follows
e Model invalidation (using sum of squares and semidefinite programming)

— Extension of a steady state approach in the literature to transients
(Fey and Bullinger, 2010)

— Establishing connections between model/parameter invalidation and
observability

e Parameter estimation (using model extensions and nonlinear observers)

— Extension of a transformation for mass action systems into parameter
free coordinates to rational kinetics (Fey et al., 2008)

— Possibility to estimate time varying parameters and unknown inputs

— Circumventing observability issues by incorporating known parame-
ters

e Identification of modelling errors
— Detecting and tracing modelling errors and unknown inputs
e Nonlinear observer design

— Design of a globally convergent observer using Lie algebra (Fey et al.,
2009)

PhD Thesis (submitted version) 10



— Design of a globally convergent observer using dissipativity theory
(Fey and Bullinger, 2009)

e Data preprocessing/curve fitting

— Assessment of the influence of noise and data preprocessing

Part 11I: Develop modelling framework for the Morris water
maze

The Morris water maze is an experimental setup to study spatial learning and
memory. Rats are entrained to fulfil a certain navigational task, whereby the
path of movement can be recorded easily using a video camera. However, the
literature does not use the recorded paths in the analysis of the experiment.
Part two of this thesis closes this gap by developing a conceptual and math-
ematical framework for the analysis of the recorded paths. Thereby a data
driven approach is taken in which simple dynamic models of the rat behaviour
are constructed and identified. The methodology is generally applicable to other
experimental setups where animal movements are tracked.

Aims:

e Develop a framework for analysing recoded movement paths in the Morris
water maze.

e Model, identify, analyse and compare two different experiments.

Strategy:

Take a data driven approach using simple discrete time models that can be
readily identified using well developed system identification methodologies.
Techniques:

The techniques used to achieve the goal are mostly borrowed from systems
identification and adjacent fields:

e Auto- and crosscorrelation analysis
e Random walk, autoregressive and stochastic modelling
e Statistics and identification of distributions

e Model identification (Yule Walker etc.)

Standard feedback control (PID) and filtering

Contributions:
The main contributions of Part IT can be summarised as follows
e Development of a framework that uses recordings of entire swimming paths

e Development of several dynamic models of rat swimming behaviour in the
Morris water maze

11 Dirk Fey
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e Identification of these models in two different experiments, revealing that
the feedback strategy and strength depends on the training regime (here,
the availability of navigational cues)

— Three cues: use of immediate information and strong feedback
— One cue: additional use of past information and weaker feedback

e Analysis and predictions of the identified models

— In an egocentric, cue based strategy (i.e. self centred, no map) weak
feedback resulting in loose or sluggish control is beneficial in cases
where the environment provides insufficient information (one cue
case)

— Allocentric strategy (i.e. some sort of mental map or positional in-
formation) required to explain observed escape latencies in advanced
training stages (i.e. 4 or 5 days of training), but the positional infor-
mation may be very uncertain/fuzzy.

e Providing a hypothesis of how the model parameters relate to different
brain regions and activation of neuronal pathways

Publications

Bullinger, E., Fey, D., Farina, M., and Findeisen, R. (2008). Identifikation
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PhD Thesis (submitted version) 12



Part 1

Identification of biochemical
reaction networks

13






Chapter 2

Background

2.1 Molecular biology and systems theory

Modelling biological systems on the intracellular level has been a research topic
for over half a century. All started in 1943, when Erwin Schrédinger gave three
talks in Dublin entitled What is Life (Schrodinger, 1943, 1944). One of his
central, at that time a revolutionary idea, was that biological systems follow
physical laws. In other words, biological systems can be described by math-
ematical models. For the membrane potential, this was achieved in 1952 by
Hodgkin and Huxley, who explained and underlined their experimental data
with a mathematical model, a key step in understanding how neurons func-
tion (Hodgkin and Huxley, 1952). A few years later, Denis Noble expanded
this model to obtain the first mathematical model of the heart (Noble, 1960).
Nowadays, Hodkin Huxley models and variants thereof are a vital part of com-
putational neuroscience and widely used in research groups around the world.
Part of Hodgkin and Huxley’s success relies on the fact that they were able
to estimate the model parameters from experimental data. In other areas of
molecular biology, such as cell signalling and gene regulation, the identification
of mathematical models has proven to be much more challenging.

The advances in biological experimental techniques of the last decades has
led to a rapidly growing number of models (Li et al., 2010; Le Novere et al.,
2006). In signal transduction, the mitogen activated protein kinase (MAPK)
and the epidermal growth factor (EGF) were amongst the first systems to be
modelled (Huang and Ferrell, 1996; Kholodenko et al., 1999). From a modelling
perspective, cell signalling system are often composed of a number of similar
modules or motifs, such as dimerisation processes or phosphorylation cycles.
Biologically these modules are diversely implemented, i.e. composed of different
molecular species. As a consequence, although having the same interaction pat-
tern, one particular module can exhibit very different behaviours. For example,
the MAPK kinase consists of phosphorylation dephosphorylation cycles layered
in three stages (Kholodenko et al., 2010). This scheme is implemented by nature
in several variations involving different proteins such as ERK1, ERK2 or JNK.
A model of the MAPK system can exhibit totally different behaviours such
as homeostasis, near perfect adaptation and damped or sustained oscillations,
depending on the values of the kinetic parameters (Kholodenko, 2006). This ex-

15



Chapter 2. Background

ample illustrates the importance of choosing the correct parameters, especially
if the model is to be used for predictions.

The main bottleneck in obtaining dynamical models of biological systems is
the estimation of biological parameters, while structural information like stoi-
chiometry are often known. Unknown parameters can be estimated from time-
series data as is common practice in technical applications. Several peculiari-
ties of biological systems hinder a straightforward application of most existing
identification methodologies as typically used for technical systems. Biological
systems usually have a large number of parameters, though often only a reduced
set of experiments are possible, consisting of a few experimental steps and scarce
time points. Furthermore, the noise level is usually significant.

Recent years have shown that the control and system theoretical viewpoint
and approaches are valuable tools for gaining a deeper understanding of bio-
logical systems (Wellstead et al., 2008; Gilles, 2002a). As outlined however,
biological systems have particular properties, such as positivity and monotonic-
ity, not often found in technical applications (Sontag, 2005; Sontag et al., 2004).
This requires the design of novel methodologies particularly suited for biological
systems. Concerning metabolic pathways, a prominent example is metabolic
control analysis for sensitivity analysis developed in the 70ies (Heinrich and
Schuster, 1996; Fell, 1997). Metabolic control theory exploits the fact that
metabolic systems spent most of their time resting in steady state, an assump-
tion not sensible for signalling networks. Concerning signalling networks, such
unified theoretical treatments have not yet been established. This is partly due
to the fact that signalling systems naturally deal with the temporal integration
of ever changing extracellular conditions with the intracellular machinery. As
a consequence, the behaviour is often dominated by transient and nonlinear
effects. In fact, the nonlinearity of signalling systems often generate the phe-
nomena constituting particular biological functions. Examples are stable limit
cycle oscillations in the case of circadian rhythms and cell cycles, or bistable
switches in the case of cell fate decisions such as differentiation and apoptosis
(Leloup and Goldbeter, 2008; Eissing et al., 2007). From a theoretical perspec-
tive, the nonlinearity and behavioural complexity impedes the development of
a (unifying) biological theory. As a consequence, the field is diversified with
numerous theoretical works treating numerous specialised cases. Recently an
entire book Systems Theory and Systems Biology edited by Iglesias and Ingalls
(2009) was published on the subject. Next year, the International Journal of
Robust and Nonlinear Control and Automatica, both dedicate a special issue
to systems biology. In that spirit, my research focuses on the development of
identification methodologies that are particularly tailored to biological systems
from a systems theoretical perspective.

Before discussing particular aspects and problems of of model identification
in biology (including a very limited review of the state of the art) the next two
sections introduce to quantitative experimentation and a dynamic modelling of
molecular biological systems.

2.2 Quantitative data

Most quantitative measuring methods depend on a combination of size sep-
aration and the application of a specific high affinity receptor system. Size

PhD Thesis (submitted version) 16



Part . Identification of biochemical reaction networks

separation is achieved by driving macromolecules of various sizes through a
molecular sieve by an electrostatic potential in a process called gel or capil-
lary electrophoresis. The size-resolution of gel electrophoresis is rather limited,
which is why subsequent reporter systems are used in order to achieve the desired
specificity. The reporter is labelled by incorporating radioactive or fluorescent
molecules, which in turn produce readily measurable signals. The quantifica-
tion of these signals usually exhibits errors of around 10 — 20% or less (Szallasi,
2006).

For nucleic acids, highly specific reporters can be produced with relative ease
based on the Watson-Crick pairing. The high specificity of these probes allowed
for the elimination of the size-separation step (called Southern blot for DNA,
Northern blot for RNA) and led to the automatisation of the process by immo-
bilising either the probe or the sample mixture. These microarray/chip tech-
nologies are capable of high throughput, i.e. probing hundreds and thousands of
genes simultaneously, however with limited, uncertain accuracy (Draghici et al.,
2006).

Proteins are analysed in Western blots. The reporters are called antibodies.
Their production still depends on processes that can not easily be controlled,
resulting in limited availability and labour intensive production. Despite these
difficulties, today’s antibodies provide remarkable specificity, not only for in-
dividual proteins, but also for diverse posttranslational modifications, such as
specific phosphorylation states.

In principle the above described technique can be applied to single cell mea-
surements. However, the isolation of material for Western blots requires exten-
sive and meticulous bench work. An rather convenient alternative is attaching
a fluorescent protein to the molecule in question and measuring the fluorescent
intensity directly without destroying the cell. The number of different fluores-
cent proteins that can be fused to other proteins of interest limits the number of
measurable proteins. A drawback that can be overcome partially by combining
fluorescent labelling with multi parameter flow cytometry (Irish et al., 2006).

The above outlined methodologies are only a partial snapshot of current
techniques, however spotlighting those that can provide the quality of data that
is necessary for the identification of dynamic models. For a more comprehensive
treatment of the subject, I refer to de Graauw (2009) for phospho-proteomics
and Gstaiger and Aebersold (2009) for mass spectrometry. The next section
introduces to dynamic modelling of biochemical reaction networks in systems
biology.

2.3 Dynamic modelling

A common framework for the modelling of biochemical reaction networks are
sets of reactions of the following form

a181+...+anSSns _>61P1+~'~+ﬁnppnpa (21)

where S; are substrates that are transformed into the products P;. The factors
«; and (; are the stoichiometric coefficients of the reactants.
Neglecting spatial and stochastic effects, these reactions are often modelled
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with systems of ordinary differential equations:
¢ = Nu(e,p), (2.2)

where ¢ € R% is the vector of concentrations, p € RZ% the parameter vector
and v € R% x R1% +— RY, the vector of the flows. The stoichiometric matrix
N € R™™ depends on the coefficients «;, (3; and, possibly on factors compen-
sating different units or volumina. For a more detailed introduction, see for
example (Klipp et al., 2005; Keener and Sneyd, 2001).

There is a large variety of possible reaction models (Cornish-Bowden, 2004).
Here, we restrict the reaction models to the most common ones in signalling
networks:

e mass action: The flow is proportional to each substrate: v = k[[;c; ¢
where I is a subset of 1,...,n with possibly repeated entries;

e power law (S-Systems, generalised mass action) The flow is polynomial

in the substrates: v =k ][,y ,,) ¢

e Michaelis-Menten or Monod: for low substrates the flow v depends
linearly on the substrate s and saturates for large substrate concentrations

at Vinax: v = Vmaxm. At a substrate concentration of Ky, the flow is
half the maximum rate.

e Hill: The flow is sublinear for low substrate and saturates for large sub-
h
ax =i—- Lhe exponent h is larger
Ky +s
than one and at a substrate concentration of Kj;, the flow is half the
maximum rate.

strate concentrations at Viax: v = Vi

In biochemical reaction modelling, the stoichiometry is usually known, as is
the type of reaction kinetics, in contrary to the often quite uncertain parameters.
Thus, the problem can be formulated as follows:

Given: The stoichiometric matrix N and the form of the function v(e¢,p) de-
scribing the reaction rates

Unknown: The kinetic parameters p

The next section introduces to the task of estimating the unknown parame-
ters.

2.4 Classical identification methods and draw-
backs

Constructing mathematical models from experimental data is a fundamental
element of science (Ljung, 1999). Multiple communities approach the prob-
lem differently from different perspectives such as time series analysis, machine
learning or manifold learning, with statistics at the core (Ljung, 2010). From a
control or systems theoretical perspective, building dynamic models from data is
summarised under the term system identification. Taking a systems theoretical
perspective, the following sections discuss some aspects of system identification
that are relevant in the context of systems biology and this thesis.
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Structure vs. parameter identification

Classical control theory reduces the problem of systems identification to param-
eter estimation. This means we first have parameterise the problem by choosing
a model class or model structure, and then estimate the model parameters. Of-
ten the term model identification is used when little is know about the structure
of the system, i.e. the chosen model class is fairly general, whereas the term pa-
rameter estimation is used when a parametrisation is (naturally) given. For
example, identifying a finite impulse response system

y[n] = bouln] + biun — 1]+ ...

means estimating the coefficients b;, i.e. parameter estimation. It is however
usually referred to as system identification because no prior assumptions on the
structure, i.e. the number coefficients b;, are made. Finite impulse response sys-
tems are a prime example in that respect, because the coefficients are directly
given by the impulse response and we can directly see the structure of the sys-
tem, i.e. all nonzero coefficients. Thus, in this example, the distinction between
structural identification and parameter estimation thus degenerates.

Generally however, it makes sense to distinguish structure from parameter
identification. In molecular biology, determining which components interact is
a form of structure identification and subject of intensive research in the field of
bioinformatics (Lee and Tzou, 2009; Li et al., 2008; Csete and Doyle, 2002). We
can approach the problem from a systems theoretical point of view by means
of a very simple idea (Kholodenko et al., 2002). The interaction pattern of a
dynamic system ¢ = f(c) is given by its Jacobian %, in which non zero elements
describe which species interact. Kholodenko et al. (2002) derived a methodology
of how to estimate a normalised version of the Jacobian based on disturbing each
species and measuring the effect on the steady state, which has successfully been
used in praxis (Santos et al., 2007). Sontag et al. (2004) relaxed the requirement
of having to disturb each species by extending the method to transient, non-
steady state conditions using the concept of observability. A drawback is that
second and higher order derivatives of the measured variables have to be accu-
rately calculated. This might be unrealistic in a biological setting where data
is associated with a high level of noise or uncertainty (Personal correspondence
with Prof. B. Kholodenko). In that scenario, taking a probabilistic view might
be preferable (Needham et al., 2007; Dojer et al., 2006). In Bayesian learning for
example, probabilities are used to represent uncertainties about the interactions
to be identified. Before looking at any data, our prior opinions about what the
interaction pattern might be can be expressed in a probability distribution over
the Jacobian or interaction graph. By looking at the data, Bayesian algorithms
revise our opinions and capture these revision in posterior distribution. The
posterior distribution then tells us which interactions are most likely.

Structure identification is a huge and quickly moving field; the above ex-
amples present only a tiny portion. For a more comprehensive treatment see
for example the book Computational Systems Biology (Ireton et al., 2009). Fur-
ther, there are entire databases dedicated to the mapping of molecular biological
interactions (STKE, 2010; KEGG, 2010; EcoCyc, 2010). As detailed in the pre-
vious section, this thesis assumes that the systems structure is already known. If
the structure is known incorrectly, the methodology developed in Chapter 3 can
be used to invalidate the model and the methodology developed in Chapters 4
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to 6 can be used to identify the error.

Discrete vs. continuous

Discrete-time models are common in engineering. Their estimation is often
achieved by minimisation of quadratic functionals (Gadkar et al., 2005; Ljung,
1999). Even in nonlinear cases, discrete identification problems can often be
reduced to linear algebra and solved efficiently. In systems biology however,
the models are usually time-continuous as described in Section 9. In principle,
discretisation makes the machinery of classical, well developed systems theoret-
ical tools available (Rumschinski et al., 2010; Garnier and Wang, 2008). How-
ever, these models are the result of first principle modelling and, for example,
retain the linearity in the parameters for mass action kinetics. Additionally,
time continuous models are less sensitive to noisy measurements common in
biology (Garnier et al., 2003). For these reasons, time continuous models are
preferable in systems biology, even though there are only few suitable continuous
identification algorithms.

Global vs. local

Global, optimisation based parameter estimation algorithms are common in
systems biology (Moles et al., 2003; Feng and Rabitz, 2004; Singer et al., 2006).
Examples are Monte Carlo based approaches such as simulated annealing and
evolutionary strategies (Beyer and Schwefel, 2002), multiple shooting (Peifer
and Timmer, 2007) and branch and bound algorithms (Polisetty et al., 2006).
These methods formulate the parameter estimation as the minimisation of the
error between simulated and measured outputs, subject to the model dynamics
as constraints. The resulting optimisation problem is usually non-convex, i.e.
difficult to analyse theoretically and the computational complexity for solving it
grows significantly with the size of the parameter space (Polisetty et al., 2006).
Alternatives are local search strategies such as gradient based methods (Boyd
and Vandenberghe, 2004; Zak et al., 2003). The problem with local search
strategies is that they can get trapped in local minima. Therewith, their main
disadvantage is the need for a good initial guess.

Monte Carlo based, as well as local strategies suffer from the fact that no
guarantee of global convergence or optimality can be provided.

Specialised approaches for biological systems

The previous section underpins the necessity for developing novel parameter
estimation algorithms that are particularly suited for systems biology (Ljung,
2003). Algebraic approaches that take the model structure explicitly into ac-
count (Audoly et al., 2001; Ljung and Glad, 1994; Xia and Moog, 2003), but
are only applicable to small systems. Other approaches that are for example
based on interval analysis and constraint propagation (Tucker et al., 2007) or
a quadratic system description (Karnaukhov and Karnaukhova, 2003) are only
applicable in particular cases. Thus, there is still a need for numerical solutions
that exploit the structural information.
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Parameter invalidation
using semidefinite
programming

3.1 Introduction and related work

In principle, the continuous parameter estimation problem can be solved by in-
tegrating (2.2). The difficulty with the integration based approach is twofold.
On the one hand, an analytic solution of the integral [ Nuv(c,p)dt can only
be computed in rare special cases, which are generally not relevant in biol-
ogy. On the other hand, numerical integration requires to specify the unknown
parameters p (and initial conditions ¢(¢t = 0)) beforehand. Most parameter es-
timation methods deal with the dilemma of specifying the unknown parameters
by choosing parameter values a priori, numerically integrating the differential
equations and then comparing the result with the data a posteriori (Kuepfer
et al., 2007). Advanced methods run a loop in which the parameters are up-
dated after each integration step, for example using an evolutionary strategy or
a gradient based approach (Peifer and Timmer, 2007; Moles et al., 2003). But
even iterative methods do not resolve the fact that only a single parameter set
can be considered at a time. Consequently it is impossible to conclude that the
best parameter values were found, or that no good solution exists, i.e. that the
considered model is inconsistent with the collected experimental data. In fact,
the procedure might simply fail to obtain a good parameter estimate.

The above mentioned drawbacks arise from a point-wise checking of the
parameter space, which is highly inefficient for a large number of parameters.
Here we circumvent this problem by presenting a methodology that is capable of
checking entire parameter regions. Instead of providing a parameter estimate,
the proposed methodology provides certificates for different parameter regions
by proving their inconsistency with experimental data, thus reducing the entire
search space to a comparable small fraction containing good solutions (and the
true parameters).

The method is based on a polynomial representation of the system dynamics
in terms of sum of squares (Parillo, 2003). Such polynomial representation is not
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restricted to polynomial kinetics, but also possible for general rational kinetics
as they for instance appear in metabolic pathway modelling, as will be shown
in Section 3.4. Based on the sum of squares representation, a relaxed semidefi-
nite program is formulated (Boyd and Vandenberghe, 2004). As a consequence
of the relaxation it can not be proven that a parameter is consistent with the
data, because a solution of the relaxed problem is not necessarily a solution
of the original problem. We can however prove inconsistency of entire param-
eter regions: If the semidefinite program is infeasible for a certain parameter
region, then this region does not contain parameter values consistent with the
data. Checking feasibility of the semidefinite program can be done efficiently
using high quality software such as SeDuMi and YALMIP, which also provide a
high level programming language for implementing the problem (Sturm, 1999;
Lofberg, 2004).

