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Abstract. We demonstrate that the problems encountered with the binning analysis essentially lie in the
significance test which is used. We review and analyse most of the existing significance tests and show that
the use of those based on randomization processes considerably improves the situation. For the one-
dimensional binning analysis, we apply the 2 within 4’ randomization test, whereas for the two- and the
three-dimensional binning analyses we introduce two innovations: the ‘4 within 16’ randomization test and
the ‘8 within 64’ randomization test, respectively.

1. Introduction

1.1. ASTRONOMICAL BACKGROUND

For a long time, in their quest towards understanding ‘their Universe’, many
astronomers have been interested in the analysis of the spatial distribution of various
categories of celestial objects. The repartitions of galaxies, extragalactic radio-sources
and quasars are important since they act as many tracers of the intrinsic properties of
the Universe (homogeneity, isotropy, ...). We do not have to recall that one of the bases
of theoretical cosmology has been called the cosmological principle: this principle is still
at the stage of being a working hypothesis rather than observational evidence. The
large-scale structure of the Universe has yet to be investigated (Peebles, 1978); the
distribution of quasars and radio-sources permit us to perform this task for very early
epochs and for very large scales. On the other hand, a knowledge of the mode of
distribution of these objects is also essential to provide some clues to the physical
processes that govern their formation (isothermal or isentropic models; see for example
Rees, 1982).

If a qualitative study is of interest at the beginning of an investigation, it cannot be
considered an achievement. A rigorous approach implies the use of statistical tests
elaborated for this particular case.

The problem can be defined as follows: we have an ensemble & of individuals X,
distributed in an n-dimensional space (usually » = 1, 2, 3 and the space is physical).
Some questions then arise. Are these individuals randomly distributed? Do they have
a tendency to cluster, to group together, to exhibit a contagious distribution or, on the
contrary, do they exhibit a regular distribution (e.g., as atoms in a crystal lattice)? If they
show a particular pattern, can the latter be described (nature, geometrical size, popula-
tion size, ...)?
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The canonical statistical approach is to define a null hypothesis H, as simply as
possible. For example, “The individuals are uniformly, independently, and randomly
distributed in the field; the probability of finding one individual in an infinitesimal cell
is proportional to the measure of this cell, is independent of the position of the individual
and is independent of the position of any other individual.”

One has then to build up a test or, more rigorously, a rule, i.e., an algorithm that
will materialize itself into a test statistic 7' = #(X) which is a reduction of the experimental
data to a single value. Its distribution under H,, is hopefully known and the observed
value T, = t(X) with X € & can be compared with it. A value of interest is usually one
that may cast some doubt on H,: this is to say that T, is in the tails of the distribution.
For this reason, it is convenient to compute the probability under H, of obtaining at least
such a value. For the sake of simplicity, one may prefer not to predefine a well-marked
border between accepting and/or rejecting the null hypothesis. This leads us to call the
above-mentioned probability the ‘significance level’. Although of great practical interest,
this definition is not common in statistical theories; we nevertheless adopt it.

Until now, many methods of analysis have been conceived: Binning Analysis,
Statistical Reduction of Population, Power Spectrum Analysis, Extended Kolmogorov-
—Smirnov Test, Nearest Neighbours Analysis, and Correlation Function Analysis. All
these have their own particular approach to the problem: we believe that an exhaustive
study implies the use of several, if not all, of them together. This paper is concerned with
an attempt to improve the Binning Analysis and to actually put it back in its right place.

1.2. THE BINNING ANALYSIS (BA)

The BA is the oldest test: its use in astronomy dates back to Bok (1934). It has been
one of the most extensively employed methods of analysis: Katz and Mulders (1942),
Zwicky (1952, 1953, 1957), Neyman et al. (1954), de Vaucouleurs (1971), and more
recently Osmer (1981). It is interesting to note that ecologists have used this method
for many years and it was originally developed mainly by the Scandinavians, to whom
we must be grateful for significant developments in the field. However, this test lost some
of its importance, mainly because of the poor performances obtained when compared
with more recent tests. We feel, however, that the nature of the BA is not the main
reason. The majority of the problem stems from the level of the significance test: this
paper intends to elaborate on a better system.

The BA consists of putting a cell at random on the field under investigation and
counting the number of individuals in the cell.* The experience is repeated several times
and one then observes the distribution of counts on which a significance test can be
applied. If the null hypothesis is true, the individuals are found to be uniformly
distributed, so the counts in the cells will be Poissonian as long as the expectation is

* A two-dimensional cell is called a quadrat.
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small.* For high expectation, this is clearly no longer true and the counts will obey more
closely a binomial distribution law. This method has the disadvantage of sampling the
population of individuals. In addition, non-randomness is explored at only one scale:
that of the cell.