First, I review the state of the art, by restricting Section 3.2 to systems with
polynomial kinetics in steady state. This facilitates the communication of the
main ideas. Afterwards, Sections 3.3 to 3.4 present extensions developed in the
course of my PhD studies, with the main contribution being the relaxation of
the steady state assumption.

3.2 Review: Steady state analysis for systems
with polynomial kinetics

This chapter is based on Kuepfer et al. (2007) and addresses the problem of
whether a certain parameter region is consistent with measurements of the
species concentrations in steady state.

The problem can be formulated as follows

P1: find c,p
s.t. Nuv(e,p) =0
Gi—€<c<c +¢ 1=1,...,n
Pjmin < Pj < Pjmax Jj=1....,m

where ¢; is the measured concentration of species i, €; the corresponding mea-
surement uncertainty and p; min, Pj,max lower and upper bounds on the param-
eter defining the parameter region to analyse.

Expressing the righthand-side of the ordinary differential equations
as sum of squares

Often, the reaction rates are linear (affine) in the parameters and polynomial
of degree d in the concentrations. i.e. v(c,p) € Rle,p]%!. Let

fT:[l PL ... € ... C1Co ...CZ] (3.1)

be a vector of monomials constituting a basis for R[c,p]%!, then the reaction
rate can be written as a sum of squares (SOS)

vj(e,p) = V€T, i=1,...,m,
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where Vj is a symmetric matrix. Therewith a SOS-representation for the righthand-
side of the ordinary differential equations (2.2) is given by

ZNi,jUj(Cap) = ¢RET, i=1,...,n,
j

where the symmetric matrices R; are given by
R, =) NyVj, i=1,...,n. (3.2)
J

Thus the inequality constraint in Problem P1 can be expressed in terms of the
monomial basis vector £ as follows:

ETRE=0 i=1,...,n, (3.3)
where the symmetric matrices R; are constructed according to (3.2) and € is a
monomial basis vector as defined in (3.1).
Dependencies within polynomial basis vector

The monomial basis vector consists of linearly independent functions. Never-
theless, nonlinear couplings have to be respected. For example, let &9 = ¢q,
£11 = co and &35 = cico, then it must hold that £10€11 = &15. In analogy to the
previous section, these dependencies can be expressed as SOS

T .
& D=0, t=1,...,n4
where D; is a symmetric matrix and ng the number of nonlinear dependencies
in the polynomial basis vector.
Measurements and parameter regions as constraints

Let p(p,c) be the mapping of the parameters p and states ¢ to basic vector of
monomials, i.e.

gz{M;@}

By construction, the elements of p are monotone and therefore assume their
minima and maxima for (Pmin, Cmin) and (Pmax, Cmax) respectively. The inequal-
ities ¢ min < ¢ < Cimax a0d Py min < Pj < Pjmax are thus covered by

Bé- > 0; with B = _Mj(pmin; cmin) CJT 7
Hj (Pmax; Cmax) —€;

where e; is the is the j-th Euclidean unit vector, i.e.

1 ifi=y
€i; =
7 0 otherwise.
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Relaxation to a semidefinite program

A relaxation of the original problem is now found by defining X = &£7 (Par-
illo, 2003). The resulting non-convex constraint rank(X) = 1 is dropped in
the semidefinite program. Several other convex constraints arising from the
definition of X such as X1; = 1 and X > 0 are still used.

RP1 find XesS
s.t. tr(R;X) =0 i=1,....n
tr(D; X) =0 i=1,...,nq
el Xep =1
BXe; >0
BXBT >0
BXe, =0,

where e; = [1, 0, ...]T, n is the number of species and and n, the number of
nonlinear dependencies in the polynomial basis vector €.

3.3 Extension to transients

The previous section considered steady state analysis, i.e. ¢ = 0. This section
extends the methodology to include dynamics, i.e. ¢ # 0. The approach requires
the knowledge of the time derivative of the states ¢. In principle this can be

achieved by measuring c(t) at at least two proximate time points and calculating
c(tz)—c(t2)
to—1t1 :

¥;(t) with well known derivatives t;(t) are fitted to the measurements, are
preferable because of better accuracy and measurement noise reduction.
The problem can be formulated as follows

¢ = In practice, curve-fitting techniques in which basic functions

P2: find c,Cp
s.t. Nuv(e,p) —¢=0
Ci;min < € < Cimax 1=1,...,n
Pjmin < Pj < Pjmax j=1,...,np
Cimin < € < Cimax i=1,...,n

where ¢; min, Ci;max, Ci,min; Ci,max are lower and upper bounds on the measure-
ments of the species concentrations and their derivatives respectively, and p; min,
Dj,max are lower and upper bounds defining the parameter region which is to
analyse. Similarly to Section 3.2 this section finds a relaxation of the problem
to a semidefinite program using sum of squares.

Representing the ordinary differential equations as sum of squares

Recall that Section 3.2 established a sum of squares representation for the
righthand-side of the differential equations

¢ =ETRE. (3.4)
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Using the extended version of the basis vector of monomials
"=1[¢" ¢,
The equality (3.4) is equivalent to

i &y i=1,...,n, (3.5)

'Qi¢=0 with Q; = |:S;I' 0

and with the matrix R; as in (3.2) and with the matrix 5; of dimension dim ¢ xn
defined elementwise, i.e. the element k,[ of S; is

—-1/2 itk=1,1=1
S, = ] .
0 otherwise

Therewith the equality in Problem P2 is expressed by
¢"Qi¢ =0, i=1,...,n. (3.6)

Measurements and parameter regions as constraints

Setting up the constraints is virtually the same as in Section 3.2. The only
difference is that the mapping u has to be extended to include ¢, i.e.

1

(p,c,¢) = ¢ (= |ppc)
C

The inequalities are set up with the extended mapping

U(p, e, ¢) = [“(p.’c)} .

c

leading to the matrix B

—V§(Pmin; Cmin, Cmi e
_ J(pmma min; mm) jT ’ (37)
vy (pmax; Cmax) Cmax) —€;

covering with B( > 0 the inequality constraints in Problem P2.

Relaxation to a semidefinite program

Based on (3.6) and (3.7), the relaxed problem in the transient case is the fol-
lowing semidefinite program

RP2 find ZesS
s.t. tr(Q:Z) =0 i=1,...,n
tr(D;Z) =0 i=1,...,nq
el Zey =1
BZe1 >0
BZB" >0
BZe, = 0,
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where the @); are defined in (3.5), B is defined in (3.7) and Z € S is the relaxed
version of (7 corresponding to X in Section 3.2.

Example: Simple toy model

This Section illustrates the proposed methodology using a simple toy model that
has an analytical solution. This allows to validate the proposed approaches.
Consider the following system of reactions

S+E—~C+E, c—S.

Using the law of mass action the concentrations are described by the following
system of ordinary differential equations

1 -1

10 0|ven) v<c,p>=[
s —1 1

i Z ]~€18 €:|
dt

p2cC

where c, e, s are the concentrations of C, E, S respectively and k; and py are
the kinetic parameters. Using that e is constant (é = 0) we can set p1 = kie
as a constant parameter. Further using the conservation law s(t) + c(t) =
Sy, the system is described by a single ordinary differential equation for the
concentration of C'

=1 —1]v(e,p), vie,p) = {plsgz—cplc] '

A monomial basis vector for this system is
¢=[1 p p2 So ¢ ¢,

which allows the application of the method as described in Section 3.3. However,
due to the simplicity of the system we can also analyse the problem analytically
as follows. By setting ¢ = 0 we can see that in steady state the parameter p;
depends linearly on the parameter p, with p; = ﬁpg, where ¢ denotes the
steady state concentration of C' (see Figure 3.1). In the case of perfect measure-
ments, this dependency is a one dimensional line in the parameter space. In the
case of uncertain measurements (i.etpper and lower bounds on the measured
concentration), this dependency results in a two dimensional cone in the param-
eter space (see Figure 3.1 for an example with 10% measurement accuracy). In
the dynamic case, the concentration changes over time depending on the initial
condition ¢(t = 0) # ¢. When ¢ is measured or estimated from measurement
of ¢ at several time points ¢;, the cone of admissible parameter regions changes
over time. Figure 3.1 illustrates this time dependency for ¢ = 0 and ¢ = 1. Since
the parameters have to be consistent at all time points, only the intersection
contains admissible parameter values, and in fact also the true parameter values.

Example: Lotka-Volterra model

The famous LotkaVolterra equations describe the population dynamics of two
interacting species, with one being the prey, the other being a predator:
é1=ci(p1 — ¢2),
o = c2(—p2 + 1),
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Figure 3.1: Consistent parameter regions for measurements at two different
points in time. Red: for the transient at ¢ = 0. Blue: in steady state (¢ = 1).
The dashed lines indicate the parameter dependencies for perfect measurements.
The true parameter value that generated the data is the intersection of both
dashed lines. The cones represent the admissible parameter values for 10%
measurement uncertainty. Only the intersection is consistent with both mea-
surements.

where ¢; and ¢y are the concentration (e.g. number of animals per habitat) of
prey and predator respectively, and p; and ps are parameters describing the
birth rate of the prey and the mortality rate of the predator (Murray, 2007).

The model is used to illustrate that the proposed methodology is applicable
to systems with periodic (non-steady-state) trajectories. The model was chosen
because it is well studied and results obtained by the proposed methodology can
thus be verified easily. The semidefinite program was constructed according to
Section 3.3 with the monomial basis vector

(=01 p p2 So a e & G,

Feasibility checking on a grid of parameter regions resulted in small oval-shaped
parameter regions. For measurements at different time points, these regions were
slightly different, such that the admissible parameter region could be reduced
slightly by taking the intersection.

The two examples nicely illustrate that the methodology is applicable to
measurements of transients, and that combining measurements at two or more
time points significantly reduces the region of admissible parameters.

3.4 Extension to rational kinetics
The presented methodology is easily extended to systems with rational kinetics.

All that is required for the relaxation to a semidefinite program as presented in
the previous sections is a sum of squares representation of the system of ordinary
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Figure 3.2: Simulation results of the Lotka-Volterra example. (a) Trajectories
that generated the in-silico data. Circles indicate the time points where the fea-
sibility problem was checked. (b) Consistent parameter regions for two different
points in time. Only the intersection is consistent with both measurements. Re-
sults were obtained with 10% measurement uncertainty.

differential equations

rle,p) (3.8)

¢ = Nu(c, p), with v;(c,p) =

where 7, ¢ € Re, p] are polynomial functions.

A polynomial representation of system (3.8) is easily obtained by multiply-
ing left- and righthand-side of each equation with all denominators of v(c, p),
yielding

> Nigpi(e(t),p) = [ an(et),p) = éitr) [ an(etr), p),
j P

k#j
which can be expressed as
OZfZ(Z), i:l,...,n

where 27 = [pT" " ¢'] and f € R[z]*? is a multivariate polynomial. Let the
degree of this polynomial be 2d < co and let ¢ be a basis of R[z]¢ consisting of
monomials, then there exists a symmetric matrix Q € S?™? such that

filz) = ¢TQuC, i=1,...,n.

In practice, the polynomial representations is often sparse, i.e. the matrices
Q; have common zero-rows and -columns. Then these zero-rows and -columns
in @; as well as the corresponding monomials in the basis ¢ should be removed
(Waldherr et al., 2008). Let Q; be these reduced matrices and let ¢ be the
corresponding reduced basis, then @; is to be used in the semidefinite programm
RP2, and the matrices B have to be constructed according to the monotone
mapping (¢, p, ¢) — ¢ as described in Section 3.3.
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Example using rational kinetics: Double phosphorylation cycle with
Michaelis-Menten kinetics

Consider the following reaction scheme of a double phosphorylation cycle

v1(R) v3(R)
1~ 2~ K37
vz (P) va(P)

where the reaction rates follow Michaelis Menten kinetics

RKl RKQ
v = _— Vg = [
1 p1P1+K17 3 p3P3+K27
PK2 PKB
Vo = Po—"Ht, VY =Pp—=——.
2 p2P2+K2 4 p4P4+K3

Here, R and P act as enzymes for the phosphorylation and dephosphorylation
process respectively. We can consider the concentration of R as an input, al-
lowing us to stimulate the system, whereas we assume for simplicity that P is
constant with P = 1. Using the conserved moiety K1 + Ko + K3 = Ko = 1 the
resulting system of ordinary differential equations is

RK, R(1 - K — K3)
P + p2 )
P+ K P+ (1—-K; — Ks)
B (1-K,—Ks) K3
= D3 — D4 .
Ps+ (1 - K;— Kj3) P, + K3

K= -

(3.9a)

K (3.9b)
If both states are measured, i.e. y = [K) KQ}T, the estimation of the param-
eters in v; and v3 is decoupled from the estimation of the parameters in v and
vy. In the following we focus on estimation of the parameters in v; and vy. We
bring (3.9a) into polynomial form and substitute Ky = y1, K1 = {1, K3 = y3:

Poy191 + Poyi R+ Potn Py — 391 — viR — 19192 — yith P — yiya R — . ..

2P+ 95+ yidn + yiye + i Pr+ i R+ Pr+yo Pr— g1 — P = 0.
(3.10)

Figure 3.3 shows a simulated time course of the system in response to a step
input (R = 1) and the corresponding parameter dependencies in (3.10). Al-
though generally nonlinear, the parameter dependencies are linear in steady
state (because (3.10) is affine in the parameters for y; = 0).

3.5 Extension to partial state / output measure-
ments

One of the drawbacks of the sdp approaches described so far is that all states
have to be measured. Such a scenario is rather unrealistic for real biological
problems. In general, only some of the states, or even a function of the states,
can be measured. Mathematically, we can take this fact into account by intro-
ducing an output function describing the relation of states and measurement.
To that purpose, this section considers systems of the form

¢ = flep), y = h(c,p),
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Figure 3.3: Rational kinetics: Double phosphorylation cycle with Michaelis-
Menten kinetics. (a) System response to a step input. Solid lines show con-
centrations of unphosphorylated kinase K; and double phosphorylated kinase
K3, dashed lines their respective time derivatives. Dotted lines indicate the
time-points where the parameter dependencies (3.10) where evaluated. (b)
Parameter-dependencies between the two Michaelis Menten constants P; and
P, as given by (3.10) for different time-points. Dotted lines indicate the true
parameter values. The dependencies are linear in steady state. (c) Con-
sistent /inconsistent parameter regions obtained via semidefinite programming
with a relative uncertainty of +10%.

where f = Nv(c, p) contains the reaction kinetics and stoichiometry and h(c, p)
is the output function describing the measurement.

What we need to do in order to set up a sdp as described in the previ-
ous sections is to reconstruct the states ¢ from the measurements y and their
derivatives:.

y = h(c,p),
. Ooh
Yy = %f(c7p)7

3.5.1 Simple extension using only the differential equa-
tions

In the simplest case, we can reconstruct the unmeasured states only using the
differential equations themselves, i.e. only using the first output derivative g. A
necessary condition for this to work is that at least half the states are measured.
Consider the following system

o) = e y=1r 0|72,
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where, without loss of generality, ¢; denotes the measured and ¢y the unmea-
sured states. Therewith the output derivative is simply Lyh = fi. If the
mapping f1 : co — ¥y is injective, there exists a dissection with

AR IR A

Y2 fiz(c1,c2,p) fi2

such that f11 : co — g7 is invertible. Substituting the partial state estimate
c1 = y into this invertible part and solving for the unmeasured states gives

1 =Y

C2 = fﬁl(yvylap)'

Finally, substituting the above solution into the second part of the dissection
f12 gives the parameter conditions

92 = fr2(y, i (v, 91, 9). D) (3.11)

If (3.11) is at least rational, it can be brought into polynomial form by mul-
tiplying through with the denominator. Let mnum,; and 7gen,; be the numera-
tor and denominator of the components of fi2(y, f1; (v, 91,p),p) respectively,
then (3.11) is with 27 = [yT, 97, pT} for nonvanishing denominators equivalent
to

Tden,i — yQ,iﬂ-num,i =T (Z) = 07

where m; € R[z]?¢ is a multivariate polynomial of degree 2d < co. Let ¢ be a

basis of R[z]?¢ consisting of monomials, then there exists a symmetric matrix
Q € 8™ such that

mi(2) = (TQi( =0,

which can be used to set up the sdp as described earlier.

Sufficient conditions for the existence of a sums of squares represen-
tation

The question whether the parameter condition (3.11) can be brought into poly-
nomial form depends on f;;. Clearly, a sufficient condition is that f1_11 is ratio-
nal. Therewith we can formulate the following theorem.

Lemma 3.1 If fi; is affine in the unmeasured states co, i.e. it can be written
as f11 = A(c1,p)ca +b(cq, p) then the parameter condition (3.11) is rational and
can be written as a sum of squares (7' Q¢ = 0. m

Proof. Because v(c,p) is rational, b(cy, p), A(c1,p) and therewith A=1(cy,p)
are rational. Consequently co = A=1(c1,p) - (é1 — b(cq, p)) is rational. n

The following theorem establishes the connection to the stoichiometry for mass
action systems and provides a sufficient condition in terms of the stoichiometry.
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Theorem 3.1 Consider mass action systems and assume that at most one un-
measured species occurs in each reaction. Further assume that all reactions
orders with respect to the unmeasured states are one, i.e. the corresponding
stoichiometric coefficient is one. Then the parameter condition (3.11) is ratio-
nal and can be written as a sum of squares (T Q¢ = 0. [

Proof . The proof follows directly from Lemma 3.1. To see this, note that
with the above assumptions the reaction rates are affine in the unmeasured
states cs. ™

Note that the above theorem is also valid for reduced mass action systems.
Often, mass action systems are described with a reduced set of differential equa-
tions using conserved moieties. Conserved moieties arise from dependencies in
the stoichiometric matrix Ngep = LoNindep resulting in the state dependencies

Cdep(t) = LOCindep(t) + Cdep(o) - LOCindep(O)-

Substituting the above state dependencies back into the differential equations
gives the reduced system. Because the differential equations are affine in ¢y and
the state dependencies are affine, the reduced system is affine in ¢ and we can
apply Lemma 3.1.

Remark Because the procedure does not use the differential equations of the
unmeasured states fs, no information can be obtained about parameters only
occurring in fa. ™

Example partial state measurement using only the differential equa-
tions: Phosphorylation cycle

Consider the following phosphorylation/dephosphorylation cycle

K1+Rv:1K2v—3>K3+Ra

V2

K+ P o= K, " K, +P,

vs

where the reaction rates follow mass action kinetics

v = leKl, 0) :pgKQ, U3 = p3K25
V4 = PKg, Vs =p2K4, Ve = p3K4-

Here, R and P act as enzymes for the phosphorylation and dephosphorylation
process respectively. The conserved moieties K1 + Ko + K3+ K4 = Ky = 1,
P+ Ky=PFPy=1and R+ Ky = Ry allow us eliminate the states K4, R and P.
We can consider the concentration of Ry as an input, allowing us to stimulate
the system, whereas we assume for simplicity that Py is constant with Py = 1.
The resulting system of ordinary differential equations is

K1 = —p1(1 — K2)K1 + po Ky + p3(1 — K1 — Ky — K3), (3.12a)
Ky =pi(1 - K2)Ky — p2 Ky — p3 Ko, (3.12b)
K3 =psKy — (K1 + Ko + K3) K3 + pa(1 — K1 — K3 — K3). (3.12¢)
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Measuring the unphosphorylated and phosphorylated kinase y; = K7 and y» =
K3, allows to solve (3.12a) for the unmeasured state

_ P11+ 91— p3 + p3y1 + paye

K>
P2 —p3 +p1a

Substituting the solution into (3.12c) and bringing into polynomial form gives

— PaP1Y2y1 — P2P1Y; — PLYSYL — PLY2Y; — Doy — D3y — P2ys—
Pay2y1 — P1Y2y1 — P1y1%2 + PLyip3 + Y23 + yip3 + p3 — path—
P2tz — Ya1 + Y2ps + 1p3 + Yapz — p3 = 0,

which can be used to set up the semidefinite programme. Figure 3.4 shows
the response of the system to a step input of R, the corresponding parameter
dependencies and feasible parameter regions as obtained by sdp. For the purpose
of simplicity of presentation, Fig. 3.4 assumed p3 = 1, i.e.