An interesting improvement is due to Greig-Smith (1952). Instead of throwing cells
at random, he uses a lattice of contiguous cells. He partitions the whole field, and all
the individuals are taken into account. In this configuration it is possible to group the
n-dimensional cells 2” by 2” in order to obtain the lattice of the next order and to analyse
in such a way the randomness at another scale. This is called Multiple Binning Analysis.
Again, observed counts can be compared to theoretical ones by performing a signifi-
cance test. Those most commonly used are the 3 test and the variance/mean ratio test.
Unfortunately, these methods have great deficiencies; using computer simulations, we
shall outline, discuss and try to bypass them.

1.3. SYNOPSIS OF THIS WORK

In Section 2 we critically review the different existing significance tests linked to the BA
and show that a better test can be obtained on the basis of randomization processes.
In Section 3 we consider the one-dimensional binning analysis and associate with it the
2 within 4’ randomization test: its power is then investigated. In Section 4 we consider
the two-dimensional binning analysis and introduce the ‘4 within 16’ randomization test.
We also derive an interesting mathematical method for the randomization process. The
power of such a method is also investigated. Section 5 deals with the three-dimensional
case. In Section 6, some practical applications of the tests are presented. Conclusions
are given in the last section.

2. Some Existing Significance Tests

We consider a field of measure A which contains # individuals: the density is p = n/A4.
We overlay this space with a lattice of N equal cells each of measure a = 4/N. If, in the
ith cell, we have r, individuals, 7, is said to be the count of the ith cell.

2.1. THE y? TEST

Blackman (1935) used this obvious and very simple method. One first builds up the
frequency distribution of the r,. Let x; be the number of cells having r; = j. One can
perform a conventional y? test by comparing the observed frequencies x; with the
theoretical ones derived from the Poisson distribution

Nclass . — — )2
XZ — Z (x_] N‘Py.(r ‘ .])) , (2. 1)
j=0 NPH(r =)

* This is an approximation; a detailed discussion can be found in Louis (1984) who shows, in essence,
that if the counts in the cells are Poissonian, the distribution of individuals will be uniform but the reciprocal
is not true in all cases. Such subtleties, however, have very little impact. It is essential to keep in mind that
there may exist equifinality of fundamentally different generating processes.
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where P, denotes the Poisson probability law for the mean y >~ pa = n/N and where the
summation is performed over all the classes; as for the y? goodness-of-fit test, if the
expected number of members in one class is less than five, it has to be merged with
another class (Cochran, 1952).

The first shortcoming of the 32 test is of a theoretical nature: for a Poisson distribution
of random variables, the test is only asymptotically valid (Lindgren, 1976). Secondly,
if the expectation is great in one cell, the use in Equation (2.1) of a multinomial
distribution law instead of P, would be more exact. Nevertheless, the greatest problem
is a practical one: if the density is small, then only classes j = 0 or 1 (and seldom 2 or 3)
will be populated. This means that one has to perform the y2 test over an exceedingly
small number of classes. This is almost impossible, especially as one of the degrees of
freedom is absorbed by the computation of the mean of the distribution (in order to
predefine the function P,) and also as the classes j =2 and j =3 are merged. The
remaining number of degrees of freedom is consequently too small. It is also to be
pointed out that the y? test is unable to distinguish between the two partial alternative
hypotheses H ,~ (contagious distribution) and H ,, (regular distribution).

2.2. THE VARIANCE OVER MEAN RATIO TEST

Clapham (1936) used the variance/mean ratio v/m as a measure of the departure of the
counts from the Poisson expectation, where v is the estimator of the variance and m,
the mean, is

m=pa=—.
N

For a Poisson distribution, v/m is distributed around 1. A contagious distribution will
induce an excess of cells with null counts and an excess of cells with high counts, i.e.,
an overdispersion (of the counts) and thus a value of v/m greater than 1. On the other
hand, a regular distribution gives an underdispersion (of the counts) and thus a value
of v/mless than 1. Under H,,, the ratio v/m is distributed with a mean of 1 and a variance

(2.2)

A demonstration and a discussion is given in Appendix A.

One of the failures of the test is that a markedly non-uniform distribution can produce
a value v/m equal to 1 (see also Evans, 1952). So a significant deviation from 1 certainly
indicates some kind of non-random arrangement, but the absence of any deviation does
not necessarily imply true randomness.

In order to study in detail the behaviour of the test, we performed several simulations.
In Figure 1 we show some of the runs of v/m against the characteristic scale investigated.
The simulated populations are two-dimensional and their respective natures are:

(a) 1000 individuals uniformly distributed;

(b) 500 individuals uniformly distributed plus 100 individuals belonging to multiplets
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containing on average two members separated by a distance of 1/100 of the side of the
square field;

(¢) idem with 500, 200, 1/100, respectively;

(d) idem with 500, 500, 1/100, respectively;

(e) 1000 individuals belonging to multiplets containing on average four members
separated by a distance of 1/1000 of the side of the square field;

(f) idem but with a distance of 1/200;

(g) idem but with a distance of 1/100;

(h) idem but with a distance of 1/50.
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Fig. 1(a)-(h). Runs of the variance/mean ratio statistic against the side size of a cell expressed as a fraction
of the field side length. The simulated populations are two-dimensional. Their respective characteristics are:
(a) 1000 individuals uniformly distributed; (b) 500 individuals uniformly distributed plus 100 individuals
belonging to multiplets containing, on average, two members separated by a distance of 1/100 of the side
of the square field; (c)idem but with 500, 200, 1/100, respectively; (d) idem but with 500, 500, 1/100,
respectively; (€) 1000 individuals belonging to multiplets containing, on average, four members separated
by a distance of 1/1000 of the side of the square field; (f) idem but with a distance of 1/200; (g) idem but
with a distance of 1/100; (h) idem but with a distance of 1/50.
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From part (a) of Figure 1, we can see that at scales 3 and 4 the test shows a strange
behaviour. This is due to departure from the Poisson hypothesis. We can partly
overcome this problem by using formulae (A.1) and (A.2) given in Appendix A. In the
subsequent parts of Figure 1, the main shortcomings of the test are clearly outstanding.
The v/m ratio markedly increases at the relevant scale of the association, the effect being
proportional to the density of the latter. Although the behaviour at higher scales is very
unusual, this can be easily explained by the presence of a pattern at some scale
preventing the counts to be Poissonian at a greater scale. The effect, always towards
overdispersion, is well marked even if the population shows no real pattern at higher
scales. So the v/m ratio test permits a slight non-randomness to be detected, but as soon
as one is detected, the test at higher scales is no longer reliable. In an elementary
situation, such as that in Figure 1, the effect is not too severe, but in practice the test
is quite intricate.

2.3. MOORE’S TEST

Trying to relieve ecologists from counting high-density quadrats, Moore (1953) develop-
ed a test based only on cells that have a low count (r = 0, 1, 2). The test statistic is
- 2&2’“2 , (2.3)
X3
where the x; are the observed frequencies, introduced in Section 2.1.
The first and second moment of the distribution of ¢ have been derived and a
significant points table has been published.
In astronomy, and with the aid of modern computers, there is no reason to neglect
high-density cells. Furthermore, the test exhibits the same problems as those encounter-
ed for the v/m test.

2.4. MORISITA’S TEST

Simpson (1949) has proposed a measurement of diversity to apply to classification
schemes. In his paper, he defined A (a measure of the degree of the concentration of the
classification) and found an estimator / for this statistic. Taking advantage of this
formalism and identifying the groups of the classification theory with the cells of the BA,
Morisita (1959) proposed a test of which the statistic is

N
N r(r,-1)
i=1
I=—— (2.4)
nrn - 1)

Crudely, this index has a value of about 1 under H,,, especially when # is large. Under
H 1t is located between 1 and N, whereas under H , it is smaller than 1. A detailed
explanation of the 7 statistic and of its behaviour, as well as of the relevant significance
test indirectly based on the F-distribution, can be found in the paper of Morisita (1959).
I is characterized by a rather strong lack of sensitivity to the square-size as long as the

latter is inferior to the clump size (in Morisita’s terminology). This means that the
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presence of a clustering at a given scale will make 7 large for most, if not all, of the smaller
scales investigated. This inter-scale correlation makes the test slightly inefficient in
deriving the size of the features existing in the investigated distribution. It is also
necessary to consider several scales in order to gain information on only one.

One of the conditions for a safe application of Morisita’s test is that », the number
of individuals on the field, must be greater than N, the number of quadrats. It is clear
that this restriction is more easily satisfied in ecological applications than in astronomi-
cal ones. Despite all the above-mentioned remarks, the significance test is probably the
best of those hitherto proposed.

2.5. THE LIKELIHOOD RATIO TEST

Mead (1974) has introduced a new test that is quite interesting in regards to the
originality of the approach. One takes adjacent cells two by two; the counts in the first
(respectively, second) are r,, _ , (respectively, r,;), and the total is n, = r,,_, + r,,. Each
individual belonging to a pair has a probability p, of being in the first cell. If the null
hypothesis is true, the pairing will be random and p, will be equal to ; for all i’s. We can
construct a likelihood ratio test of the hypothesis p, = 5 against the general alternative
p, # 3- The relevant likelihoods are

roy - n;—ro;_
n;! Fogo 1 | 70| M= Ty '
Lmax = H : )
A VDY L YD) I n;

n‘! 1 Y27 — 1 1 ;= r2;—1
Ly,= ’ - - ;
e U(”f_ r2i—1)!r2i-1!|:2i| [2]

and the ratio

and

One can easily derive that

-2logA=2(log2) ) m+ 2 [ry_,logry,_,+
+ (ni — T I)IOg(ni — Ty 1) — n;logn,], (2.5)

where the summation is extended over all the N,, pairs for which we have n, = 2. From
the properties of the likelihood ratio statistic (Lindgren, 1976), we can state that
— 2 log A is asymptotically distributed as a x> with N, degrees of freedom.