— P2p1Y2y1 — Pzply% - plygyl - Plyzy% —pgm —p%yl - szg — P2Yy2y1 — ...

— P1Yay1 — P1Y1U2 + Pa — Dot — Pal2 F Py — Yol F2y2 i 1+ —1 = 0.
(3.13)

Because (3.13) is quadratic, it has two solutions when solved for either pa-
rameter in dependence of the other, e.g. pa(p1) = F1(p1) £ Fa(p1). The solutions
depend of course on the measured outputs and their derivatives y; (t), 91 (¢), y2(t)
and y2(t), which change over time. This time dependence is illustrated in Figure
3.4b, which also shows that both solutions are positive for a wide range of pa-
rameters. Further the Figure shows that the time-dependent solutions intersect
at the true parameter value.

Building the semidefinite programme with (3.13) and checking its feasibility
over a parameter grid gives similar results. Because the sdp analyses the prob-
lem on a grid of parameter regions with size of 0.2 in each direction, the true
solution is not recovered exactly. Instead we obtain a small parameter region
that contains the true solution (see Fig. 3.4c).

3.5.2 General considerations using higher order Lie deriva-
tives

Consider the system

¢= fle,p) y = h(c,p),

where the function h : ¢ — y describes the output measurements. Its observ-
ability space is defined as

O={h, Lgh, L%, --},

where the operator Ly is the Lie derivative. If the system is observable, choosing
(at least) n linearly independent functions ®7 = [qbl, Sy qbn} € O enables
us to reconstruct the states from the outputs and their time derivatives. To
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Figure 3.4: Partial state measurement using only the differential equations:
Phosphorylation cycle. Unphosphorylated and phosphorylated kinase was mea-
sured y; = K1, y2 = K3. but not the complex Ks. (a) Systems response to a
step input of R. Concentrations of measured quantities: unphosphorylated and
phosphorylated kinase (solid), and their respective time derivatives (dashed).
(b) Parameter dependencies for measurements at different time points as given
by (3.13). (c) Feasible parameter regions for two time points: ¢ = 0.1 and ¢ = 5.

that end, let z € {y, Yy, - } the outputs and their derivatives corresponding
to the chosen mapping @, then inversion of ® reconstructs the states:

z=®(c,p) — c=37(z,p)

To get information about the parameters, we derive parameter condition
using (at least) one more linearly independent functions in O. Let §; := L’Jihi
be those functions, then

- _ !
LEhi(e,p) = 3;(2 7 (2,0),p) = g;(2,p) = 4 (3.14)

must hold true. Because z and ygk) are known from measuring the outputs, (3.14)
provides conditions for feasible parameters.

Uniform observability
Preferably, one would use successive derivatives, i.e.
LY ®,
D, = : hi(c, p) =1
L= ®,,
where n is the number of states and m the number of measured outputs. If the

system is uniformly observable, the observability map ®(c) can be inverted and
the parameter conditions are

yit =LY hio @7 (2,p),
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(k1) ClE

where z = |y, SR e

A sufficient condition for the existence of a sums of squares represen-
tation

A sufficient condition for the parameter condition (3.14) to be rational is that
the differential equations describing the system are rational in the measured and
affine in the unmeasured states.

Theorem 3.2 Assume that the system is observable, and further, that it is
rational in the measured states and affine in the unmeasured states, i.e. it can
be written as

c= [2;:| :A(Cl,p)02+b(01,p), Yy = c1,

where A(cy,p) and b(c1,p) are a matrix and a vector with entries that are
rational functions of ¢; and p. Then the parameter condition (3.14) is rational
(defining a semi-algebraic variety) and can be represented by a sos (TQ¢. m

Proof. The derivative of the output is an affine function of the unmeasured
states co

y = ¢1 = Aq(cr,p)ee + bi(er, p).

We show by induction that all output derivatives of any order are affine functions
of ¢g. Define

Zk:[y VR y(k)}

as the vector containing the output and its derivatives up to order k.
Induction basis:

y = Ai(z0,p)ca + b1(z0,p)

is affine in cs.
Induction step: Assume that the j-th derivative of the output is affine in ¢y and
can be written as

y(J) — Al’j(zj,p)CQ + bl,j(zjap)'
Then

- 0A1 (z,p) 0b1,j(2,p)
Gty = FAL\EGP) o TOLGNELP) A )G
Y 0z jC2 0z J LJ( va) 2-
Substituting ¢o = A1 (20, p)c2 + b1(20, c2) yields an affine function in ¢y that can
be written as
YU = Ay ji1(2j41,0)e2 + b1y (2541, D)
Because the system is observable, we can pick n linearly independent functions
defining an affine system of equations

zZ = A(Z,p)CQ + B(Zap)7
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where z € {y, Yy, - } Its inverse is a rational function of z

c2 = A(z,p) (2 — B(z,p)),

wherewith the parameter condition is a rational function and can be brought
into polynomial form by multiplying through with the denominators. n

The above theorem established an important fact, namely that for systems
that are affine in the unmeasured states, the inverse of the observability map
is rational. Therewith, the parameter condition can be formulated as a sum of
squares as described in the previous sections.

Example partial state measurement using higher order derivatives:
Double phosphorylation cycle

Consider the following phosphorylation/dephosphorylation cycle

Ki+R Ko+ R 2 K3+ R,
Ks+P 2 Ko+ P2 K+ P,

where the reaction rates follow mass action kinetics

v1 =p1RKq, vy = pa RK,
v3 = p3PK3, vy = ps PKo>.

Here, R and P act as enzymes for the phosphorylation and dephosphorylation
process respectively. The conserved moiety K1 + Ko + K3 = Ko = 1, allow us
eliminate the state Ks. We can consider the concentration of R as an input,
allowing us to stimulate the system, whereas we assume for simplicity that P is
constant with P = 1. The resulting system of ordinary differential equations is

K1 =-p1RK; +p3P(1 — K — K3), (3.15a)
K3 = —psPK3 + poR(1 — K — K3). (3.15b)

Measuring the unphosphorylated and phosphorylated kinase y; = K3 gives the
observability equations

Lih = —psPKs +p2R(1 — K1 — K3) (3.16a)
Lih = —paR(—p1RK1 + psP(1—K1 — 1)) . ..

+ (=p2R — paP)(p2R(1— K1 — y1) — paPy1) + p2(1—K1 — y1)R.
(3.16b)

Solving (3.16a) for the unmeasured state Ky and substituting into (3.16b) yields
the parameter dependencies, for which a semidefinite programme can be con-
structed as described earlier.

Figure 3.5a shows the response of the system to a step input for R. For
simplicity of presentation, the two phosphorylation and dephosphorylation pa-
rameters respectively were assumed to be equal, i.e. p; = p3 and ps = py. The
parameter dependencies change for measurements at different time points, in-
tersecting at the true value (Fig. 3.5b). By evaluating the sdp at different time
points, we can invalidate most of the parameter space, revealing that only a
small region can contain feasible parameters (Fig. 3.5¢).
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3.6 Critical assessment of own work

Practical applicability is an important aspect of systems identification. This
section discusses some practical aspects with respect to the proposed method-

ology.

3.6.1 Identifiability

Identifiability asks the question whether it is in principle (theoretically) possible
to estimate all unknown parameters from (noise free) experimental data. Gen-
erally, this is not an easy question to answer, and multiple approaches exist in
the literature (Audoly et al., 2001; Ljung and Glad, 1994). Following the consid-
erations of the previous sections, we can state the following theorem concerning
(practical) identifiability.

Theorem 3.3 If the manifolds defined by the parameter condition (3.14) in-
tersect in a single point only, then the system is identifiable. Further, the sole
intersection point is the unique solution of the parameter estimation problem.m

Therewith, identifiability is not a necessary precondition for the presented ap-
proach. Rather, we could argue that the system is identifiable if the sdp returns
only a tiny, connected parameter region. However, this is not necessarily the
case: The sdp solution might be an artifact of the relaxation and the original
problem might not have a solution at all.

3.6.2 Effects of noise, sampling and curve fitting

In practise, derivatives can not be measured directly. Rather they have to be es-
timated from measuring time courses over a certain interval. Direct calculation
of derivatives using finite differences is very noise sensitive, it is therefore benefi-
cial to employ some sort of smoothing or filtering on the raw data. Throughout
this section I fitted simple exponential functions to artificially generated, noisy
data using the Matlab curve fitting toolbox. I found that fitting exponential
functions gives better results compared to standard regressors such as poly-
nomials or splines. This is not surprising, considering that linear differential
equations possess solutions of exponential form, but might partly be due to the
fact that the here considered examples were in essence homeostasis systems in
which the trajectories are relaxations from an initial condition to a steady state,
or from an old steady state to a new one in response to a constant stimulus. In
contrast to the exponential functions used here, splines and polynomials tend
to oscillate and might therefore be better suited for fitting limit cycles or other
systems with oscillatory responses.

Example: Phosphorylation cycle and curve fitting

Consider the example from Section 3.5.1. Figure 3.6 shows the time course
of (3.12) to the initial condition K; = 0, K3 = 0, which resemble simple first
and second order exponential responses of the form

A(L - exp(~t/T1)) + B(L — exp(—t/T2)).
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These exponential functions were fitted to artificially generated data. We gen-
erated the artificial data by drawing measurement noise from a normal distribu-
tion y;(t;) = (1+ N(0,0.1))c;i(t;) at 12 logarithmically spaced sample intervals.
Logarithmic spaced sampling is beneficial to uniformly spaced sampling inter-
vals (for systems relaxing to (a new) steady state). Figure 3.6 shows the true
trajectories, measurements and fitted trajectories. Because fitting noisy data
does not recover the true trajectory perfectly, the parameter dependencies do
not all intersect in one point (the true parameter value). For any two given
time points, the p-dependencies might intersect at a different value, or even not
intersect despite coming close. From a theoretical point of view, it is therefore
of important to assign sufficiently large measurement uncertainty € in the sdp:

yzg;]gnin = (1 - 6) ’ yggtted’ (317)
e = (14 ) 4% ea (3.18)

From a practical point of view, the sdp is likely to be feasible even if the param-
eter dependencies do not intersect, depending on how much slag the parameter
region provides. Depending on how trustworthy the measurements and the fit-
ted trajectories are, one can solve the semidefinite programme with tighter or
looser upper and lower bounds. Figure 3.6 shows that choosing looser bounds
increases the feasible parameter region, but that the problem still has a solution
for neglectable small uncertainty € = 0.0001.

3.6.3 Modularisation

Depending on what states are measured, not all parameters are correlated. We
have seen in the example in Section 3.4 that the parameters p; and po are
decoupled from the parameters ps and ps (see (3.9)). In the example, the
decoupling arose from the fact that all states were measured, and the differential
equations of K7 and K5 only depends on ki, ke and ks, ks respectively. In
general, large systems that can be decomposed into subsystems are decoupled
by measuring the states linking the subsystems.

Example of modularisation: MAPK

Consider the Mitogen-activated protein kinases (MAPK) as example. As al-
ready mentioned in the introduction (Section 2.1), MAPK systems consist of
phosphorylation dephosphorylation cycles layered in three stages (Fig. 6.2).
MAPK systems are implemented by nature in several variations involving not
only different molecules such as ERK1 (also known as MAPK3), ERK2 (also
known as MAPK1), Jun N-terminal kinase (JNK) and p38 MAPK but also
different feedback patterns such as inhibition of Raf phosphorylation by ERK
(Kholodenko et al., 2010). Therewith MAPK system form universal modules of
cell signalling networks regulating various cellular activities, such as gene expres-
sion, mitosis, differentiation, proliferation and cell survival/apoptosis (Kholo-
denko, 2006).

As can be seen from the graph in Fig. 6.2, Raf, MEK and ERK form three
modules only coupled through their respective phosphorylated or doublephos-
phorylated forms. By measuring these forms, the parameters in each module
can be analysed independently.

PhD Thesis (submitted version) 38



Part . Identification of biochemical reaction networks

The above fact hold true independently of the reaction kinetics used. For
simplicity of illustration, we restrict ourselves to mass action kinetics in the fol-
lowing. Then the MAPK system in Fig. 6.2 can be modelled with the following
rate equations

v = pruky vy = p2Ka, (3.19a)
vz = p3Ka KKy vy = KKKy, (3.19b)
vs = psKK3 ve = peKKa, (3.19¢)
v = prKK3 KKK, vs = ps KK3KKKa, (3.19d)
vg = peKKK3 v10 = p1oKKKa. (3.19¢)

Reactions 3 to 6 and 7 to 10 are two double phosphorylation cycles as treated
earlier in Section 3.5.2. Thus, by measuring y; = [Raf,] = Ko, yo = [MEK,;] =
KK, and y3 = [ERK,,,] = KKK, we can use (3.16) to analyse the parameter
identification problem.

Figure 3.8 illustrates the modularised approach. Here, the double phospho-
rylation model was used to identify tier two and three of the described MAPK
system, with the true parameters p; = 1 for phosphorylation, p; = 0.2 for
dephosphorylation. The identification assumed equal phosphorylation and de-
phosphorylation rates in each tier ps = p4, ps = ps, P7 = ps and pg = P1g-

3.7 Perspective

This chapter presented a methodology for checking consistency of entire pa-
rameter regions with experimental data. The sum of squares decomposition
enabled us to formulate the problem as a semidefinite programme that can be
solved efficiently. The methodology is an extension of the steady state approach
using full state measurements presented in Kuepfer et al. (2007) to transients
using partial state measurements. Using transient data significantly reduces the
space of feasible parameters, as biochemical systems are usually not identifiable
in steady state. A particular advantage is that measuring all states is generally
not required. If the system is observable, it suffices to measure only a subset of
the states. In fact, observability analysis can be used to identify a set of suitable
measurements.

3.7.1 Relation to barrier certificates

Similar approaches to the here presented one in the literature use the so called
barrier certificates to certify parameter regions inconsistent with data and model
(Anderson and Papachristodoulou, 2009). Similar to a Lyapunov function, a
barrier certificate B(x,p,t) is a function depending on the states, parameters
and time. Given two measurements 1, s at different time points, the idea is to
find a real-valued function that for some parameter region P 5 p has a higher
value at the second time point compared to the first time point B(z2,p,ts) —
B(x1,p,t1) > 0 but at the same time is nonincreasing along the trajectory
ol %—f < 0. Such construction obviously creates a contradiction and it can
be concluded that the parameter region P is inconsistent with the measurement.

The advantage of a barrier certificate is that it incorporates the righthandside
of the differential equations between the measurement points. Generally this
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may allow to find tighter bounds on the feasible parameter regions compared
to the simple method proposed here (Sections 3.2 to 3.4) that only uses the
differential equations at the measured time points.

The drawback of a barrier certificate is that it requires the construction of a
polynomial function, which is computationally demanding for complicated sys-
tems. The number of decision variables required for this construction increases
polynomially with the number of states. In contrast, the here presented method
(Sections 3.2 to 3.4) does not require the construction of a certificate function
and the number of decision variables increases only linearly with the states.

3.7.2 Relation to other approaches

Compared to other approaches in the literature the main advantages of the
presented approach are

e Checking of entire parameter regions (as opposed to single, sampled points
in the parameter space as in heuristic approaches)

e Generally applicable to all biochemical reaction networks (as opposed to
small systems with particular, often biologically irrelevant kinetics)

e Solving or simulating the system of ordinary differential equations is not
required

e Computational inexpensive (when compared to barrier certificates or heuris-
tic sampling methods)

From an theoretical perspective the approach connects aspects of differential
algebra (Lie derivatives) to semi-algebraic varieties (polynomial parameter con-
ditions define a subdimensional manifold in the parameter space). In fact, the
approach is closely related to the Ritt’s algorithm, which states that every glob-
ally identifiable model structure can be rearranged to a linear regression (Ljung,
2010). The advantage of formulating the problems as semidefinite programme
(as opposed to linear regression) is that identifiability in no longer required.
Rather, unidentifiability is a result of the analysis, as unidentifiable parameters
depend on each other.
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Figure 3.5: Partial state measurement using higher order Lie derivatives: Double
phosphorylation cycle. Only the double phosphorylated kinase y = K3 was
measured. (a) Systems response to a step input of R. Concentrations of double
phosphorylated kinase (solid), and its first (dashed) and second (dash-dotted)
time derivative. (b) Parameter dependencies for measurements at different time
points. (c) Feasible parameter regions for two time points: ¢t = 0 and ¢ = 5.
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Figure 3.6: Effect of curve fitting: Phosphorylation cycle (with partial state
measurement, i.e. complexes not measured) (a) Time course of the measured
states K7 (blue) and K3 (green) to the initial condition K7 = 0, K3 = 0. Solid:
True time course (simulated); Circles: Time discrete measurements corrupted
with 10% Gaussian noise; Dashed: Fitted timecourse. (b) Parameter depen-
dencies using the fitted timecourse. (c¢) Results sdp with 0.02% uncertainty, i.e.
€ = 0.01/100; (d) Results sdp with 10% uncertainty, i.e. e = 5/100.
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Figure 3.7: Basic structure of MAPK systems at the example of Raf-MEK-ERK.
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Figure 3.8: Modularisation: MAPK with mass action kinetics. (a) Time course
of the measured states with Ky (blue) beeing phosphorylated Raf, K K3 (green)
double phosphorylated MEK and KK K3 (red) double phosphorylated ERK.
Solid: True time course (simulated); Circles: Time discrete measurements cor-
rupted with 10% Gaussian noise; Dashed: Fitted timecourse. (b) Analytical
solution of the parameter dependencies for different time-points using the fitted
timecourse. The identification assumed ps = ps and ps = pg, p7 = ps and
P9 = p1o- (c) Results of sdp for tier two, i.e. p3 and p5. (d) Results of sdp for
tier two, i.e. py and pyg.
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Chapter 4

Parameter estimation using
state space extensions and
observers

4.1 Introduction and Related work

The parameter estimation problem is closely related to the state estimation
problem as both consider the estimation of unknown quantities. In loose terms,
an observer is a mathematical system that estimates internal, non-measured
states. Observer based approaches to parameter estimation require a certain
system extension. Assuming that the parameters are constant, we can formally
extend the state space with the parameters, i.e.

Lﬂ - [f % p>] . (4.1)

Given the above system, an observer can achieve a combined state and pa-
rameter estimation. However, designing observers for system (4.1) carries two
difficulties: parameter dependency and nonlinearity (see also Chapter 5.2). The
parameter dependency triggers observability issues; for example, linearisations
of (4.1) are generally not observable in steady state (Farina et al., 2006). The
nonlinearity of the problem means that the observer depends on the unknown
states as in contrast to linear systems there is no separation principle (Xia and
Zeitz, 1997). As a consequence, global convergence for all p € R can generally
not be achieved (Farina et al., 2007; Dochain, 2003).

This chapter proposes an alternative to the state space extension with p = 0.
We can transform the system into parameter free coordinates by exploiting prop-
erties particular to biochemical reaction systems, thus facilitating the observer
design. The methodology is based on Farina et al. (2006), who proposed a
parameter independent system description for mass action systems. However,
many biological models employ more complicated kinetics, such as Michaelis
Menten and Hill kinetics (see also Section 9). This chapter generalises the
transformation into parameter free coordinates to kinetics with rational terms.
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4.2 Parameter-free coordinates for autonomous
(closed) systems

This section proposes an state space extension that transforms the system into
parameter free coordinates. The transformation takes the systems structure
explicitly into account. The approach is first illustrated for a system with a
single reaction, before the general extension scheme is presented.

Example Let us consider the following system with k£ > 0, K > 0

¢ = —v(c), (4.2a)
2
v(c) = kc—i— e (4.2b)

Assuming that ¢ and therefore v are positive, it is possible to derive the differen-
tial equation for the relative rate of change of the reaction rate, in essence taking
the logarithm and time derivative of (4.2b). Before doing that, we introduce
the new state

M=c+K
with the derivative
M =¢.

Now, taking the logarithm and time derivative of (4.2b) gives

v d d
- =—1 =—l 21 — log M
- = gy logv dt(ogk+ ogc — log M)
¢ M
=2- - —.
c M
Substituting ¢ = —v yields an extended system
c=—v
M= —v
v
s u(—a? _)
v ( c + M
in which the right-hand-side is parameter free. ]

As the example illustrates, the states of the parameter free extended system
consists of the concentrations ¢, the denominators of the reaction rates M and
the reaction rates v.