The method permits us to be free from the Poissonian hypothesis. Unfortunately, our
simulations show that the test is not as perfect as one would hope: here, at small scales,
the small number of pairs prevents us from reaching the asymptotic distribution. On the
other hand, the expression of the likelihoods is still based on a theoretical law which
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could be too restrictive. At large scales, slight deviations from this law are no longer
blurred through the summation: this is due to the small number of pairs. Furthermore,
this method suffers to some extent from the same problems as the previous tests, i.e.,
an interaction between different scales. The basic idea remains nevertheless quite
interesting.

2.6. GENERAL COMMENT

All the methods described above, except that of the likelihood ratio, consider counts in
cells independently of the location of the other cells. We feel that some attention should
be given to the possible correlation existing between adjacent cells. On this point, the
basic idea of the likelihood ratio test is of great help. However, such an approach is
necessarily highly dependent on the nature of the investigated space: this is the reason
we decided to treat one-, two-, and three-dimensional spaces separately in the remainder
of the present paper.

It should also be noted that most of the tests described above have a disturbing
property: the detection of a non-randomness at a given scale induces an erratic
behaviour when other scales are investigated. Usually, the tests become inefficient at
scales larger than that for which a deviation from randomness is present: this is always
due to the implicit or explicit assumption that the counts obey an a priori theoretical law
(usually the Poisson, sometimes the multinomial law). In the case of a significant
departure from such alaw at a given scale, the theoretical counts are, of course, no longer
correct at larger scales: the tests thus lead to significant values of the statistic even when
no pattern is actually present in the data! From this, it is clear that the solution consists
of taking into account not a theoretical distribution but one which is drawn from the
data themselves. An interesting procedure, then, is that of randomization: such a
concept was probably first introduced by Fisher (1947). It is actually one of the modern
features caused by the interaction between statistics and experimental designs. The basic
philosophy is, while repeating an experiment, to shuffle all the experimental apparatus
in order to eliminate accidental correlations arising from the algorithm that was used.
More details can be found in the reference mentioned above.

Our approach appears to be slightly different: we wish to permute some features
involved in our basic data and, each time, to compute the chosen statistic. We shall thus
obtain, from the data, a distribution of the statistic against which the observed value
can be tested. We are going to show that the basic philosophy is not very different. Let
us first remark that, if we place two cells in a field containing randomly distributed
individuals, the counts in the two cells will be uncorrelated as long as the cells remain
disjoined. This is no longer true if the individuals are distributed in some other way. For
example, let us consider a field containing clusters: if a cell coincides at least partially
with a cluster, adjacent cells will have a greater chance to contain other parts of the
cluster and a correlation between adjacent cells appears. The effect is the same for cells
in voids between clusters. Further, the effect still exists in a field containing regularly
distributed individuals. Shuffling or permuting cells eliminates the possible correlations:
we then have to deal with a randomization process.

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System



1986Ap&SS. 120. . 263G

THE BINNING ANALYSIS 273

In the next sections, we shall take advantage of the features underlined above and
more precisely define the statistic we favour. Before that, however, we must introduce
a new and more adequate definition for the null hypothesis H,, that is less restrictive:

H,: “at a given scale, there is no pattern in the distribution of individuals” .

As mentioned previously, to look for a pattern is less restrictive: to detect a pattern
at a scale does not imply that H, is not correct at some other scale.

3. The One-Dimensional Binning Analysis

Let us consider a one-dimensional field of length / partitioned into four N bins. Again,
the count in the ith bin is r,. Let us pair adjacent bins such that the count in the jth pair
is

=y . (3.1)
k=2j—1

Under H,, there is no pattern at this scale; so pairings should be random. This can
be tested from the observed population through a randomization process. We define a
statistic which is a function of the »;’s and consider its distribution over random pairings:
this distribution, called ‘the randomization distribution’, is obtained by performing all
possible permutations of the counts r,. The simplest statistic is the variance of the counts

of the pairs, which is within some factor

2N ) 1 )
0= n; - — S7. 3.2
Z N ! (3.2)

i=1

where

The expectation E(6) and variance var(6) over the randomization process can be
easily obtained from simple, although tedious, calculations. The randomization distribu-
tion is usually too large to be tabulated, but we can use an approximate normal test using
the statistic

ZZH—‘E(B)
Jvar(9)

However, as pointed out by Mead (1974), the existence of a pattern at a scale larger
than the one being investigated implies that the counts may consist of two or more
populations whose characteristics are quite different. So, the randomization test is
invalid. The way to overcome this difficulty is to reduce the application zone of the
randomization process in order to ascertain that this zone contains only one type of
population and then to add, through a normalization process, the intermediate statistics
relevant to each zone.

(3.3)

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System



1986Ap&SS. 120. . 263G

274 E. GOSSET AND B. LOUIS

3.1. THE 2 WITHIN 4 RANDOMIZATION TEST

The most drastic reduction occurs to pairs of pairs, i.e., to four bins. Let us take as a
criterion the absolute difference between the counts of the pairs. Explicitly, for the first
pair of pairs, we have the counts r,, r,, r5, 7,4.

The criterion is

ko= 1|(ri+r)—(rs +1y)]. (3.4)
The randomization process gives also the values

ky=1[(ry+ 1) = (ra + 1)l

ky = [(ri + 1) = (ra +13)]

Thus the randomization distribution consists of three values and one can test the
position of k, with respect to those of k,, k,, and k,. This three-point randomization
distribution is not quite large enough to perform an adequate test; however, we have
N such pairs of pairs and the overall distribution then consists of 3" values. This test,
which is constructed to look at the randomness of the repartition of counts in four bins
into counts in two pairs, is known (Mead, 1974) as the ‘2 within 4’ randomization test.
Itis clear that if one of the r, is large, it will have an important effect on the randomization
distribution compared to the others. This leads directly to an attempt to find a method
of normalization that is possible if we remark that the k, are usually taking one of the
three forms

(mb m, n) > (m’ n’ S) b Or (m’ n’ n) 2

where m < n < s and the three numbers are all even or all odd.* A distribution-free
version is then available if we replace the three forms above, respectively, by

0,0,2), (0,1,2), and (0,2,2).
Their means and estimated variances are, respectively,
2/3and 8/9; 3/3and2/3; 4/3 andg/9.

One can use a normal test merging those three normalized distributions. If we have n,,
observations corresponding to 0 and #n,, observations corresponding to 2 from n,
distributions (0, 0, 2), and n,, corresponding to 0, n,; to 1 and n,, to 2 from n,
distributions (0, 1, 2) and, finally, n;, corresponding to 0 and n5, corresponding to 2
from_n, distributions (0, 2, 2) then

_ny + 2(ny, + N,y + B3,) — 21y + 30, + 4n3)/3
2@, + n3) + 3n,)/9

is approximately normally distributed with a mean of zero and a variance of 1 under

Z

; 3.5)

* It is to be noted that this is not the case if and only if three of the four counts are equal; in particular,
a normal situation is when the counts are equal to zero.
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the null hypothesis that there is no pattern in the repartition of four-bin counts into
two-pair counts. Positive values of Z correspond to a tendency to cluster, and negative
values to a tendency to show a regular distribution. The investigated scale is of the order
of two bins, i.e., //2N.

3.2. STUDY OF THE ‘2 WITHIN 4° RANDOMIZATION TEST

In this section we investigate the behaviour of the ‘2 within 4’ randomization test. As
the large number of simulations required cannot be given in detail in the present paper,
we shall limit ourselves to the main results and conclusions.

3.2.1. The Distribution of Z Under H,

Using Monte-Carlo techniques, we compute the distribution of Z for a uniform distribu-
tion of the individuals. Although sometimes irregular, the distribution is rather near
normal for all scales. The mean is always almost equal to 0 and the standard deviation
near 1; this confirms the assertion we gave in Section 3.1 and the conclusions of Mead
(1974).

The main deviation comes when the number (n, + n, + n;) becomes too small. The
discrete nature of the Z statistic then shows up. Such an effect happens in two cases:
first, when we investigate a large scale and the number of bins is, therefore, small
(N = 1, 2); and second, when the bin expectation is very small. This means that we have
a great number of pairs of pairs where only one bin has a non-zero count. Such pairs
of pairs, where three counts are the same, are not taken into account so that
(n, + ny, + ny)is reduced. In any case, it should be pointed out that the discrete nature
of the statistic does not necessarily weaken the results of the test as long as the envelope
of the peaks obeys the relevant distribution law; although not rigorously true, this is
generally the case.

3.2.2. Under the Alternative Hypothesis H ,

Contrary to H,, which is a simple hypothesis, the alternative hypothesis is composite.
It can be considered as a union of hypotheses: symbolically we may write

H,=H,c+H,z+H,y,

where H ,~ and H , are already known and where H ,, includes all the other models
of non-randomness.

Due to the complex nature of H 4, it is impossible to simulate it: we can only choose
some simple cases of practical interest.