In general, the approach considers reaction kinetic systems

¢=N(v,p)
allowing for fluxes of the form:
v; = ky ﬁ %, (4.3)
o By e
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where K;; > 0, v;; > 0 and 7;; > 0. If n;; = 0, then the arbitrary parameter
K;; shall be equal to 1. The general formulation of (4.3) contains mass action
kinetics, generalised mass action kinetics, Michaelis-Menten- and Hill-kinetics
as well as their products. For example, setting n;; = 0 leads to a mass action
model.

For 0 < v < 1, the flux v; is not Lipschitz in ¢; = 0. To ensure the
existence and uniqueness of solutions, we assume that all concentrations are
strictly positive.

Assumption 4.1 The parameters p and the concentrations c are strictly posi-
tive along trajectories of (4.1) and bounded, i.e. 0 < J < ¢;(t,c) < 6 < oo holds
for all species ¢ and all initial conditions ¢y for some positive constants § < J.m

This condition is satisfied in many biological application, in particular for models
of metabolic pathways.

To simplify the presentation, define the following matrix-valued function
M :RY, — Rmxm

My = K9 + ¢l (4.4)

As the example illustrates, the mapping

o: |“w M(Z,p) (4.5)
M v(e,p)

is diffeomorph if Assumption 4.1 holds, defining an smooth and bijective state-
space transformation of the original system (4.1) into an equivalent extended
system that is parameter free. This means, considering M;; and v; as additional
states, complementing the natural states c;, results in ordinary differential equa-
tions that do not depend on the parameters. We can state the following theorem.

Theorem 4.1 Let the concentrations be strictly positive, the flows of the form
of (4.3), with known exponents v;; and 7;;. Then, the following two systems
are equivalent:

¢ = Nu(e,p) (4.6a)
p=20 (4.6b)
with
T
p= [kl e km K11 e Kmn} s (46C)
and
¢= Nv (4.7a)
Mlj = nijcnijile?NU (47b)
i = diag(v) <V(diag(c))_1Nv - m) , (4.7¢)
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where

chi—t TNv

_ZmJJ -

Proof.

a) Equation (4.7a) follows directly from (4.6a).

b) The dynamic description of M is obtained by differentiation along the
trajectory of (4.6) and using (4.7a)

d M 1- Ml < -
%M 77%7.7 7 ’ 77%7.7 7 7 ZNi7kvk'

¢) We multiply both sides of (4.3) with the denominator and take the loga-
rithm

e Mg M — 5 e ,
Z‘ llog(Ki’j +c¢;"’) + log(r;) = log(f;) + ZFl v; jlog (¢j).

j=

Again taking the time derivative and using (4.4) yields

Ne Ne

ZM’] + ZVW

j=1 3
Rearranging gives

Ne

i,
Z VW - Z M,’j,

j=1 %,

Finally, Substituting ¢; and M; ; using (4.7a) and (4.7b) respectively yields
the differential equations for the reaction rates (4.7c). n

If some parameters values are already known, the proposed methodology
can be adjusted in a straightforward way to not estimate them again. There
are basically two cases. First, the parameter is a Hill or Michaelis-Menten
constant K;;. Then, there exists a state M;;, which depends on K;; and on some
concentrations. This state can therefore be expressed as an algebraic equation
of other states and does not require a differential equation. In the second case,
the parameter is proportional to a flow, i.e. k; in a flow v;. This flow then also
contains no unknown, only other states and thus its differential equation can be
replaced by an algebraic equation. The reduced extended system is a differential
algebraic system of index one. The algebraic equations can easily be eliminated,
thus reducing the state space dimension by the number of known parameters.

Summarising, any biochemical reaction model consisting of flows modelled
as in (4.3) can be transformed into a system that is free of parameters. This
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system has an extended state vector and depends only on structural properties
of the original system.
The extended state is denoted by x € RYj

where m is the vector of all non-zero entries of
vect M = [My1 +-+ My Mz -+ My,
and the extended system by
z = f(z) (4.9a)
y = h(x). (4.9b)

To simplify the observer design, we introduce the assumption that the output
is a subset of the concentrations and flows. This is the case in many biological
applications.

Assumption 4.2 The output y(t) € R™ is a subset of the concentrations ¢
and the flows v, i.e.

c ¢
H. 0 0
y=h| |m| | = [ 0 0 Hv] m|, (4.10)
v v

where the columns of H,. and of H, are a subset of the columns of the corre-
sponding identity matrices. ™

4.2.1 Parameter independent form with inputs

The scheme can easily extended to include inputs. Then, the original system
writes as

¢= N’U(C,p, uc) + NyUy,

with the reaction kinetics

j o, Vusig

vi = ki [] L where My; = M 4 M
i = Rg M ij = €4 iJs
J

C
j

and where u, and u, are inputs representing concentrations and fluxes respec-
tively. Although the mapping (4.5) is now input dependent, it still transforms
the system into extended coordinates (parameter free coordinates) in exactly
the same manner. The corresponding extended system is

¢ = Nv + Nyuy, (4.11a)
M;; = Uijcn'irle?(Nv + Nyuy), (4.11b)

v = diag(v) <V(diag(c))_1(Nv + Nyty) + vy (diag(uc))_lac - m), (4.11c)
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where

g = 3 1 (Vo Nuw)
7 j M,L .

Assuming that the possibly time dependent inputs u. = u.(t) are differentiable,
the dependence of the extended system on time derivatives of u. does not pose
a problem. We can define v’ = [u]  «! 4] and write the system compactly

as

= f(z,u) (4.12a)
y = h(x). (4.12b)

Remark Step and pulse inputs can be handled either using a differentiable
approximation in the form of steep sigmoidal functions e.g. u. = Ao (1+tanh(t—
Tp)) or by changing the initial condition accordingly and setting . = 0. n

4.3 Proposed parameter estimation scheme

Based on the parameter free systems description we can propose the following
parameter estimation scheme

1. Transformation of the system of ordinary differential equations into a pa-
rameter independent form;

2. Estimation of all states in the parameter free coordinates using an ob-
server;

3. Back transformation to obtain the paraments.

Step one is an alternative to the classical extention by p = 0 and transforms the
parameter estimation problem into a state estimation problem. The extended
states can be estimated using a suitable observer (step two). Step three is the
back transformation into original coordinates, which gives the actual param-
eter estimate. Inversion of (4.5) yields an explicit expression. In particular,
using (4.4), the parameters K;;(t) can be estimated via

N R 1/mij
- o (Mij (t) —Cj (t)) for Nij > 0,

Ki;(t) = (4.13a)

1 for n;; = 0.

Finally, the estimation of the parameters k;(t) is possible using (4.3)

— H My (1) (4.13b)

ki(t) = o:(t) [ | CJM—“) (4.13c)

PhD Thesis (submitted version) 50



Part . Identification of biochemical reaction networks

in the input case.

Because the observer has to be initialised with an unknown initial condition,
the parameter estimate is time dependent. It converges to the true, constant
values if and only if the observer converges.

4.4 Perspective

This chapter presented the transformation in step one as an alternative to the
classical state space extension p = 0. The transformation explicitly takes into
account the particular nonlinearities of biological systems. The main advantage
of the transformation is that the right hand sides of the resulting ordinary
differential equations (4.7) and (4.11) do not depend on the parameters, but
only on the stoichiometry and the states. The parameters are hidden in the
initial conditions as zg = ®(co,p). A further advantage of the transformed
system is that the measurements are often a subset of the coordinates ¢ and v
as fluxes can for example be measured using 13C labelling (Costenoble et al.,
2007). This simple output function also helps in the observer design, which is
discussed in the following two chapters.
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Chapter 5

Design of a normal form
observer

5.1 Introduction

The parameter-free system (4.7) simplifies the design of an observer as the sys-
tem does not contain any unknown parameters in the right-hand side. The
estimation of the parameters of the original system requires the estimation of
the extended state vector of the transformed system. Systems theory uses so
called observers, which are mathematical systems often consisting of an (ap-
proximated) copy of the true system and and feedback injection of the predicted
output error. Concretely, let

&= f(x), y = h(x)

be the extended system as described in Section 4.2 with unknown states x and
measured output y. Then the system

z=[f(2) + L(z)(y — h(2)),
is an observer if the (possibly state dependent gain) L is chosen such that the
estimate converges toward the true state, i.e z(t) — z(t) for t — oco.

In the linear case, observer design is rather easy, because of the separation
principle. Consider the following linear time invariant system
T = Ax, y=Cx
and the observer
z2=Az+ Ly — Cz),
then the observer error e = x — z is given by
é=Ax — Az + L(Cx — Cz)
=Ae— LCe=(A— LC)e.
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Chapter 5. Design of a normal form observer

A main result of linear observer theory is that if the so called observability
matrix

c
CA

CA1

has full rank, the system is called observable and we can choose L such that
A — LC is Hurwitz and the observer converges z(t) — x(t). This result is
independent of the particular trajectory to be observed because the error dy-
namics do not depend on the (unknown) states of the system. This is called the
separation principle.

Unfortunately, there is no separation principle in the nonlinear case. The
complexity of the problem requires more advanced mathematics, in which the
observer design depends on many aspects of the system to be observed. Ob-
servability and convergence can often only be proven locally or in particular
cases.

5.2 Classical nonlinear observer design

The classical theory of nonlinear observers uses a nonlinear analogue to the
observability matrix for linear systems, the observability map

Dy () L%higxi
Dy (x Lih;(x p

D(x) = 2:( ) ; Qi(x) = d : : an =n. (5.1)
B, (x) L i) -

If the observability map is locally invertible, i.e. if

0P
Q=

is nonsingular, then the system is called locally observable. We can view Q)
as the nonlinear analogue to the observability matrix in the linear case. If the
observability map has a continous inverse, then z = ®(z) transform the system
with

. 09 1

z=—fod " (2).

5 (2)

into observability canonical coordinates. The corresponding state-space descrip-
tion is:

£ = JE+ Bo(€)

5.2
y = C¢, (5:2)
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Figure 5.1: Sketch of the observer canonical form.

where

. 0 1 0

J= : Ji = | er
L Jny 0 0
B, -

B= : Bi=[0 ... 0 1" erxL,
L Bny_
o, :

C= : Ci=[1 0 ... 0] eR™".
L C”y_

In observability coordinates, the states correspond to the output y and its deriva-
tives ¢ to y("), and the nonlinearities are concentrated in the function (&), see
Fig. 5.1. Clearly, the transformation into the observability canonical form (5.2)
is only possible if ®(+) is invertible, which requires a suitable choice of outputs
and the number of their derivatives. For a detailed discussion see for example
Xia and Zeitz (1997) or Schaffner and Zeitz (1999).

Several methods exists to design observers for systems in observability can-
nonical form. Usually, they employ a simulation term AZ + B¢(Z) (a copy of
the system) and a correction term that feeds back the error of measured y and
estimated output y = C'z, and can therewith be written in the form

%z: Az + Bo(Z) + L+ [y — O3], (5.3)

whereby the design of the gain matrix L € R"*P differs, for example using
Lyapunov functions, pole placement, or high gain (Schaffner and Zeitz, 1999; Xia
and Zeitz, 1997; Gauthier et al., 1992). In any case, some additional calculations
are necessary to obtain the observer in original coordinates z. Differentiating
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T =0 1(2) gives

— =Q7'[AZ+ Bo(2)] + Q7' Lly — 7]
Substituting z = ®(x) gives the observer in original coordinates

La= @)+ Q7 @) L(O) - Iy~ hia)] (5.9
Here we used the fact that f = Q71 f o ® where f(Z) = AZ + B¢(Z).

From the above considerations, it is clear that the observer only exists if Q~*
exists, i.e. if the system is locally observable. If some points on the trajectory
are not locally observable, the observers fails. Vargas et al. (2003) proposed a
modification to resolve this issue, in terms of an event based observer. An event
is a connected set of time points along a trajectory where the inversion of @ is
numerically ill conditioned:

)\min

Tevent = {t € R : } < 4}

/\max

where Apin and A\pax are the absolute smallest and largest eigenvalue of Q(z (¢, zo))
respectively, and § > 0 is some predefined value. During such an event, @ is
close to singular, the inversion of @) is numerically infeasible and the correction
term in (5.4) gets very large. A solution that enables to simulate (5.4) despite
the ill-conditioned @ is to switch the correction term Q~'(z)L(#) in (5.4) to
zero for the time of the event Teyent. Therewith, the event based observer is
given by

d z z inv gz z
25 = AZ+ BY(2) + Q™ (2) - L(O) - [y — h(D),
whereby
| Q™' if |gmin| >4,
QZ’I’L’U — i\\mjax (5'5)
0 if }A::; < 4.

Unfortunately, global observability can not be guaranteed for the event based
observer, i.e. there are initial conditions for which the observer fails to give
an accurate estimate (see Fig. 5.3). Here, the system is not locally observable
in steady state and the correction term is set to zero according to (5.5), thus
trapping the observer in the steady state.

Farina et al. (2006) demonstrated that the parameters of biochemical reac-
tion systems are usually not locally observable in steady state (unless reaction
rates are measured). Together with the above results, this renders classical and
event based observers unsuitable for parameter estimation.

5.3 Design of an approximative observer

Approximative observer design is an approach to estimate the states of a system
in cases where local observability can not be guaranteed (Vargas and Moreno,
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Figure 5.2: Illustration of an approximation ¢(-) of the discontinuous function

(b(fl,fg) = 21 D® The approximation (b( ) is equal to ¢(-) on & =6 (the
o1

thick red line in the contour plot) and globally bounded (with magnitude 30).

2005). As discussed in the previous section, local observability is a prerequisite
for classical observer design that is often violated for biochemical reaction sys-
tems. When the systems is not locally observable everywhere, Q! is singular
for some time point(s) causing singularities in the observer (see Section 5.2).
The problem can be avoided by observing in observability coordinates directly.
Then the observer consists of a dynamic part in observability coordinates and
an algebraic part

d i
7= A7+ Bo(2) + L(6) - [y - O], (5.6)

F=o"1(2).
Clearly, such an observer only exists if ®(-) is invertible. Further, because g—i
is not invertible everywhere, ¢(-) might not Lipschitz and the system in ob-
servability coordinates might have several solutions. Then the observer requires
continous extensions of the characteristic nonlinearity ¢(-) (Vargas and Moreno,
2005).

In the context of the biochemical reaction systems considered here, we can
resolve this problem by bounding the nonlinearity of the observer such that no
error on the true trajectory is introduced. This is illustrated in Fig. 5.2 where
the true trajectory corresponds to §1 §2

The next theorem discusses the properties of an observer based on the one
proposed by Vargas and Moreno (2005). This is a high-gain observer whose
states converge with arbitrary precision to the states of the system in observ-
ability canonical form.

Theorem 5.1 Choose coeflicients l;i) in such a way that s™ + Zly)sj is a
Hurwitz polynomial, or equivalently, that J — LC' with L; = [12)71 l(()i)}
is a Hurwitz matrix and a bounded approximation ¢?() such that q@(f) = ¢(&)

57 Dirk Fey



Chapter 5. Design of a normal form observer

on the true trajectory £(¢,&p). Then, for any € > 0 there exists a § > 0 such
that the observer

€= JE+ BHE) + OL(y — CE)

i=271(¢)
©1 Ly
0= , L= )
(—)ny Lny
0, = diag [0 . 0“’] ,

estimates the state £ with e precision in finite time. In other words, there exists
a T > 0 such that

I€(t) = €@l <e  forallt>T. -

Proof . Following Vargas and Moreno (2005), we have to show that ¢E is a
continuous extension of ¢. Considering the rational form of the reaction kinetics
and the extended system, it is clear that all Lie derivatives L’h(z) are rational
functions. Further, using Assumption 4.1 we see that the denominators do
not vanish and that Lj}h(m) are continuous and bounded. In particular the
characteristic nonlinearities ¢; = L;ihi is continuous and bounded on the true
trajectory, i.e. there are constants §2; such that —§; < ¢;(z(¢)) < Q; and we
can define ¢;(x) = sign(¢; () max(¢; (), ).

2oy ) SQsign(gi(z)) if [¢i(z)] > Q;
di(w) = {(bz(x) else '

The high gain parameter 6 can be used to tune the speed of convergence. How-
ever, 6 also amplifies the noise in the data and should thus not be chosen too
high.

The observer coordinates can be transformed back into the coordinates of
the original system with the help of the inverse of the observability map ®~!.

i=®"1() (5.8a)

For each time point ¢, #(¢) can be calculated, directly leading to estimates of
the concentrations ¢. Using (4.4), the parameters K;;(t) can be estimated via

N . 1/mi;
o o (Mij (t) —Cj (t)) for Nij > 0,

Ki(t) = (5.8b)

1 for n;; = 0.

Finally, the estimation of the parameters k;(t) is possible using (4.3)

() = b5(1) H Mis(¢) (5.8¢)

&j(t)ri

Clearly the parameter estimate is time dependent. It converges to the true,
constant values if and only if the observer converges. One of the main disadvan-
tages of the proposed methodology is the necessity of transforming the extended
system into observability canonical form. Another constraint is the sensitivity
to noise, inherent to high-gain observers.
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5.3.1 Example circadian rhythm

In order to provide a proof of concept the presented approach is tested on a
simple gene regulation model of the circadian rhythm in neurospora. The model
describes day-night oscillations of the frequency protein (FRQ) by a nonlinear
feedback loop within its gene expression (Leloup et al., 1999)

M ks M _ K
=rq—7 r1 = ks r3 = Vg
T ! ST U KILFS
E, + K F, Fe
c=T1—Tq4—T To ro = c T4 ="

1 4 2 2 2 1 4 d L,
- M
Fn =T — Tor Tor = kQFn rs = UmMi_’_'

Here M denotes the concentration of FRQ mRNA, F, and F;, the concentration
of FRQ protein in the cytosol and nucleus respectively, r; denotes the rate of
translation, ro and ry of transport in and out the nucleus, r3 of transcription,
r4 and 75 of degradation. By using the above reaction rates and defining the
Hill variables

my = K} + F2, mo = Kq+ F., ms = Ky + M,

the model is extended as described in the previous section.

Table 5.1 explores different designs of ®(:), i.e. different combinations of
outputs and their derivatives, to analyse observability. Thereby it is advisable
to limit the order of the derivatives for two reasons. First, to keep the observer
design simple, and second to minimise numerical errors. If for a particular choice
of ®(-) the corresponding observability matrix Q = g—‘f has full rank n = 12,
the extended neurospora model is observable and thus identifiable.

Outputs & their degree n;

M F. F, ri ro 1o 13 14 715 | rank(Q)
3 2 3 - - - -2 2 12
- 2 3 - - - 3 2 2 11
1 2 3 - - - 2 2 2 12
5 3 4 - - - - - - 11
5 4 3 - - - - - - 12
- 2 3 3 - - -2 2 11
3 2 - - - 3 - 2 2 12

2 2 1 3 - 2 2 10

Table 5.1: Selection of the observability analysis of the neurospora model, each
row corresponds to one particular design of ® with the entries being the degree
n; as in (5.1). Observability and thus identifiability is achieved for full rank of
Q= g—i, ie. rank(Q) =n = 12.

A biologically feasible output, which also enables a simple observer design,
is for example measuring the species concentrations (Leloup et al., 1999) and
degradation rates (Shu and Hong-Hui, 2004):

y=[M F. F, r r5]".
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A suitable choice of ® for this output with invertible QQ = g—‘f is for instance
given by (see Table 5.1 row 1)

¢ = [ M M M FC Fc Fn Fn Fn 7.14 rs 7:5 }T'

Remark Note that the system is also observable if only the concentrations are
measured y = [M F. F,] (see Table 5.1 row 5). n

The observer design has to be performed carefully, because calculating the
determinant of Q) identifies a loss of local observability if one of the following
conditions holds:

ro =T9, T3 =15, I'1 + T2 =7T2 + Ty,

Fo(rg —ro) = Fp(r1 + 1o — 19 — 14).

Despite the fact that at these points ® ! is non-Lipschitz, ® ! is still continuous
under the image of ® since ® o ! = id, thus permitting the observer design.

Both observer structures, (5.4) and (5.3), were implemented, whereby for (5.4)
the modified version of @1 as in (5.5) was used. A trial and error procedure
revealed best results for a condition number in (5.5) of § = 10~%.