The first cases we are going to investigate are part of H, . We define in the field
several points randomly distributed, each becoming the centre of a cluster of individuals
randomly distributed with equal variances. Figure 2 shows the run of {( Z ) against the
number of bins (which is related to the investigated scale). Figure 2(a) refers to
25 clusters of, on average, four members distributed with a maximal dispersion of //512.
Figures (2b) and (2c) refer to the same pattern with dispersions of //340 and /256,
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respectively. Figure 2(d) is for 5 clusters of, on average, 20 members distributed with a
maximal dispersion of //512. From these graphs, we can conclude that:

(a) thetestreacts at the right place of [/2N, i.e., respectively at 4N = 1024, ~ 680, 512,
1024;

(b) at4N < 128, it is particularly robust* in regard to the different kinds of clustering
and the Z statistic, therefore, remains at totally insignificant values;

(c) at values adjacent to a significant one, there is a small but marked tendency to
exhibit higher values; it is a remanence of the two populations effect;

(d) contrary to the PSA, the test is more sensitive to the number of clusters than to
the number of individuals in each cluster (compare part (a) and part (d)); on this point,
the two methods are quite complementary.

In summary, the test behaves well; however, in order to refine our approach, it is
interesting to investigate its power. Let us define

+

o

ﬁ"}-
P4, (which denotes the probability under H,) is easy to compute as H, is a simple
hypothesis; but this is not the case with P, . as H . is still composite. However, one
may compute P for different simple hypotheses included in H,.. Some results are
presented in Figure 3. We have plotted P, (Z > K) as a function of K (=0) and o™*
can be readily read off this graph as the ordinate of the curve. We have also plotted P,
(Z < K) for different simple hypotheses (e.g., 25 clusters of on average four members
distributed with a dispersion of //512, the same with a dispersion of //256 and, finally,
5 clusters of, on average, 20 members with a dispersion of //512). f* is again easily read
off the graph as the ordinate of those latter curves. Figure 3 will be of great help for those
wishing to adopt a well-defined border between rejecting or accepting H,,.

If the power of the test is good, it is clearly not perfect. However, we think it is
powerful enough to suggest its use more specifically since the general behaviour of the
test is of great practical interest.

The second case we are going to investigate is part of H,,. We define in the field a
lattice of equidistant nodes separated by a distance of //128. One of these nodes is
chosen at random, and an individual is randomly positioned around this node with a
maximal dispersion 0 = //512. Again, another node is chosen at random, and an
individual is randomly positioned around this point with the same dispersion.
Figure 4(a) shows the run of ( Z) against the number of bins. Figure 4(b) is the same
for 6 = /256, and Figure 4(c) is for 6 = [/205.

The following information can be seen from the graphs.

(a) The Z statistic shows a very small value at 4N = 256 corresponding to an
investigated scale of //128. So, the regular distribution is well detected (see Figures 4(a)
and (b)) in a significant way as long as 0 is less than half the step of the regularity;

size of type I error = Py, (reject H),

size of type II error = Py, (accept H,) .

* By robust we mean ‘almost insensitive to the type of the random variable distribution’. A more rigorous
definition can be found in Kendall and Stuart (1967).
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Fig. 3. Probability P, (Z > K ) as a function of the parameter K > 0 for the Z statistic of the ‘2 within

4’ randomization test (continuous line). Three estimates of Py, (Z < K') are also represented. The three

relevant simple hypotheses are: (1) 25 clusters of, on average, four members distributed with a dispersion

of /512 (dotted line); (2) idem but a dispersion of //256 (dashed line); (3) 5 clusters of, on average, twenty
members with a dispersion of //512 (dashed-dotted line).

Figure 4(c) also exhibits a detection, but this is insignificant due to the large value of
0 = 1/205.

(b) The Z statistic has a remarkable behaviour for 4N = 1024, 64, 32, 16, §, 4. The
non-randomness detected at 4N = 256 clearly does not affect the ability of the test to
recognize randomness at these other scales. It has a marked robustness.

(c) The Z statistic at 4N = 128 is slightly affected by the deviation from randomness
detected at 4N = 256. This is the only remanence of the above-mentioned two-popula-
tion effect. However, the discrepancy (Z ~ — 0.38) does not correspond to a significant
deviation.

(d) At 4N = 512, if & = /256 or & = [/205, and at 4N = 1024, if 6 = [/512, the test
shows a pseudo-clustering which is no more than an artefact of the regular pattern.

A crucial question concerns the influence of the relative phasing between the bin
lattice and the node lattice. Figures 4(a), (b), (c) were constructed for nodes belonging
to the first bins of the pairs of pairs. Further simulations show that the test reacts almost
always at the right scale. However, for very particular relative phasings, the reaction
takes place at half the expected scale.
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Fig. 4(a)-(c). Runs of the mean {Z ) over the simulated distribution of the Z statistic of the ‘2 within

4’ randomization test against the number of bins of the investigating grid. Error bars are + 1 standard

deviation of Z over the simulated distribution. The distributions of individuals over the field are regular with

a periodicity of //128 and the dispersions of individuals around the nodes are: (a)//512; (b)!/256;
(c) £/205.
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Although a little annoying, such a characceristic is not disastrous. Looking for a
regular pattern, we shall probably have to try several phases and several scales. One can
take advantage of the inter-scale robustness of the test to move the lower and the upper
bounds of the investigated field in order to have a different phasing and a different set
of scales (//2”=>(/ + Al)/2"); the field beyond the true bounds remains, of course,
empty.* Such an approach allows the deduction of the true periodicity.

We have also studied the power of the test with respect to the regular alternative
hypotheses. One can easily derive the o~ and f~ (approximate size of type I and type 11
error, respectively) from Figure 5. We have plotted P, (X <K) and P, (X > K)
against K (< 0). Again H 4 is not exhaustively defined; we give the curve in two simple
cases: fixed phase and random phase, each with § < half the periodicity. All practical
situations of interest will be within the two curves. The test seems to be more powerful
against H ,, than against H .

4. The Two-Dimensional Binning Analysis

We now deal with a two-dimensional field: for the sake of simplicity, we consider a
square of dimension / X / partitioned into 4N x 4N = 16N? quadrats. This assumption
is not restrictive. It is clear that in order to test the distribution of individuals, one may

* It must be clear that such generated additional Z-statistic values are not independent of the basic values:
although several trials are permitted in order to deduce the correct scale, only one significance level can
be taken into account.
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Fig. 5.

0.0 K
Probability P, (Z < K) as a function of the parameter K < 0 for the Z statistic of the 2 within

4’ randomization test (continuous line). Two extreme estimates of P,,, .(Z > K) are also represented. The

relevant simple cases are: (1) fixed phase (dotted line); (2) random phase (dashed line). See text for more
details.

use the above-mentioned ‘2 within 4’ randomization test: one has only to continuously
rearrange the matrix of quadrat counts row by row, or column by column, and to put

them into a vector mimicking a one-dimensional field. This procedure, which may
appear arbitrary, is in fact the historical and, until this work, the only way the test has
been used (Mead, 1974).

Two remarks are to be made. First, the test is anisotropic and, for the sake of
completeness for astronomical applications, must be performed twice: row by row
(‘horizontally’) and column by column (‘vertically’). This leads to two sets of results
which can be quite discordant and a subjective choice must be made. In any case, its
anisotropic nature prevents the test from indicating only the clustering, and some
directional properties of the distribution of the individuals are also enshrined in the
results. Second, the elementary group of quadrats investigating the field has dimensions
of 1 by 4 quadrats. So, an undesirable mixing of the scales is induced, which may be
a problem. Despite this, performances of the 2 within 4’ randomization test for the
two-dimensional case are encouraging. An example is given in Figure 6: the field
contains 14 randomly distributed individuals and 12 individuals in two by two clusters,
separated by an average distance //10. The run of Z against the quadrat size is given
for the two possible arrangements of the quadrats four by four. The test reacts for a scale
of //16; i.e. the nearest to the correct //20. A more suitable method will nevertheless be
derived in the next section.
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Fig. 6. Run of the Z statistic of the two-dimensional 2 within 4’ randomization test against the number

of quadrats on one line of the investigating grid. The analysed population consists of fourteen randomly

distributed individuals and twelve individuals in cluster two by two and separated by, on average, a distance

of //10. Dots refer to a test performed with elongation of the basic quartet along the x-axis whereas crosses

refer to an elongation along the y-axis. The error bar represents one standard deviation under the null
hypothesis.

4.1. THE ‘4 WITHIN 16° RANDOMIZATION TEST

Let us first adopt a systematic numbering of quadrats such as that illustrated in Figure 7.
The count in the ith quadrat is r,. Let us group adjacent quadrats four by four

1

(isotropically) in such a way that the count in the jth quartet of squares is

=y . 4.1)

Under the null hypothesis H,,, there is no pattern at this scale: divisions in four should
thus be random and this can be tested from the observed population through the
randomization process. Shanks (1979) tried to directly transpose the method of Mead
to this case. Instead of pairs of pairs, he considered quartets of quartets. The relevant
criterion equivalent to 3.4 is for the first quartet,

ko= |ny —ny| + |ny — ny| + |0y — ny| + |0y — n3f +

+ lny —ng| + {ny — nyl; 4.2)
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Fig. 7. Illustration of the adopted systematic numbering of the quadrats.

and the randomization is obtained by Shanks (1979) through a Monte-Carlo technique.
Such a method deserves two criticisms. First, no normalization such as that leading to
Equation (3.5) is applied; a high value can, therefore, dominate the distribution and
induce false conclusions. However, we must admit that a normalization on such a
complex criterion as k, is quite difficult to conceive. Second, the use of Monte-Carlo
techniques makes the method slow and tedious. In addition, we cast some doubt on the
reliability of the method since the suggested number of simulations for the randomization
is less than 1 to 20000 of all the possibilities. Such a number is definitely too small to
lead to an efficient approximation of the parent distribution.