In a simulation study with the originally published parameters, artificial
data was generated in order to test the method. The observers are initialized
with 100% deviation from the true initial condition Z;(0) = 2 - 2;(0) for the
non-measured variables ¢ = 4,--- 9. For this initial condition, the event based
observer (5.4) fails (Figure 5.3a), whereas the e-approximative observer (5.3)
converges (Figure 5.3b). There are periods where observer error increases due
to the reduced observability properties of the system (Figure 5.3 Row 3).

Applying (5.8) on the state estimate for each time point gives the parameter
estimate. As Figure 5.4 shows, this parameter estimate is time dependent, con-
verging nicely towards the true values. Spikes occurs where local observability
and thus local identifiability is lost. Consequently a readout of the parameter

values that spares these spiky regions is preferable to e.g. least squares fitting
(Table 5.2).

5.3.2 Example MAPK and discussion

The proposed methodology is illustrated using the Mitogen-activated protein
kinases (MAPK) introduced earlier in Section 3.6.3. In contrast to Section 3.6.3,
the here presented model employs Michaelis Menten kinetics (Kholodenko, 2000).
Further, the model contains a negative feedback loop from ERK to Raf, leading
to an oscillatory behaviour. The model contains eight states and ten reactions
with a total of 21 parameters. Figure 5.5 shows the overall network structure.
The substrate concentrations are

c= [Raf—l Raf-1, MEK MEK, MEK,, ERK ERK, ERKpp]T

)
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Figure 5.3: Comparison of event based and approximative observer at the
example of the circadian rhythm. (a-d) The real (markers) and estimated
(solid) trajectories of the non measured states for both observer structures with
gain parameter § = 1.5. (e-f) The Euclidean error of the estimated states

\/ E?(xj,est — Zjreal)?. The red markings indicate where events occur on the

observed trajectory and the error can increase. (a,c,e) Approximative observer.
(b,d,f) Event based observer.

|k3 kl kg Vs Vd Um K1 Kd Km
True| 0.5 05 0.6 1.6 1.4 0505 0.5 0.13 0.5
15h 0.50 0.50 0.60 1.63 1.39 0.505 0.55 0.13 0.50
25h |0.50 0.50 0.60 1.62 1.40 0.504 0.53 0.13 0.50

Table 5.2: True parameters that generated the simulated data for testing the
parameter estimation method using the approximative observer, and readout
of the estimated parameters at 15h and 25h. Units: k; (h™1), v; (nMh™!), K,
(nM).
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Figure 5.4: Parameter estimates of the circadian rhythm. As the observer con-
verges, the parameter estimates of the e-approximative observer (5.3) converge
to the true values (dotted, constant). (a) Parameters of the mass action reac-
tions. (c) Maximal flux parameters of Hill and Michaelis Menten reactions. (c)

Half activation parameters of Hill and Michaelis Menten reactions.

and the system dynamics can be described by

¢= Nv,
11 ;
1 -1
-1 1
1 -1 1 -1
N = 1 -1 ’
—1 1
1 -1 1 -1
L 1 _1 -
where the reaction kinetics are of the following form:
ki K[ Raf-1 MEK,
U1 = - ) v = k6 >
Kj" + ERK” K + Raf-1 Kg + MEK,
Raf-1 ERK
= fy—— P vy = kyMEK ,p —————,
Y, Y Raf 1, T R e TERK
MEK ERK,
- 2 P e vg = ksMEK ,p —————,
V3 = kgRaf 1p K3 T MEK’ 8 8 pp KS 4 ERKp
MEK ERK
=k 1, ——P vo = k. 7pp,
V4 4Ra P Ki+ MEKP, 9 9 Ko + ERKpp
MEK ERK
vs = kg V10 = kg
Ks + MEK,, Ko+ ERK,
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Figure 5.5: Reaction scheme of the mitogen-activated protein kinase cascades.

Parameter Value Parameter Value
vr 2.0 K[ 18
kq 2.5 K 50
ko 0.25 K 40
ks 0.025 K3 100
ka 0.025 Ky 100
ks 0.75 K 100
ke 0.75 K 100
k7 0.025 K7 100
ks 0.025 Ky 100
kg 1.25 Ky 100
k1o 1.25 Ky 100

Table 5.3: Parameters of the MAP kinase model (Kholodenko, 2000).

The extended state vector consists of the concentrations ¢, the flows v and

the denominators or the flows m = [mi1 miz my ms ... mlo}T
mu = KV + ERK”, me = K¢ + MEK,,
mi2 = K1 + Raf-1, mr = K7 + ERK,
my = Ko + Raf-1,, mg = Kg + ERK,,,
m3 = K3 + MEK, mg = K9 + ERK,,,,
ma = Ky + MEK,, mio = K19+ ERK,,

mys = K5 + MEKPP,

The parameters values are the same as in Kholodenko (2000) and listed in
Table 5.3. The parameters can be grouped into two vectors k and K:

ke KV K,
ko K,

k= ) , K= .
k1o Kig

The term ki K7’ is identified as a single parameter. As K} is estimated sepa-
rately, k1 can also be obtained. The exponent vy is assumed to be known.
It is obvious that the time derivatives of ¢ and m do not depend on the
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parameters K and k. Simple calculations show that this also holds for the time
derivatives of v. For example,
ki K"

. Raf-1
= ——— L, ERKY” 'ERK,, —— —
T TR ERKY e PPE, + Raf-1

kiKY Raf-1(K; + Raf-1) — Raf-1Raf-1
KJ" + ERKY, (K1 + Rat-1)*

vi—1 . .
vicg' " ég ¢1(mia — 1)
= -1 + v
mi1 mi2C1

+

Vjcg’fleng el Nv(mia — c1)
= -0 —+ v .
mi1 miacy

The extended state space is given by
x=|m|. (5.9)

Using all concentrations ¢ and flows v as outputs, a possible choice for the
observability map is

O(x) = (5.10)

el 00

U1

This mapping is bijective, but not locally invertible. In the neighbourhood of
the points where the observability map is not locally invertible, its inverse and
¢(-) are ill-conditioned. Therefore, in the observer ¢(¢) is approximated by

I AR G
O() = 1 0() if —8<6(6) <,
S GEY

where 6 = 30. Similarly to (Vargas et al., 2003), events are defined as the set
of time points where the observability map is ill-conditioned:

TEvent = {t : —Umin < 106} ;

Um ax

where opin and omax are the smallest and largest singular values of 0®/0x.
This avoids problems due to the non-existence or ill-conditioning of the inverse.

For illustration purposes, the observer polynomials have zeros at 1 and 1.1
for the second order systems and also at 1.2 for the third order system, while
the high-gain parameter is 4.

The parameters estimation is possible at any time point, using (5.8). How-
ever, during an event, the estimation might be severely perturbed. Therefore,
it is reasonable to estimate the parameter at non-event time points.

A closer analysis of the parameter estimation and in particularly their fluc-
tuations reveals that the parameters of vy, i.e. k1, K7 and K; are not well
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(a) (b)
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Figure 5.6: Estimation error of the MAPK model. The light-red markings
indicate where events occur during which the extended system is not or only
poorly identifiable. (a) State estimation error in observer coordinates. (b)
Parameter estimation error.

estimated. This is particularly visible whenever ERK,,, (cs) is large, see Fig-
ure 5.7. The inhibition term of vy

ke KVt

vrERKpy) = = rm BRKY,
pp

(5.11)

is shown in Figure 5.7. For ERK},, much larger than K7, the relative sensitivity

o K[ 8U](ERKPP,K])
~ ERK,, 0K

SKIH(ERKpp) (5.12)

approaches zero. Whenever ERK,, is large, the flow v; and its sensitivity on K
is significantly reduced. This means the effect of the parameters K7 is negligible.
Thus the parameter can hardly be identified, see Figure 5.7.

To circumvent this identifiability problem, the three parameter of v; are
estimated when c¢g is low, e.g. at ¢ = 26.5 min (V; = 150.01, K; = 50.01,
K; =17.95) and the differential equations corresponding to the extended states
are defined via algebraic equations as described in Section 4.2Then, the reduced
extended state vector (without v; as output and without vy, mq1 and mqo as
states) is estimated.

Comparing the two simulations reveals that the identifiability problem not
only causes large fluctuations in the estimation, but also reduces the observ-
ability (gray marking), see Figure 5.8 compared to Figure 5.6. The reduced
estimation slightly degrades the estimation error, see Figure 5.9. This is in
particular the case for the parameters in reactions close to v, while more down-
stream reaction parameters are well estimated, see for example the estimation
of ks and K7 in Figure 5.9.

The example demonstrates the applicability of the proposed parameter esti-
mation method. The parameters can be estimated with relatively small errors.
The example highlights that practical identifiability is often time-dependent.
Here, three parameters are identified in a first round, before all other are in a
second estimation simulation.
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Figure 5.7: Illustration of the poor identifiability of the parameters of vy for high
concentrations of ERK,,, (¢s). (a) Inhibition term (black, solid) and relative
sensitivity (gray dashed line) as a function of the inhibitor concentration cs.
(b) Time course of ERK,,, (cs, solid line) and the estimate of Ky (dashed line,
with true value dotted). For large values of ERK,p, the estimation deteriorates
and the system is poorly observable (gray markings).

(a) (b)
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Figure 5.8: Error of the reduced estimation problem. Two step approach: First,
model extention with reactions and Hill variables, but only the parameters of
v1,m11 and mi where read out. Second, model extension for all reactions and
Hill variables except v, m11 and m12 and read out of the remaining parameters.
(a) State estimation error in observer coordinates. (b) Parameter estimation
error.
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Figure 5.9: Comparision of the full (left column) and reduced (right column)
estimation problem for parameters ko (top row) and K7 (bottom row). Gray
marking indicate where the trajectory is poorly observable. (a, b) Relative
estimation error of k2 (c, d) Relative estimation error of K7 (a, ¢) Estimation
uses the full extended state; (b, d) Estimation uses the reduced state, i.e.
without V1,M11,M12.
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5.4 Summary and conclusions

The proposed parameter estimation methodology consists of three main steps.
First, the system is transformed into a parameter-free system as described in
Chapter 4. This requires only the knowledge of structural information such
as the stoichiometry and the type of reaction kinetics. The second step is the
design of an observer for the extended system in observability canonical form as
described in this chapter. Obviously, the observer does also not depend on the
parameters. The third and final step is the back-transformation of the observer
states into the state space of the extended system. The parameters can be
recovered in a straight-forward manner.

In the parameter free form, observers (state estimators) can be used to solve
the parameter estimation problem. Unfortunately classical observer design for
the here considered class of systems suffers from two drawbacks. First, global
convergence can not be guaranteed. Second, classical observers can only be
used if local observability holds. However, local observability is often violated
somewhere on the trajectory (Section 5.2) or in steady state (Farina et al., 2006).
Thus, special nonlinear observers are required.

This chapter presented the design of an nonlinear observer in observability
cannonical form that is globally convergent and does not require local observ-
ability. Its main advantage is that it explicitly takes into account the structural
information. In contrary to commonly used heuristic approaches, the proposed
method guarantees the uniqueness of the parameter estimate.

Drawbacks of the proposed method are the necessity of transforming the
extended system into observability canonical form, the need of time-continuous
measurements or approximations thereof and the possibility of noise sensitivity.
The latter two points can be dealt with using appropriate measurement filtering.
The first point however limits the applicability of the method to systems of not
too large dimension, as it requires expensive Lie algebraic computations. The
next chapter presents an observer design avoiding this drawback.
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Chapter 6

Design of a dissipative
observer

As already mentioned, the parameter-free system (4.7) enables us to use ob-
servers for parameter estimation. In order to avoid the drawbacks associated
with normal form observers, this chapter uses the concept of dissipativity to
design an observer.

6.1 Introduction

The concept of dissipativity was proposed by Willems (Willems, 1972a,b) as an
extension of Lyapunov theory to open system. Consider the state space system

z = f(z,u), y = h(z,u),

a real valued function of the input and output s(u,y) called the supply rate and
a state function V' (x) called the storage function.

Definition 6.1 The system is called dissipative (with respect to the supply
rate s) if

V(z(t2)) = V(z(tr)) < / ’ s(u(t), y(t))dt

t1
hold for all u,y,z and t1,ty with t5 > ¢;. ]

The dissipativity condition can be checked without knowing x(t), i.e. without
having to solve the differential equations. Assume that V(-) is differentiable,
then the above dissipativity condition is equivalent to

ov

—(z,u) < s(u, h(z,u

o @) < s(u, iz, w)
holds for all x and u. To see that dissipativity is an extension of Lyapunov,
note that if the input is absent, the dissipativity reduces with s(u,y) = 0 to the
Lyapunov condition %—Z(m) <0.

Similarly to Lyapunov, we can understand dissipativity intuitively in terms

of (generalised) energy. An open system interacts with its environment through

69
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the inputs and outputs. The supply function s(u,y) describes how a certain
quantity (mass flow, power, entropy flow etc.) flows in and out of the system.
The function V(x) describes how much of the supply is stored in the system.
The difference of what supplied and what is stored is dissipated, i.e. gets lost.
The dissipation inequality states the the dissipation is nonnegative.

If we want to show that a system is dissipative, we need to find suitable sup-
ply and storage functions. In the linear-quadratic case, the system is assumed
to be linear and the supply rate is assumed to be a quadratic form. However,
because of y = h(z,u) we can as well assume that the supply is quadratic in u
and z, yielding

i = Ax + Bu,
s(u, ) = u” Qu +u' Sz + 27 Ra,

where (Q and R are symmetric matrices. In the linear-quadratic case it suffices
to check quadratic storage functions V(z) = 27 Pz, where P is a symmetric
matrix. With

g—‘;(i) =27 (ATP 4+ PA)x

the dissipativity condition becomes
2T(ATP + PA)r < u''Qu+u” Sz + 2" Rz,
which is equivalent to the matrix inequality

ATP+PA—-R PB-ST
T < 0.
B*P-S -Q
The matrix inequality is linear in the unknown matrices parameterising the
supply and storage functions and can be solved effetely using computational
tools such as YALMIP and SeDuMi (Léfberg, 2004; Sturm, 1999).
Dissipativity is very well suited for analysing interconnected systems. Con-
sider two connected state space systems

z = f(xz,u), y = h(z,u)

z:f(z,y), u:h(z,y),

i.e. the output of the each system is the input of the other, with the supply
and storage functions s(u,y), V(z) and 3(y,u), V(z). Then a storage function
of the closed loop system is the sum of both individual storage function and the
dissipativity condition becomes

L@+ V() < stu,9) + 3l,)

By matching the supply rates §(y,u) = —s(u,y), we obtain the Lyapunov in-
equality 4 (V(z) + f/(z)) < 0, where we can define V : V(z,2) = V() + V(2)
as a Lyapunov function candidate. Assume (z,z) = (0,0) is a fix point of
the interconnected system and assume further that V is positive definite, i.e.
V(0,0) = 0 and V(x,z) > 0 holds for all (,z) # 0 Then the fix point is stable

if the Lyapunov inequality holds with < and asymptotically stable if it holds
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with <. This illustrates how dissipativity can be used to analyse stability of
interconnected systems.

The following sections use the here introduced concepts of interconnected
systems and dissipativity with quadratic storage and supply functions in order
to design an observer. Section 6.2 develops a general design scheme in terms of
matrix inequalities. Section 6.4 applies the design to the extended, parameter
free system, before its use for parameter estimation is discussed at the example
of the MAPK system in Section 6.5

6.2 Dissipative observer
Dissipativity was applied to the observer design by Osario and Moreno (Osorio

and Moreno, 2006; Moreno, 2008). The underlying idea is to decompose the non-
linear system into the interconnection of a linear dynamical system (A, G, F),

& = Az + Guw, (6.1a)
-] 5]

where y denotes the measured and o the unmeasured output, and a static,
possibly time-varying nonlinearity

w = Y(o,u,t). (6.1c)

Generally, an observer is a dynamic system that estimates all (unmeasured)
states z from the measured output y. Moreno (Moreno, 2008) proposed a Lu-
enberger observer for system (6.1) composed of an copy of the system equa-
tions (6.1) and two additional correction terms feeding back the error of pre-
dicted C¢ and measured output y

£= A+ GU(E+ N - (CE—y)ut) + L-(CE—y), (6.2)

where the matrices L and N are design parameters.

For analysing the convergence of the estimate, i.e. {(t) — z(t) for t — oo, it
is convenient to look at the error of the estimate e = £ — x. Straight forward
calculation shows that the dynamics of the error are given by

é=Are+ Gu (6.3a)
z = Hye (6.3b)
v=—®(z,z,u,t), (6.3c)
where
AL =A+ LC, (6.3d)
Hy =H+ NC (6.3¢)
D(z,x,u,t) = U(x,u,t) — VU(x+ z,u,t). (6.3f)

71 Dirk Fey



Chapter 6. Design of a dissipative observer

Remark The nonlinearities ¥ (o, u, t) and ®(z, 0, u, t) may be time varying and
depend on the input, which usually is also a function of the time u=u(t). For
readability reasons, the remainder of this document does not denote this func-
tional dependence explicitly, i.e. we write for instance ®(z,0) and implicitly
assume that the stated conditions hold true for all u, t. ™

To ensure convergence of the estimate, e = 0 must be a globally attractive
steady state of system (6.3).

System (6.3) is a linear dynamical system (6.3a) with a input dependent,
static nonlinear state feedback (6.3¢). From (6.3f) it is clear that for vanishing
error egs = 0 the feedback becomes zero v = 0, and that egs = 0 is indeed
a steady state. This steady state condition holds for any input u(t) and any
trajectory x(t, zo).

To achieve that egs = 0 is a globally stable steady state, we combine a
dissipativity condition on the linear part (6.3a) with a matched dissipativity
condition on the nonlinear feedback (6.3c).

Definition 6.2 (from Osorio and Moreno, 2006) The nonlinear part of the er-
ror dynamics ® is called (@, S, R)-dissipative if there exists a non positive
semidefinite quadratic form

w(®,2) =dTQd + 2875z + 2TRz >0, (6.4)
for all z, v and ¢. n

Definition 6.3 (from Osorio and Moreno, 2006) The error dynamics are called
(=R, ST, —Q)-state strictly dissipative, if there are matrices L and N, a matrix
P = PT » 0! and a scalar € > 0 such that

PAL+ ATP+eP+ HLYRHy PG — HEST

GTP— SHy 0 =< 0. (6.5)

Osario and Moreno Osorio and Moreno (2006) derived the following theorem,
proving exponential convergence of the observer error.

Theorem 6.1 (Dissipative Observer from Osorio and Moreno, 2006) Assume
that the nonlinearity ® is (Q, S, R)-dissipative and the linear part (Ar, Hy) is
(—R, ST, —Q)-state strictly dissipative, then the system (6.2) is a globally ex-
ponential observer for the closed loop system (6.1), i.e. it holds

et < | 32 el exp (et .

The inequalities (6.4) and (6.5) are nonlinear in the unknowns. The next sec-
tion derives sufficient conditions for solving these inequalities, by transforming
them into linear matrix inequalities.

IThroughout this manuscript, the curly symbols < and = refer to inequalities in terms of
semi-definiteness.
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6.3 Sufficient conditions for the dissipative ob-
server

To simplify the observer design, the dissipativity conditions are reformulated
as linear matrix inequalities (LMIs), which semidefinite programming can solve
efficiently.

Nonlinear part

First we consider the dissipativity condition of the nonlinear part, for which we
formulate the following theorem.

Theorem 6.2 Assume the nonlinearity ® satisfies the sector condition | ®(z, z)||2 <
d]|1z||2, then the condition

Urﬁin 2 Ugax(S2 + 25HSH25 (66)
where o, and 0@, are the smallest and largest singular values of R = 0 and

@ < 0 respectively, guarantees that the nonlinear dissipativity condition (6.4)
is satisfied for all z. n

Proof. Consider the dissipativity of the nonlinear
part in (6.4). To compensate for negative influences of @ and S, R needs to be
sufficiently large. A sufficient condition is R %= 0 and @ < 0 together with

TRz > —TQd — 20752
This condition is satisfied if
TaminllZl3 > o2axl| @[3+ 2[1S]l2 - [12]l2 - [|2]]2-
Using || ®(z,z)|2 < 0]|z||2 we obtain
TminllZll3 > 02ax - 03 - 1213 +2-1S]l2 - 0 - ||2]]3,
which concludes the proof. "

The above theorem assumes that R is positive semidefinite. As will become
clear in the next section, this assumption makes sense and is motivated by the
dissipativity condition of the linear part (see (6.7)).

Linear part

A Schur complement on the upper left element of the matrix inequality (6.5)
yields

~R1 Hy 0
HT  PA,+ATP+eP PG-—HEST| <0. (6.7)
0 GTP — SHy Q

From here we can directly see that R = 0 and @ < 0. Further, (6.7) is a linear
matrix inequality in the unknowns R~!, P, Q, L, N and S* = SHy. Thus,
for a given €, (6.7) can be solved efficiently using semidefinite programming. In
particular, solving (6.7) gives the observer gain matrices L and N.
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Figure 6.1: Bounding ® using a quadratic term.

Matrix inequality

Recall however, that w(®, z) > 0 must also hold. Using Theorem 6.2 we achieve
that by posing (6.6) as additional constraint for (6.7). Unfortunately, the two
inequalities are coupled in a nonlinear fashion. This is resolved by adding two
constraints, first setting S = 0 and second defining a lower bound for the singular
values of R. Under these conditions, (6.6) is equivalent to the following LMIs
in the unknowns @ and R~!

Rt < —, 6.8
O—ﬁin ( )
T > 1Ql26°. (6.9)

)=1 = £ and that R is symmetric positive definite,

To see this, note that (o ko

o1 min
Remark We set S = 0 because the nonlinear coupling S = S*(H + NC)~!
prevents us from formulating an LMI representation for the upper bound on
IS]|2 required in (6.6). In the case dim(c) = dim(x) = n, we could alternatively
demand Hy € R™ "= to be non-singular, and after solving (6.7), calculate S as
S=S8*Hy'=S*(H+NC)™". n

ie o equals the largest eigenvalue of R™!.

Summarising, the above considerations derived simple, linear conditions
guaranteeing that both nonlinear dissipativity conditions (6.2) and (6.2) are
satisfied. For convenience these conditions are collected in the following system
of linear matrix inequalities:

P -0, (6.10a)
1
R < ——, (6.10b)
O min

ohin > Q1267 (6.10¢)

—R! Hy 0
HY  PAL+ATP+¢P PG| <0. (6.10d)

0 GTP Q

To solve the system of LMIs, we choose a desired convergence rate e¢ of the
observer and a lower bound ¢, on the singular values of R.

min
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Sufficient condition for the existence of a solution for an arbitrarily
large 0

Theorem 6.3 If the pair (A, C) is observable, then the system of LMIs (6.10)
is solvable for any given § < oo. ™

Proof. Note that if (A, C) is observable, then
there exists an L such that A = A — LC is Hurwitz and PAy, + A:EP +€ePis
negative definite. For sufficiently large P, the LMI (6.7) is diagonal dominant.
Thus, the LMI (6.7) is solvable for all R > 0 and @ < 0. n

6.4 Dissipative observer for the parameter-free
system

For the extended system (4.11), a dissipative observer design is very well suited
as the system is fully known and can be written as a Lur’e system, i.e. the
feedback of a linear dynamical and a static nonlinear part. With

H=1 sz,

the system (4.11) is of the form (6.1), where in the simplest case, the linear part
contains just the stoichiometry

A:[g 8 ﬂ (6.11a)

and the nonlinear part contains the functions fy; and f,

U(o,u,t) = V(x,u) = Vf]:[((ﬂi’%)} . (6.11b)

An alternative is to use the Jacobian at some reference point xyer Ay = (8% ) (@rer)
wherewith

and

— Sy (@, u) _ 2
U(z,u) = {fv(x,u)] GAyzx. (6.12)

Obviously, we would like to apply Theorem 6.2, for which we have to show
that @& satisfies the sector condition. The following lemma provides sufficient
conditions.

Lemma 6.1 Assume that the Jacobian of the nonlinearity ¥ is bounded in a
surrounding of the trajectory z(xo, t) of the true system with || g\IJHQ <1IA <o
Assume further, that ¥ is globally bounded with ¥(z) < 3 < oo. Then
there exists a constant § > A such that ®(z,z) satisfies the sector condition
(2, 2)[l2 < d|2[]2- L
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Proof.  The proof considers two cases. First, for 0 < ||z||2 < 1, consider the
Taylor expansion of ¢ w.r.t z around z = 0

D(z,2) = ®(0,2) + (Z—T(O, r)z + 0%(2)

Considering the definition of ®, we see that ®(0,2) = ¥(x) — U(x + 0) and
a%P(O,m) = —%P(O,m), wherewith

D(z,2) =0— g—i(x)z + 0%(2)

Because || z||2 is small, the linear part in the Taylor series dominates the quadratic
part, and we can choose a constant 6 > A > aa—f such that the sector condition is
satisfied. Second, for ||z||2 > 0, consider a proof by contradiction. Assume that
there is a zq for which the sector condition is not satisfied. Because of ||zq|l2 > 0

and || ®(zq, z)||2 < 2, we obtain a contradiction by choosing § > Tzl ]

With Assumption 4.1 follows from the rational form of the reaction kinetics
that the norms of ¥(x) and its Jacobian a%\ll(x) possess upper bounds for
any trajectory x(t,zo). This is not necessarily true for the observer ¥(z + z).
Therefore we bound W (x + z) artificially with W(z 4 z) such that no error is
introduced on the true trajectories, i.e. U(z(t, o)) = ¥ (x(t, 20)).

A simple construction for the observer nonlinearity is

W ohin if \IJZ({E + Z) > Vo
Viw+2) = Uiz +2)  if Upin < T2+ 2) < Uy
W ax if U(z+2) < Upax

where Wi, and Uy« respectively are lower and upper bounds on the elements
of ¥ on the true trajectory, i.e. it holds that

\Ijmin S \le(t,xo) S \Ijmax'

Summarising, the above construction guarantees that the assumptions of Lemma 6.1
are satisfied, Theorem 6.2 can be applied and the system of LMIs in (6.10) guar-
antees global convergence of the observer.

6.5 Example MAPK

The proposed methodology is illustrated using a model of the Mitogen-activated
protein kinases (MAPK) as introduced earlier in Section 3.6.3. In order to
facilitate the readability of the document, the mathematical descriptions are
recapitulated below.

Figure 6.2 shows a sketch of the overall network structure. The systems
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Table 6.1: Parameters of the MAPK model that generated the artificial data.

pP1 P2 b3 yZ D5 De D7 Ds P9 P10
1 01 08 1.1 04 02 09 1.2 05 0.3

reaction scheme is

Ky +u s Ko +u,
Ky+ P = Ky + P,
KK, + Ky 2 KKy + Ko 2% KK3 + Ko
KKs+ Py 2% KKy + Py 2% KK + P
KKK, + KK3 25 KKK + KK3 = KKKs3 + Ks
KKK+ P3 2 KKK, + Py 2% KKK, + Ps.

We obtain a system of ordinary differential equations ¢ = Nv using the vector
of concentrations

c=[K\ K, KK, KK, KK; KKK, KKK, KKIK3)"

and the stoichiometric matrix

N= . (6.13)

The reaction rates are described using the law of mass action

v = pruk vy = pa Ko, (6.14a)
v3 = p3 o KK, vy = palo KK, (6.14Db)
vs = ps KK3 ve = pe K2, (6.14c)
vy = pr KK3 KKK, vs = ps KK3 KKK>, (6.14d)
vg = poKKK3 v10 = p1oKKK>. (6.14e)

In the following, the model is used to illustrate/discuss a few aspects of
the proposed methodology. 6.3 In all figures, simulations using the parameters
values shown in Table 6.1 generated artificial data subsequently used by the
observer. Further, in all figures, the following design specifications for solving
the observer LMIs (6.10) were chosen: € = 1, off, =1, § = 21. The observer

nonlinearity was bound with —W iy = Upax = 10.
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Figure 6.2: Example of a MAPK system: Raf-MEK-ERK
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Figure 6.3: Estimation of the MAPK model with input, i.e. u(t) = 0.01Vt < 0,
u(t) = 1Vt > 0. (a) Trajectories for measurements (x-marks), fitted outputs
(dashed lines) and observed trajectories (solid lines). (b) Parameter estimates.
(c) Total state estimation error relative to true values. (d) Mean parameter
estimate error relative to true values.

PhD Thesis (submitted version) 78



Part . Identification of biochemical reaction networks

6.5.1 Observability issues, known parameters and rate mea-
surements

Application of Theorem 6.3 requires that the pair (A4,C) is observable. With
A given in (6.11), this means that the output has to be chosen accordingly. It
follows from the structure of A that c¢(t) has to be included in the output. In
addition some reaction rates have to be included in the output if the stoichio-
metric matrix N possesses linearly dependent columns. For example, due to the
dependencies of N in (6.13) either the phosphorylation or the dephosphoryla-
tion rate in each phosphorylation cycle has to be included in the output. In the
following it is assumed that the output comprises all concentrations as well as
the dephosphorylation fluxes, i.e.

yT = [CT Vo Vs Vg Vg 1}10.}

Clearly, measuring all the required quantities is unrealistic in a real-world
experimental scenario, in particular when it comes to measuring reaction rates.
Measuring reaction rates can be circumvented by assuming that the correspond-
ing parameters are known. Here, we assume that the dephosphorylation param-
eters are known, and calculate the flux directly from the concentration measure-
ments, i.e.

yT = [qu;easured Udephos(cmeasured;pknown)T] . (615)

Figure 6.4 illustrates that the stability of the observer is not lost, even if
the assumed parameters are not known exactly (see also Table 6.2). In an iden-
tification where the known parameters are accurately known, the estimate of
the remaining parameters is also accurate. However, when the known parame-
ters are incorrectly known, a systematic error is introduced, i.e. the parameter
estimates are off by an constant term (compare panels (a) and (b) in Fig. 6.4).

It is possible to further reduce the amount of time course measurements by
exploiting conserved moieties, i.e linearly dependent rows in N. For example,
the total concentration of kinase in each (double-) phosphorylation cycle is con-
stant. Assuming the total concentration is known (or measured beforehand),
one concentration measurement in each conserved moiety can be reduced. For
example

y1(t) = K1(t) = Kiotal — K2(t) = Kiotal — y2(t),
y4(t) = KKQ(t) = KKtotal — KK1 (t) — KKg(t) = KKtotal — yg(t) — y5(t),
y7(t) = KKK»(t) = KKK ota — KKK (t) — KKK3(t) = KKK oral — Y6(t) — ys(t).

6.5.2 Data sampling and noise

In practice, experimental data is sampled (time discrete) and noisy. Because
the observer requires a continuous output, data interpolation and smoothing is
necessary. There is a multitude of non-parametric and parametric interpolation,
smoothing and curve fitting techniques available (Motulsky and Christopoulos,
2004). Detailing these techniques would go beyond the scope of this manuscript,
note however that smoothing splines provide a popular, easy to use standard.
Throughout this manuscript, we fitted smoothing to the artificially generated
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(a) Known parameters 1% off (b) Known parameters 20% off

Error (%)

Error (%)
[y
o

Figure 6.4: Effects of estimating only a subset of the parameters and sampling.
(a-b) Identification with wrong values for known parameters as provided in
Table 6.2; only the unknown parameters are estimated. Figures show the relative
error of the estimated parameters for (a) known parameters 1% off the true
values, (b) known parameters 20% off the true values. (c-d) Effect of insufficient
sampling. (c) Output trajectories y; = K7 as measured (solid) and fitted with
low sampling (dash dotted). (d) State trajectory vy of the true system (solid)
and the observer, i.e. the estimate, for high sampling (dashed) and low sampling
(dash dotted).
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Table 6.2: True, assumed and estimated parameters for the nominal model and sine input. The known parameters are 1% or 20% off the
true values, i.e. the mean error of the assumed parameters is 1% or 20%. The row “estimated” presents mean values for ¢ > 10 of the
oscillating parameter estimate shown in Fig. 6.4.

b1 D2 b3 Y2 ps De pr Ds P9 P10
true 1.00 0.10 0.80 1.10 040 0.20 090 1.20 0.50 0.30

assumed - 0.11 - - 0.49 0.27 - - 0.48 0.23
estimated 1.02 0.10 0.79 1.11 040 020 0.92 1.18 0.50 0.30
% error -2.22 -0.87 1.07 -1.78 -1.22 -0.06 -2.61 124 -0.00 -1.68

assumed - 0.10 - - 0.40 0.19 - - 0.49 0.30
estimated 1.17 0.11 1.11 1.35 050 0.27 072 1.17 0.48 0.24
% error -17.8 -14.9 -394 -23.1 -25.0 -39.1 19.1 237 2.89 19.87

20% off| 1% off
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Chapter 6. Design of a dissipative observer

data using the Matlab curve fitting toolbox. In all simulations, the stability of
the observer was not compromised by the smoothing spline interpolations used,
indicating that the proposed observer design is robust to measurement noise
and data preprocessing.

An important aspect of smoothing and curve fitting is the associated error.
Even in the noise free case when the fit perfectly retrieves the data at the sam-
pled instances, interpolation still introduces errors and influences the quality of
the subsequent state and parameter estimate. Figure 6.4(c-d) illustrates that
insufficiently low sampling results in inaccurate state estimates (and thus inaccu-
rate parameter estimates). Therefore, one has to be careful to choose sampling
rate and curve fitting technique that can accurately capture the dynamics of
the measured variables.

6.5.3 Unknown inputs

The observer is capable of identifying the internal parameters, even if the sys-
tem is linked to other systems that have not been modelled. Mathematically,
we treat the influence of non modelled dynamics as stimulation by unknown
inputs. For example, the MAPK system is linked to a extracellular changes of
hormone concentrations by a complex network of receptor, adaptor and scaf-
folding proteins.

Consider stimulation of the MAPK system with

vy = p1Kqu(t), u(t) = 0.5 4+ Ag sin(27t /wy), (6.16)

where Ag = 0.4 and wy = 23/2. Further assume that the input is not measured.
We therefore neglect it for setting up the observer, i.e. Uobserver = 1. (instead
of v1 = p1K1u we use v; = p1 K; for the observer). Figure 6.5a shows that the
observer still converges and that all states except vy are estimated correctly.
The correct parameter values are obtained, with exception of the parameter p;.
This is not surprising, the observer simply included the unmodelled, unknown
input into the p; estimate, i.e. P1 estimate = P1U(t).

6.5.4 Modelling errors

The fact that the observer is capable of estimating time varying parameters (see
previous section and Fig. 6.5a) means it can be used to identify modelling errors,
such as missing/unknown feedback loops. Ideally, when the model is correct,
the parameter estimate is constant but time-varying in the case of an incorrect
model (see Fig. 6.5b). This hypothesis was tested in several instances, by alter-
ing the system that generated the artificial data. Several modelling errors such
as faulty reaction orders and unmodelled feedback loops were considered, and
could all be identified. For simplicity of illustration, one one modelling error
is presented here. In particular, consider a unmodelled feedback interaction of
ERK to vy, i.e the the data generating (true) system is

v = 5p1KKK1K1u,
whereas the observer design remains based on the simple nominal system

v1 = p1Ku.
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Figure 6.5: Identification of modelling errors of MAPK model with sine in-
put. (a) Unknown input observer resulting in time dependent parameter
k1 est. =k1u(t). (no noise for illustration purposes) (b-c¢) Identification of mod-
elling error in v;. Data was generated using model alteration A1, with a feedback
from ERK to v, i.e. v1 true = 5k1 KKK K u, whereas the estimation was per-
formed using the (faulty) nominal model for the observer, i.e. v1 obs = k1 K7 u.
(1% measurement noise.) (b) Relative parameter error for faulty model. (c)
Discrete Fourier transform of (some representative) parameter estimates and
input.
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All extended states are estimated correctly by the observer. However, for the
altered system, the parameter p; is not estimated correctly due to the modelling
error in the corresponding reaction v1. Instead of the true value, the observer
estimated p; KKK;. In order to see the modelling error the system must not
be in steady state, because a faulty parameter estimate in steady state can not
be distinguished from correct, constant estimates. We can only see the error if
the system is moving, since then the faulty modelled parameter is time-varying
(Fig. 6.5b).

Under noise free condition, a faulty modelled reaction is easy to spot. In a
real world scenario, it might be more difficult depending on the level of noise, be-
cause noise causes (all) parameter estimates to vary. Nevertheless, the modelling
error can be identified easily because the corresponding parameter estimate is
highly correlated to the input. This can be seen by computing the discrete
Fourier transform (DFT). In contrast to the DFT of all other parameters, the
DFT of the p; estimate shows a frequency pattern very similar to that of the
input (Fig. 6.5¢).

In practice, it might be difficult to stimulate a stationary system with os-
cillations due to limitations of experimental techniques. Step and pulse stimu-
lations might be much easier to achieve and they suffice to identify modelling
errors. Instead of an oscillatory parameter estimate, one gets a raising or de-
clining estimate for the parameter corresponding to the faulty reaction. Fig-
ure 6.6 shows an example in which the system was stimulated with the input
u(t) = 1/2(1 + 0.8 tanh(15 — ¢)) and reaction vs was modelled erroneous. The
real system that generated the data had a feedback of ERK to v

vg = Tps KKK 1pa KK,
whereas the observer design was again based on the simple nominal system

V3 = p3K2KK1.

The parameter estimate p; oscillates at around ¢ = 15 because of the input
change but returns to its previous value. In contrast ps raises toward a new
steady state, indicating a modelling error.

6.6 Summary and conclusions

This chapter presented the design of a dissipative observer and its use for param-
eter estimation in the context of the model extension presented in Chapter 4.
From a theoretical perspective, sufficient conditions for the observer design were
given in the form of a linear matrix inequality that can be solved efficiently using
programming packages such as YALMIP and SeDuMi (Lofberg, 2004; Sturm,
1999). From an application perspective, practical aspects such as limited num-
ber of measurement-outputs, measurement noise, sampling and modelling errors
have been discussed. Using the MAPK system as a template, the examples illus-
trated that usual drawbacks of observer based approaches, such as the require-
ment of continuous measurements and sensitivity to noise, can be overcome by
data preprocessing in the form of curve fitting. Curve fitting also allows to dis-
sect the system into subsystems that can be estimated separately in a modular
fashion. Therewith the methodology is well scalable to large systems.
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Figure 6.6: Identification with step like input. Stimulation with input u(t) =
1/2(1+0.8 tanh(15—t)) and the resulting parameter estimate, whereby reaction
vs was modelled erroneous The data was generated with vs = 7Tps KKK1ps KK,
(feedback of ERK to v3), whereas the observer used the nominal model, i.e.
vs = p3 K KK1. Parameter estimate p; oscillates at around ¢ = 15 because of
the input change but returns to its previous value. In contrast ps raises toward
a new steady state, indicating a modelling error.

An important advantage of the presented methodology is that it guarantees
a unique parameter estimate by mathematical proof and that it can be used
to estimate time varying parameters. The capability of the methodology to
handle unknown inputs and estimate time varying parameters reveals modelling
errors and pinpoints unmodelled effects. This is of particular relevance in gene
regulation and signal transduction networks, which are generally associated with
a great deal of uncertainty.
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Chapter 7

Summary and perspective

Molecular systems biology aims in a detailed, dynamic understanding of cell
function. To that end, mathematical models have to be constructed and cali-
brated using experimental data. Models of evolved biochemical reaction systems
differ in a multitude of points from humanly engineered systems, rendering clas-
sical system identification methodologies unsuitable. However, biological sys-
tems have particular properties that can be exploited to develop novel method-
ologies. Here, I exploited the particular nonlinearity of biochemical systems in
form of rational functions.

Chapter 3 presented a methodology to invalidate entire parameter regions by
proving inconsistency of model and data. The method can be used to reduce the
space of feasible parameters or to invalidate competing models. The methodol-
ogy requires measurements at a few time points, such that derivatives can be
calculated. Further, the states of the model have to be observable. Identifia-
bility of the parameters is not required. Both, insufficient data and structural
unidentifiability result in parameter dependencies, which are returned by the
method as result. The main advantages of the methodology is that it does not
require to solve or simulate the differential equations, and that entire parame-
ter regions can be analysed. The main drawbacks of the methodology is that
it can only invalidate, i.e. disprove parameters. This drawback is an artifact
of the relaxation, for which we allowed solutions of the sdp of arbitrary rank.
In the static case, Kuepfer et al. (2007) used rank one solutions as parameter
estimates. In how far a low rank solution is a valid solution of the parameter
estimation problem and how we can get low rank solutions are open question
that can be considered in future research.

Chapters 4, 5 and 6 presented a methodology to estimate actual parameter
values. The methodology relies on a state space extension that transforms the
system into parameter free coordinates. The actual estimation is performed by
special nonlinear observers that are particularly tailored to the parameter free
system. Two observer design have been presented. In theory, the normal form
observer can be applied even when only a few states are measured. However, it
requires Lie algebraic computations and the inversion of the nonlinear observ-
ability map, which limits the size of systems for which the observer is applicable
in praxis. The inversion of an observability map containing Lie derivatives of
orders higher than two or three is probably not feasible. Further, normal form
observers are not readily extendable to systems with inputs and are sensitive to
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measurement noise. Avoiding these drawbacks motivated the design of a dissi-
pative observer. The linear matrix inequalities developed in Section 6 provide
a straight forward design that can be solved numerically in a matter of seconds
(using YALMIP and SeDuMi). As demonstrated in numerous examples, the
dissipative observer is robust against measurement noise and sampling. The
main advantage of the observer based approach is that it estimates unknown
influences and pinpoints modelling errors, giving valuable insight for further
model development.

In contrast to the approach for parameter invalidation in Chapter 3 it is
not possible to incorporate known parameter dependencies into the observer
based approach due to the nature of the state space extension. The extension
introduces a state variable for each reaction and Hill term. Even if two reac-
tion share the same parameter, the corresponding state variables are different.
This artificially increased the dimension of the identification problem. Future
research should address this issue, as it is particularly important in the context
of domain oriented modelling (Conzelmann et al., 2008).

Observability

The concept of observability is the common factor of the developed methodolo-
gies. In the context of parameter invalidation (Chapter 3), observability allowed
us to solve for the unmeasured states and formulate conditions on the parame-
ters in terms of the measured outputs and their derivatives. If the system is not
observable, then the elimination of all unmeasured states is not possible, and
the equations do not restrict the parameter space. Therewith, observability is a
necessary condition for identifiability (see Theorem 3.3). To identify the param-
eters, we have to evaluate the parameter condition at different time points of the
measured trajectory, which gives different manifolds of consistent parameters in
the parameter space. If the resulting manifolds intersect in a single point only,
the system is identifiable and the intersection point is the parameter estimate.
This requires that we find at least n + 1 linearly independent functions in the
observability space, where n is the number of states in the system. Assuming
that only one parameter condition is used, the output and its derivatives need
to be measured at at least n,, different time points ¢;, where n,, is the number of
states in the system. Of course the measurement vectors [y(t;), §(t;), ...] need
to be independent of each other, which requires that the system is sufficiently
exited.

In the context of parameter estimation using the extended system (Chap-
ter 4), observability of the parameter free systems implies identifiability. In fact,
observability of the parameter free system means that the reconstruction of all
parameters is possible at any point in time. Given the output and its derivatives
at one point on the trajectory, the parameter can be directly calculated (by in-
verting the observability map). In contrast to the requirements discussed in the
previous section, observability of the parameter free system is a rather strong
condition. In fact, it means we need to find at least n + n,, linearly independent
functions in the observability space.
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Curve fitting

Experimental data is sampled and noisy. This is especially true in molecular bi-
ology, where modelers are faced with low sampling rates (often only a couple of
time points are measured), and high levels of noise, rendering the task of model
identification very challenging. In particular, calculating derivatives from ex-
perimental data, as required in Chapter 3, greatly amplifies measurement noise.
Further, observer based approaches, as developed in Chapters 5 and 6 assume
continuous measurements and thus require some sort of interpolation. Curve
fitting can not only reduce measurement noise, but is also a means of obtaining
derivatives and interpolation. Further, curve fitting allows for a modularized ap-
proach, in which some fitted curves act as inputs decoupling the subsystems as
described in Chapter 6. Several standard techniques for curve fitting exist, such
as fitting periodic functions or polynomials using least squares regression, most
of which are implemented in the Matlab curve fitting toolbox used in this thesis.
Fitting standard regressors, such as splines, gives good results for high sampling
rates. The lower the sampling rate, the more carefully the smoothing parameter
has to be tuned. The smoothing parameter describes how trustworthy the data
points are. A smoothing parameter of 1 means the fitted spline goes through
each data point. Lower smoothing parameters allow for a mismatch of data and
fit, acknowledging that the data is corrupted by noise. It can therefore be used
to capture the shape of the trajectory but not the noise. I found that tuning
the smoothing parameter by visual inspection greatly enhances the results, a
fact that is probably related to the low sampling rates and high levels of noise.
Under certain conditions, fitting user defined function is beneficial because prior
knowledge can be incorporated. For example, we know that the phosphorylation
cycles in Chapter 3 exhibit exponential or sigmoidal trajectories, which can be
captured using special, non-standard exponential functions.

Semidefinite programming

Semidefinite programming has become very popular within the control commu-
nity in recent years. This is probably due to the fact that many problems of
robust and optimal control can be readily formulated in terms of linear matrix
inequalities, which are a special case of semidefinite programmes. This thesis
utilised semidefinite programming to solve the parameter conditions in Chap-
ter 3 and to solve the linear matrix inequalities for the observer in Chapter 6.
The assumptions under which the observer design problem in Chapter 6 can be
relaxed to a linear matrix inequality are rather strict. Using some ideas from
Chapter 3, such as the sum of squares decomposition, it might be possible to
find alternative, less stringent formulations.

89 Dirk Fey



Chapter 7. Summary and perspective

PhD Thesis (submitted version) 90



Part 11

Modelling the Morris water
maze
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Chapter 8

Background and literature
review

The Morris water maze is an experimental procedure in which animals learn
to escape swimming in a pool using environmental cues. Despite its success
in neuroscience and psychology for studying spatial learning and memory, the
exact mnemonic and navigational demands of the task are not well understood.
To shed light on how rats solve the task, part two of this thesis develops a
mathematical model of rat swimming dynamics on a behavioural level. Before
doing this, the following sections provide the necessary background.

8.1 Morris water maze

In 1981, Morris described a simple, yet effective device to analyse spatial navi-
gation, learning and memory (Morris, 1981; Morris et al., 1982; Morris, 1984).
The Morris water maze consist of a large circular pool filled with opaque water
such to hide an escape platform under the water surface. Using navigational
cues, animals learn the location of the platform over several training trials and
escape from the pool. Since its first application, the Morris water maze task
has become one of the most frequently used tool in behavioural neuroscience
utilised in more than 2000 research reports (D’Hooge and Deyn, 2001).

Undoubtedly, one of the reasons for its success is the simplicity and ease
of use, offering this task many advantages over other spatial task. The use of
water allows to control odour cues, and serves as an excellent motivation factor
for animals to learn the platform location.

Despite the relative simplicity of the task, it remains unclear how the animals
use the navigational cues for spatial learning and navigation.

8.2 Neuronal networks
On the neuronal level, the probably most common theory is the cognitive map
theory (O’Keefe, 1990). The cognitive map is a neuronal network in the Hip-

pocampus encoding a detailed spatial map of the environment in which each
point in the environment evokes firing of at least one neuron. Experimentally,
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the cognitive map theory is supported by reports of so called place cells. Place
cells are neurons in the Hippocampus that express firing patterns depending
on the position of the animal in space. Critic on the cognitive map theory ar-
gues that Hippocampal neurons do not map physical space explicitly, but rather
encode spatial-temporal relationships and sequences (Eichenbaum et al., 1999).

Theoretical studies using the cognitive map theory have demonstrated that
artificial neuronal networks can be used to learn spatial locations and navi-
gate to them (Blum and Abbott, 1996; Brown and Sharp, 1995; Burgess et al.,
1994). The resulting models are conceptually based on cognitive map theories,
initially described by O’Keefe (1990), and hypothesise patterns of connection
between different kinds of neurons such as place cells, head direction cells and
grid cells (Moser et al., 2008; Burgess and O’Keefe, 1996). These studies have
either focused on neuronal structures or on application of artificial networks for
navigation of robots (Burgess, 2008; Tamosiunaite et al., 2008; Strosslin et al.,
2005; Brown and Sharp, 1995).

8.3 Behavioural strategies

Despite the advances on the neurological level, spatial navigation and learning is
not well understood on the behavioural level (Sutherland and Hamilton, 2004).
In contrast to neurological studies, which focus on how neurons or networks
of neurons process information, behavioural studies focus on higher level func-
tions. such as different learning protocols. The result is a rather simple model
that explains the observed behaviour (i.e. swimming path in the water maze)
using environmental conditions os stimuli (i.e. available cues) and the strategy
employed by the subject (e.g. random swimming, searching, ...).

This thesis takes such an behavioural approach in order to explain the ani-
mals swimming behaviour in the MWM.

The literature proposes multiple spatial strategies for orientation and naviga-
tion in animals and humans (Aggleton et al., 2000; Pearce et al., 1998). So called
egocentric strategies define the relation of an object or goal relative to the sub-
ject. Egocentric mechanism include predefined sequences of motor movements,
or approaching navigational cues directly, whereby little information about the
relations between the cues themselves is used (Brown, 1992; de Bruin et al.,
2001). In contrast, so called allocentric strategies define the relation of an ob-
ject or goal relative to subject-independent locations. Allocentric mechanisms
include the use of particular spatial relations between several cues, such as dis-
tances and directions between them. Triangulation of three or more distal cues
allows the animal to triangulate its position and learn the goal location accu-
rately (Hamilton et al., 2004; McGauran et al., 2004; Benhamou, 2003; Poucet
and Benhamou, 1997). It has been suggested that animals have an entire hierar-
chy of strategies at their disposal with the preferred one used depending on the
context and demands of the task. An animal might even use several different
strategies in a single trial and change the employed pattern of strategies with
training (Kealy et al., 2008a; McGauran et al., 2008; Choi et al., 2006; Gerlai
et al., 2002; Packard and McGaugh, 1996). Harvey et al. (2008) argues that even
under well controlled conditions navigation in the MWM is constantly chang-
ing, employing dynamic expression patterns of different cue-dependent ego- and
allocentric strategies.
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8.4 Analysis of water maze experiments

Nearly all experimental studies concerning the MWM rely on statistical analysis
of the animals performance, such as the time passed until the animal finds the
platform (escape latency), or the time the animal spends in different areas of
the pool. In conjunction with neurological, surgical and pharmacological meth-
ods, simple performance analysis helped to reveal a great deal about learning
and memory, especially on the neurological level (Maei et al., 2009; D’Hooge
and Deyn, 2001; McNamara and Skelton, 1993). From a behavioural perspec-
tive however, those rather crude statistics clearly possess limitations. Statistics
can coarsely describe, but not explain the rats swimming behaviour. Detailed,
sophisticated mathematical models are necessary.

8.5 Dynamic modelling

Computational models can capture and parameterise essential features of the
rats behaviour such as search strategies and learning protocols. Such models
can be used to control experimental conditions in computer experiments to an
extend that can not by achieved in web lab experiments. Other branches of the
life sciences successfully utilised dynamic modelling to explain phenomena such
as neuronal spiking, circadian rhythms, oscillations in population dynamics and
animal movements of simple organisms (Jeanson et al., 2003). In concordance
to the latter, we use dynamic modelling to explain and analyse rat movements
in a water maze pool. By fitting the models to different conditions, e.g. trained
versus untrained rat, one can exactly identify which parameters change. Clearly
this approaches offers a richer, more detailed analysis compared to simple per-
formance statistics.
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Chapter 9

Stochastic process
modelling of rat movements

This chapter develops a dynamic model conceptually based on a random walk
that mimics rat swimming behaviour. The aim is to obtain a simple, time
discrete model that can be identified easily from recorded swimming paths.

9.1 Introduction

Random walk models have been used in the literature to describe movements of
simple organisms such as cockroaches and squid (Jeanson, et al., 2003; Schmitt
& Laurent, 2001). In a simple random walk, either the displacements in each
coordinate direction, or the step size and direction follow random variables.
Clearly, such a simple model does barely justice to real rat movements, consid-
ering that rat have a tail and a head, and thus a somewhat coherent heading
into a particular direction. The following sections develop a model of rat move-
ment based on a directed random walk (Figure 9.1). In contrast to the common
random walk, the direction is not a simple random variable, but depends on a
random process in which the change of direction is driven by a random variable
This model is developed in Section 9.3. In addition to the free swimming in the
interior, rats also tend swim along the pool border. This behaviour is termed
thigmotaxis and modelled in Section 9.4. The random variables in the model
are identified from experimentally recoded swimming paths. The next section
briefly comments on how the data was collected.

9.2 Experimental data

The data was obtained by Harvey et al. (2009). Male Wistar rats (aged 3 months
250-350g, Biomedical Facility, University College Dublin) were divided into two
groups (1 cue and 3 cues). All animals (n=16) were given 4 trials per day for
5 days to acquire the water maze task. The Morris water maze consisted of a
circular pool (1.7m diameter). Rats could escape from swimming by locating a
hidden platform (9cm diameter) located in all experiments in the middle of the
northeast quadrant of the pool. The platform was submerged 2cm, rendering
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it invisible to the rats. The pool was surrounded by a black curtain located
approximately 50cm from the pool wall. Different numbers of cues suspended
on the inside of the curtains were available for the different groups. The 3
cues group had two light bulbs (in the northwest and northeast corner), and a
rectangular sheet of white paper (55cm x 8lcm, east side). The 1 cue group
had a single light bulb located in the northeast corner. Collected data consists
of recordings of rat swimming paths (x-y coordinates) in successive trials with
neglectable positional error and a temporal resolution of 0.2s over at most 60s
(after which the trial classifies as unsuccessful), resulting in 50 to 300 data points
per trial.

9.3 Modelling free swimming inside the pool
The dynamic model is conceptually based on a directed random walk (Fig. 9.1)

and a feedback loop of the heading change having a modular structure (Fig. 9.2).
The random walk is modelled as a discrete-time system:

Ty = Ty—ar + Arysin(ay), (9.1a)
Yt = Ye—ar + Arp cos(ay), (9.1b)
ay = O At + Aozt, (91C)

where xy, y; and «a; denote position and heading of the rat at time t. At is
the sampling time of the experimental data. The step size Ar; and the heading
change Ay are random processes to be identified from the data. Based on our
data analysis, we assume that the step size is an independent random variable
(the crosscorrelation between step size and heading change shows a high p-value
of > 0.2 and values 20x smaller than the autocorrelation of the heading change),
whereas the heading change is a standard autoregression model extended by an
input term wu:

AOét = ZAiAat—iAt + u, (92)

where A; are coefficients describing the relative contributions of the past values
on the current value. Two considerations motivated (9.2). First, rats do not
change their heading completely randomly, as they tend to swim coherent curves.
For example, when the rat turns left at one time instant, it tends to keep turning
left for a certain amount of time, thus swimming a left curve. This effect can
be modelled mathematically by making the change of heading dependent on
previous heading changes, i.e. nonzero coefficients A;. Second, rats are able to
control their change of heading, which is mathematically modelled by the input
term wu realising a feedback mechanism:

Ut = Két + V. (93)

Here, é; is the rat’s estimate of its heading error, K is a proportional feedback
gain and v; a normal distributed random number (Gaussian noise). The higher
the gain, the faster the desired heading is achieved. We assume that the error
estimate is realised as a low pass filter

ét = (1 - F)étfl + F(adesired - O[t), (94)
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Figure 9.1: Sketch of the model. (a) Illustration of the random walk with Ar
denoting the step size and A« the heading change. (b) Illustration of the angle
at which the rat leaves the pool border.

where 0 < F' <1 is a weighting factor. Loosely speaking, the higher the weight-
ing factor, the more the rat trusts its visual input; the smaller the weighting
factor, the more the rat trusts its memory. Using an error estimate rather than
the actual error directly achieves a much better model fit to the data (Sec. 10)
and is further interpreted in Section 11.

9.4 Modelling thigmotaxis at the pool border

The above considerations mainly concern the rats swimming behaviour in the
interior of the pool. Along the pool border, rats exhibit a distinct swimming
behaviour termed thigmotaxis (Fig. 9.1b). Searching for a way out of the water,
the rat swims along the pool border for a certain amount of time. The complete
model captures both behaviours, free swimming in the pool and thigmotaxis,
and is summarised in Table 9.1. Basically the simulated rat starts swimming
in the pool as described in the previous section. When it hits the border, it
chooses to swim along the border, whereby the probability to leave the border
after each step is constant (see results section).

9.5 Perspective

The behaviour of rats in the water maze changes depending on the experimental
conditions and the training regime used. The modelling framework developed
in this chapter can be used to identify which parameters change in the model.
Using the model, different navigational strategies can be tested in isolation and
combination revealing the contribution and usefulness of these strategies and
giving valuable insight into the MWM task. The next chapter illustrates how
this can be done in particular.
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Figure 9.2: Overview of the heading change model (dynamics) and its relations to the neurophysiology (cognitive functions). On the
path dynamics level, x, y is the rat’s location, « is the rat’s actual heading, aqesireq the rats desired heading, e the heading error, é the rats
estimate of the heading error, u the input to the heading change model and 7 a random variable with a normal distribution. The variable
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Part . Modelling the Morris water maze

Table 9.1: Overview of the model and the distributions identified from the data.

do 300 times
perform strategy
perform step according to Eq. (9.1)
if location = on-pool-border
perfom step along border
with probability p leave border
endif
if location = platform
terminate simulation

case random
calculate Aa according to Eq. (9.2) withu=0
case cue-based
if nsteps < 1
choose a cue randomly as target
set nsteps <= 10, endif
calculate Aa according to Eq. (9.2), (9.3) & (9.4)
case place-control
if location = target

endif choose new target according to Eq. (9.5), endif
enddo calculate Aa according to Eq. (9.2), (9.3) & (9.4)
Process Distribution Probability density function Parameters
Step size Rayleigh = exp(gT’”;) b=38
Heading change Normal = 1% exp( _(;”;2”)2) pw=0,0=10
Probability to leave border ~ Constant D p=1/8
Angle off border Log-normal a\}ﬁw exp( 7(1“222“)2) u=350=0.78
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Chapter 10

Identification and analysis
of the model

This section identifies the mathematical model from experimental data and
analyses different navigational strategies. Estimating all parameters from the
recorded swimming paths is possible because the described model is simple and
largely linear. In fact, the only nonlinearity is the calculating the displacements
in (z,y) coordinates from the heading in (9.1).

10.1 Thigmotaxis

The distribution of the path length along the border was identified by analysing
the recorded swimming paths using the Matlab statistics toolbox. A histogram
shows good accordance with an exponential distribution, suggesting a constant
probability to leave the border at each time step (0.2s) (Fig. 10.1). As there is
no escape from the water at the border, the rats learn to avoid the border over
time (Fig. 10.2). Avoiding thigmotaxis occurs on a much longer timescale in a
matter of days. For the model we can therefore safely assume the following. In
a single trial, the probability of leaving the border in each time step remains
approximately constant, yielding an exponential distribution of the path length.
Learning to avoid thigmotaxis can be modelled by changing the probability to
leave the border from one trial to the next, or even from one day to the next.

10.2 Learning not reflected in the distribution,
but in the autocorrelation of the heading
change

The probability density functions of the random variables were identified by
analysing the recorded swimming paths using the Matlab statistics toolbox
(Fig. 10.1). The distributions of step size and heading change do not change
significantly with training (Fig. 10.3a-b). This is not surprising, because those
variables do not contain positional information. However, the autocorrelation
of the heading change, which describes how current heading changes correlate
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Figure 10.1: Visualisation of the random variables distributions: histograms
show the data, solid lines the fitted probability density functions as used in the
model. (a) Rayleigh distribution of the step size (b) normal distribution of
the heading change (c) exponential distribution of the path length on the pool
border (d) log-normal distribution of the angle at which rats leave the border
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Figure 10.2: Percentage of time the rats spent at the pool border. Middle
lines indicate medians, boxes upper and lower quartile, indicating a significant
statistical difference between day 1 and day 5.
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to past heading changes for one time step back (lag one, i.e. 0.2s), two time
steps back (lag two, i.e. 0.4s) and so forth: > . Aa;Aa;_j44, increases over days,
reflecting the rats learning progress (Fig. 10.3c).

10.3 Open loop model mimics swimming behaviour
of day one

We identified the parameters A; of the heading change model in open loop
using the data of day one, when we assume the rat’s swimming behaviour is not
directed towards a particular goal (gesirea = @) and the input u is Gaussian
noise (us = v¢). This renders (9.2) a simple autoregressive model that can
be identified using the Yule-Walker equations. We found that a second order
model (i.e. A; = 0 for i > 2) explains the observed autocorrelation sufficiently
well (Fig. 10.3d, see also next section). Only slightly different coefficients were
obtained for the 3-cues and 1-cue group. The simulated swimming paths and
the resulting simulated escape latencies are in good accordance with those of
the wet lab experiments (Fig. 10.4).

10.4 Selecting the model order based on behaviour

Selecting the model order (i.e. A; = 0 for i > model order) is an important step
in systems identification, which involves a certain trade off. On the one hand,
a higher model order, i.e. a greater number of free parameters, improves the
model’s fit to the observed autocorrelation. On the other hand, an oversized
model describes random errors or noise particular to the respective data set in-
stead of the underlying relationship. Such overfitted models generally have poor
predictive performance, exaggerating minor fluctuations in the data. Therefore,
great care has to be taken into choosing the model order.

There is a rich literature on how to choose the model order optimally,
mainly taking an information theoretical perspective. Famous examples are
the Akaike’s information criterion or the Bayesian (also called Schwarz) infor-
mation criterion (Ljung, 1999; Koehler and Murphree, 1988). Often, different
criteria return different model orders, especially if the stochastic is not mere
(measurement) noise but the major driving force of the system, as in our case.
We can obtain a meaningful model (in the predictive sense) by identifying dif-
ferent models of different order on subsets of the data and comparing preserved
features/behaviour. From a systems theoretical point of view, the behaviour
of a systems is best described by its poles and zeros, as we can directly see
stability, oscillatory behaviour etc. Figure 10.5 shows the poles (there are no
zeros in an autoregressive model) of the identified models for different model
orders (1-5). Two poles are particularly well preserved, a real pole at ~ 0.4 and
a real pole at &= —0.3. These poles of the second order model are very similar in
the 1-cue and 3-cues case, do not change significantly over days of training and
also occur reliably in higher order models (order > 3). Further, these two poles
are the most prominent in higher order models (order > 3), i.e. their respective
gains in a partial fraction decomposition are considerably higher compared to
the remaining poles. In conclusion, a second order model seems to capture the
main features of the underlaying behaviour reliably.
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Figure 10.3: Identification of the open loop model. (a,b) Comparison of the
distributions for untrained (day 1, trial 1) vs. trained rats (day 5, trial 4). Fitted
distributions show no significant difference. (c) Lag 1 (0.2s) autocorrelation of
the heading change over days. Markers indicate the mean over 8 rats and 4
trials, errorbars indicate the standard error of the mean (SEM). (d) Fit of
the open loop model autoregressive model (2nd order), i.e. identification of the
parameters A;. Solid: 3 cues case. Dashed: 1 cue case.
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Figure 10.4: Exemplary swimming path of a real rat on day one (left) and
a simulated rat using the open loop model (right). The circle indicates the
starting point, the x-mark the end point. In the shown trial, both rats succeeded
in finding the platform indicated by the x-mark.

10.5 Closed loop model reveals different feed-
back mechanisms

We identified the parameters K and F of controller and filter in closed loop
using the data of day five, when the rats direct their heading using the described
feedback mechanism. Here, the Yule-Walker equations are not applicable due to
the feedback. Instead, we used simulations to minimise the least squares error
of the autocorrelation of the heading change (Fig. 10.6).

We found an inherent difference in the navigational control strategy depend-
ing on whether one or three cues were available. Despite the fact that learn-
ing occurs equally fast in both cases, 3-cues rats employ a stronger feedback
(K = 0.42), compared to the 1-cue rats (K = 0.32). In addition, the 3-cues
group seem to rely only on the currently observed error, i.e. F' = 1, whereas
the 1-cue group rely to 24% on their memorised estimate, i.e. F = 0.76. We
repeated this analysis using different, more complex control models (data not
shown). All gave similar results, showing higher, immediate control for 3-cue
rats, and lower, delayed control for 1-cue rats.

10.6 Model analysis assesses efficiency of navi-
gational strategies

10.6.1 Avoiding the pool border

A first simulation experiment implemented a purely egocentric strategy in which
rats learn to avoid the border (platform located somewhere in the interior of the
pool). Border avoidance is modelled by a change of the probability to leave the
border. Simulations revealed that solely avoiding the border slightly decreases
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Figure 10.5: Poles of identified autoregression models of the heading change in
open loop. (a,b) Poles in the complex plane for identified models of different
orders. Dot: 1st order, square: 2nd order, x-mark: 3rd order, circle: 4th order,
diamond: 4th order. (a) l-cue case (b) 3-cue case (c) Root locus of poles for
increasing days showing how the poles move in the complex plane with training.
(d) Changes of the (real part) poles over days.
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Figure 10.6: Fit of the closed loop model, i.e. identification of the feedback
parameters K and F. (a,b) Colour contour plot visualising the values of the
cost-function (sum of squares error of the autocorrelation function) for different
control parameters. Darker, blue areas correspond to a better fit, the white
circle indicates the best fit. (c,d) Comparison of the autocorrelation function
of the heading change of data and model. Box plots show the data, horizontal
lines indicate the median, notches the 95% confidence interval, boxes the lower
and upper quadrille, whiskers the extreme values and “4” outliers. The x-marks
“x” indicate the mean autocorrelation function of the model as obtained from
> 500 simulation runs.
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the escape latencies, but that this effect is rather minor (Fig. 10.7a).

10.6.2 Cue-based egocentric strategy

A second simulation experiment implemented a cue-based egocentric strategy
in which the rats approach different cues for a certain (random) amount of
time. Unsurprisingly, the analysis of the resulting escape latencies shows that
this cue-based egocentric strategy is more efficient in the 3-cues case than in
the 1-cue case (Fig. 10.7b). Although the escape latencies were significantly
reduced compared to random swimming (50% and 32% for 3-cues and 1-cue
group, respectively), they did not reach the performance of fully trained rats.
For example, Figure 3b demonstrates that simulated animals in the 3-cues group
reach escape latencies of 19 seconds whereas animals in the laboratory typically
reach 10 seconds or less following 5 days of training (Kealy et al., 2008a). At
this point it is important to note that simulating the one cue experiment with
the strong control parameters (as identified from the 3-cues data) increases
the escape latencies significantly compared to the nominal control parameters
(as identified from the 1-cue data) for cue usages of more than 60%. This
decrease of performance worsens the more the rat uses the cue (Fig. 10.7b), red-
dash-dotted line). A weaker control is therefore beneficial in a 1-cue scenario,
explaining the difference of feedback strength identified in the previous section
(K3—cues > Kl—cue)-

10.6.3 Allocentric place navigation

A third simulation experiment, implemented an allocentric place navigation
strategy, assuming the rats know the platform location with varying degrees of
uncertainty (similar to a cognitive map, Burgess 2008). These uncertainties were
represented by two dimensional Gaussian distributions with varying degrees
of standard deviation. The simulated rats’ assumed platform location is the
true platform location plus a random deviation drawn from the uncertainty
distribution:

ZTPF, rat = TPF, true T PSin(9)7 (101)
YPF, rat = YPF, true + pCOS(9)7 (102)

where p is a normally distributed random number with zero mean and 6 a uni-
formly distributed random number in the interval [0, 180). Once the simulated
rat successfully navigated to its assumed platform location while realising there
was no platform, it dropped that assumption and chose a new platform location,
again by drawing from the uncertainty distribution. An analysis of the result-
ing escape latencies demonstrates that animals possessing little knowledge of
the platform location (large uncertainty) can solve the task very effectively. In-
deed, an uncertainty of about half the pool radius is sufficient to explain the
escape latencies after 5 days of training (10 seconds, Fig. 10.7¢). The situation
of a perfectly learned platform location, i.e. with no uncertainty, results in very
low escape latencies (4 seconds). Such low escape latencies have been observed
for over-trained rats (12 days of training, Kealy et al. 2008a).
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Figure 10.7: Analysis in terms of mean escape latency (y-axis for all plots). Markers present mean values of at least 500 simulations
with SEM’s < 1s (dots for 3-cues, x-marks for 1-cue model). Lines present a smooth fit to the simulated data (solid for 3-cues, dashed
for 1-cue model). (a) Strategy for leaving the border: At each time step the simulated rat leaves the border with a certain probability.
The two open loop models (gesireda = @) were simulated for a range of probabilities to leave the border (x-axis). Thick vertical dotted
lines indicates the probability to leave the border as estimated from the experimental data of day 1 and 5. Horizontal dash-dotted lines
indicate the mean escape latencies of the experimental data in trials 1 & 2 of day 1. (b) Egocentric cue-based strategy: The simulated
rat swims in episodes of random length in which the rat either approaches a cue (Qgesired = Qcue) Or swims randomly (Qdesired = ).
In the 3-cue case, the target cue was chosen randomly with equal probability. The two models were simulated in their corresponding
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chosen target location (Qtdesired = QPF, rat). Once reached, another episode begins and the rat chooses a new target. Target location is the
platform location plus a random error with a Gaussian distribution of zero mean. The two models were simulated for a range of standard
deviations of the error, which can be understood as the uncertainty with which the rat knows the platform location (x-axis).
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10.7 Model predictions

10.7.1 Physical parameters

Water maze experiments depend on several factors: physical ones such as pool
size and platform or cue location as well as behavioural ones. All are reflected
as model parameters, which can easily be altered in simulations for generating
model-based predictions. This is illustrated at the example of two types of
experiments.

First, changing the pool size has a major effect for untrained rats (random
walk strategy), but not for trained rats (place-control strategy), see Fig. 10.8a.
This is not surprising, because the difficulty of finding the platform depends on
the ratio of pool size to platform size. The greater this ratio, the more difficult
it is to find the platform using a random search strategy.

Second, having the platform on the opposite side of the clues is more difficult
with a cue-based strategy, but identical for a place navigation (Fig. 10.8b).
Using a cue based strategy, the rat learn to swim away from the cues, heading
in the opposite direction. In contrast to approaching the cues, turning away
from the cues results a wide spread of swimming paths and the platform is
missed more often. The place navigation strategy is by definition not affected
by the cue position. Place navigation assumes that the rat knows its own and
the platform position and therefore swims directly to the target. It is important
to note that the question of how the rat infers the positions, for example by
constructing a mental map, is neglected.

10.7.2 Probe test performance

Probe test are used by experimentalists to assess the learning success after
training. In a probe test, the platform is removed from the pool and the rat
is given a 60s retention trial. The rats (learning) performance is then assessed
usually using one of the following measures

e Percent quadrant time (Q). Amount of time mice searched a virtual quad-
rant (i.e., 25% of total pool surface area), centred on the location of the
platform during training (Morris, 1984; Morris et al., 1982; Morris, 1981).

e Percent zone. Amount of time mice searched virtual target zones (20 [Z20],
15 [Z15] and 10 [Z10] cm in radius, centred on the location of the platform
during training) during the 60-s test (de Hoz et al., 2004; Moser et al., 1993;
Moser and Moser, 1998). These zones represent 1/9th (11.1%), 1/16th
(6.25%) and 1/36th (2.8%) of the total pool surface area, respectively.

o Crossings (X). Number of times mice cross the exact location of the plat-
form (5 ¢cm in radius) during the 60-s test (Morris, 1984; Morris et al.,
1982; Morris, 1981).

e Proximity (P) measure (Gallagher’s measure). Average distance in cen-
timetres of mice from centre of the platform location across the 60-s
test (Gallagher et al., 1993).

Using the model, simulated retention trials allow for comparison of different
strategies and performance measures. For example, the Gallagher measure is
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Figure 10.8: Prediction of expected escape latencies (y-axis), middle lines
indicate medians, boxes upper and lower quartile, percentage on top of each box
is the percentage of unsuccessful trials. (a) Different pool sizes (x-axis). Blue,
left-hand-side: Random walk model (untrained rats of day one, i.e. probability
to leave border = 1/8). Red, right-hand-side: Place control model (trained rats
of day five, i.e. probability to leave border = 1/2).(b) Different cue locations.
Green, left-hand-side: Egocentric cue-based strategy (3 cues, probability to use
cues = 100%); S: cues in same quadrant as platform, simulated rats approach
cues (Qdesired = OQcues); O: cues in opposite quadrant as platform, simulated
rats swim away from cues perfectly (Qdesired = Qeues + 180°); O+E: cues in
opposite quadrant as platform, simulated rats swim away from cues but with an
directional error (Qgesived = Qcues + 180° + €, where € is normal distributed with
zero mean and standard deviation 10°). Red, right-hand-side: Place-control
strategy (uncertainty = 30%); S, O: rat swims to its assumed platform location
directly ((desired = OPF, rat), O+E: rat swims to its assumed platform location
with an directional error (Qgesired = QPF, rat + €).
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Figure 10.9: Predictions of different performance measures for the random
walk model (blue, left-hand-side bars), the egocentric cue-based strategy with 3
cues (green, middle boxes) and the place-control strategy (red, right-hand-side
bars). In the simulations, trained rats are allowed to swim for 60s without an
escape platform. Errorbars indicate standard variations. TQ: Time in quadrant,
i.e. percentage of time the rat swims within the correct pool quadrant. PZ:
Percentage zone, i.e percentage of time the rat swims within a circular zone
around the correct location. (Zone covers 1/9 of the total pool area.) GM:
Gallagher measure or average distance (in percent, normalised to pool radius),
i.e the mean distance to the correct location over the trial. NC: Number of
crossings, i.e. the number of times the rat swims over the correct location.

best suited to distinguish different behavioural strategies (no overlap of error-
bars, Fig. 10.9), closely followed by the percentage zone measure, which performs
slightly worse for distinguishing the random from the cue-based strategy. The
time in quadrant measure has difficulties distinguishing the cue-based from the
place-control strategy. Finally, the number of crossings measure fails to distin-
guish reliably either the random or the place-control strategy from the cue-based
strategy, due to large variations between samples. Summarising, such model pre-
diction are helpful in screening through possible experimental setups to uncover
the most promising ones that should be performed in a real experiment.

10.8 Conclusion

This chapter illustrated how the modelling framework developed in Chapter 9
can be used to analyse Morris water maze experiments, test different behavioural
strategies and make model predictions. In particular, identifying the model
revealed inherent differences for two groups of rats, one group trained with
three extra-maze cues available, the other group trained with one extra-maze
cues available. The next chapter discusses the differences of the 3-cue and 1-cue
model from a control theoretical and neurophysiological perspective.
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Chapter 11

Discussion of the model and
relation to neurophysiology

11.1 The role of feedback control

Developing a control system that robustly tracks a desired variable is a problem
commonly faced by engineers. The standard solution is integral feedback con-
trol, in which the time integral of difference between actual value and desired
value, is fed back into the system. A heating system controlled by a thermo-
stat is one well-known example. Because temperature, which is proportional
to the integral of heat (the output of the heater), is compared to the desired
temperature and fed back into this closed-loop system, the difference between
the room temperature and the desired temperature approaches zero despite ex-
ternal environmental disturbances or variations in the heater. Here, we have
the same situation. The heading, which is the integral of the heading change,
is fed back (Fig. 9.2). Hereby, the role of the integrator is taken by the random
walk model. It is therefore not necessary to use integral action within in the
controller in order to achieve a zero tracking error in steady state.

The identified feedback parameters (K1-cue < K3-cues, see Chapter 10) sug-
gest that the more navigational cues are available, the more the animal seems
confident, i.e. applies a stronger, more stringent control strategy. Our simula-
tions showed the advantage of weaker, more moderate control in the one cue
case as it allows for exploring a greater area.

11.2 The role of the filter

In engineering, a low pass filter is a simple but effective way to reduce (measure-
ment) noise. Here we have a somewhat noisy situation in the one cue case where
the rats positional inference is impaired. It makes therefore sense that rats use a
filter if only few or uncertain navigational cues are available (Fi_cye < F3_cues, S€€
Chapter 10). A biological interpretation of this result is that animals navigating
with more available cues rely on their immediate visual information, whereas
animals with a limited number of available cues rely more on past information.
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11.3 Fitting the model into underlying neural
circuits

The neurophysiology of spatial memory and learning involves different brain
regions depending on environment, experimental conditions and strategy em-
ployed by the rat (Fig. 9.2). For example, the taxon (egocentric) pathway di-
rectly projects the visual cortex onto motor neurons in the striatum (Sheynikhovich
et al., 2009). In contrast, the locale (allocentric) pathway additionally involves
hippocampal and parahippocampal regions and the brain’s spatial representa-
tion system. In these (para) hippocampal regions, the rats location and head
direction is represented by neurons called place cells and head direction cells, re-
spectively (O’Keefe and Dostrovsky, 1971). In the parahippocampus, grid cells
of the entorhinal cortex are thought of incorporating the rats self movements
(motor actions) in a process called path integration (Burgess, 2008; O’Keefe and
Burgess, 2005; Hafting et al., 2005).

There is an extensive literature modelling the neuronal processes, which ul-
timately cause the animal’s movements, see for instance Sheynikhovich et al.
(2009) or Burgess (2008). In contrast, the here proposed behavioural model
focuses on the dynamics of the resulting movements. Models on both levels, the
neuronal and the behavioural one, are necessary for a complete picture in which
the loop can be closed via the environment (Fig. 9.2). We suggest that the pa-
rameters of the dynamic model change depending on which neuronal pathway
is activated. For example, the higher control gain K in the 3-cue case might be
linked to the synaptic projections from place cells to motor neurons in the nu-
cleus accumbens in the ventral striatum (locale system). Further, the increased
filter constant F' in the 1-cue case could be linked to increased activation of
the projections from view cells to motor neurons in the caudate putamen in
the dorsal striatum (taxon system, Sheynikhovich et al. 2009). However, the
parameters K and F are probably not independent from each other and both
are likely to be influenced by several, possibly overlapping neuronal processes.

11.4 Conclusion

The here presented modelling results concerning the 3-cues and 1-cue group are
in concordance with earlier reports. Harvey et al. (2009) revealed no significant
difference between the groups in terms of the gross measures used (e.g escape
latencies) demonstrating that both groups learned the task effectively, but also
found different behavioural patterns. Here, this thesis provides a mathematical
model explaining the group differences and revealing that both groups control
their movements differently. The parameters of the heading change model were
identified in open loop and seem not to differ considerably. In contrast, the feed-
back parameters as identified in closed loop are clearly distinct. This demon-
strates that the model can reveal inherent procedural differences not visible in
gross measures.

The model parameters are influenced by several factors that could be con-
trolled in experiments (e.g. brain lesions, training schemes). This makes the
model a useful tool for analysis of experiments for which swimming paths are
recorded. The fitted model parameters can be understood as higher level mea-
sures reflecting behavioural and neurophysiological differences. Further research
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Part . Modelling the Morris water maze

should address the issue of mapping the neurophysiology to the model parame-
ters.
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Chapter 11. Discussion of the model and relation to neurophysiology
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Concluding remarks
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Coming back to the introduction, building models from observed data is at
the heart of science, and particularly challenging in the biological sciences. This
thesis demonstrates that approaching this challenge from a systems theoretical
perspective can improve current identification methodologies (Part I) and shed
new light on old biological problems (Part IT). I believe it is fair to say that
biological systems are messy, often containing a great deal of uncertainty and
stochasticity. The cell is a crowded place where many hundreds and thousands
of components interact simultaneously. Because of this complexity, we need to
surround biology with unambiguous mathematical formalisms that can guide
our intuition. I think biology can no longer shy away from the complexity
that ultimately lies at its core. Likewise, mathematics (systems theory) can
no longer neglect the messiness of biological systems and work with simple
approximations, for example in terms of linearisations and discretisations. Not
if we are, at any point, to solve the question Schrodinger (1943) put so nicely:
What is life? Asking this question triggered the field of molecular biology and
propelled biology forward for over 50 years. I also think it fair to say that we
now know what life s in the sense that we know what it is composed of, namely
DNA, RNA, proteins and so forth. In the spirit of systems biology, we should
therefore go one step further. It is probably time to reformulate Schrodiner’s
question in order to tackle what he really had in mind and ask: How does life
work?

Therewith I conclude my final remarks, hoping that my thesis inspired the
reader.
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