In what follows, we shall derive an improved test. The statistic we suggest is the
variance of the counts of the quartets, which is within some factor

0= - L 52, @.3)
i=1 4N?
where
16N>
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The expectation and variance over the randomization process are

(4NZ-1) 2
E@)=—— 2 _[S,S,-S?], 44)
©) 4N2(16N2—1)[ e (
2
-1
var(6) = A (5082 = SiT° +
(16N2 — 1 (16N - 3) (8N2 - 1)
4N? -1
4 12( N ) [4S3S1 - 3S22 - S0S4] s
(16N - 1) (16N? - 3) 8N? - 1)
(4.5)
where
16N2

S,;= ) rl.
i=1

The demonstration of this result is given in Appendix B. As previously, the randomi-
zation distribution is always too large to be tabulated but we can also use an approxi-
mate normal test using a statistic similar to that given in Equation (3.3). For the same
reason as for the one-dimensional case, such a randomization test is not valid due to
the multipopulation effect. Again, the way to overcome the difficulty is to reduce the
application zone. The necessary reduction is to quartets of quartets, i.e., to sixteen
quadrats, from which the name of the test is derived: the ‘4 within 16’ randomization
test. It would be interesting to find a normalization process analogous to the one leading
to the robust version of the ‘2 within 4’ randomization test. However, the randomization
is no longer on 3 values but on

16!
@)’

This is, of course, too large a number not only to be tabulated but even to make possible
the derivation of a criterion such as the one leading to Equation (3.5).
Nevertheless, we can take advantage of this great number of values of the randomi-
zation distribution, since it ensures that the test on sixteen quadrats is completely
realistic on its own. So, for the ith quartet of quartets, one assumes that the statistic

~ 2.6 x 10° values .

— Gi - E(Hi)
Jvar(6)

1s almost normally distributed with a mean of 0 and a variance of 1 (E(6,) and var(6,)
are easily computed using Equations (4.4) and (4.5) with N = 1).

This is clearly not the case as the intrinsic nature of the statistic is that of the square
of a random variable. Nevertheless, we believe that the normalization procedure of
Equation (4.6) is sufficient to lead to a good approximation. It is still possible, of course,
to use a more sophisticated procedure.

Z, (4.6)
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The Z statistic is then obtained simply by adding together the intermediate statistics
Z,. Thus, we have

1 A
Z=— > Z, 4.7)
Ju s
where the summation is extended to all the non-empty quartets of quartets for which
var(6)) is defined. Obviously, we have % < N2. Again, Z is distributed with a mean of
0 and a variance of 1, in particular when % is large.

4.2. STUDY OF THE ‘4 WITHIN 16’ RANDOMIZATION TEST

It is of great interest to analyse the behaviour of this new test. A very large number of
trials and simulations was performed but cannot be presented here in detail: we shall
restrict ourselves to the main results.

4.2.1. The Distribution of Z Under H,,

The distribution of Z under H, is illustrated in Figure 8. It refers to 2000 simulations
of a field containing 200 randomly distributed individuals. Part (a) shows the distribu-
tion of Z corresponding to a quadrat size //128 x [/128; part (b) to a quadrat size
/64 x 1/64, where it is readily seen that the relevant distribution is strongly near normal.
In fact, deviations occur in two cases. First, when U is too small, the Central Limit
Theorem can no longer be applied: the crude normalization procedure of Equation (4.6)
is no longer blurred through the summation of Equation (4.7). This is illustrated in
Figure 8(c) where the Z corresponds to a quadrat size of //8 x [/8, i.e., A = 4. One can

PDF(Z) I ] I [ [ [ [
1.0 — ]

0.8 — —

0.6 — —

0.4 — —

0.2 —

0.0 | L I 1 | ]
-5. - 4. -3. -2, -1 0. +1. +2, +3. +4, 7 +5.

Fig. 8(a)—(c). Simulated probability density function of the Z statistic of the ‘4 within 16’ randomization

test under the null hypothesis for: (a) a quadrat size of //128 x //128; (b) a quadrat size of //64 X [/64; (¢) a

quadrat size of //8 x [/8. The population consists in 200 individuals. The dotted curve is the theoretical

normal probability density function (zero mean, standard deviation of 1).
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easily see the asymm etrical nature of the distribution around Z = 0. It is not a great
problem and it is alway s possible to use an algorithm other than Equation (4.6). Second,
deviations from a noOrmal distribution occur when the expectation is too small in
quadrats: then the @ statistic reveals its discrete nature. Although well marked, the
effect is less dramatic than for the 2 within 4’ randomization test.

4.2.2. Under the Alte¥riative Hypothesis H ,

As in Section 3.2.2, let us first investigate the behaviour under the partial alternative
hypothesis H .. The <lusters are built up in the same way as previously except that they
are two-dimensional. Eigure 9 shows the run of (Z > against the number of quadrats
on one line; the numxber of individuals is approximately 200. All the clusters have a
dispersion of //16. Figure 9(a), (b), (c), (d) refer, respectively, to 100 clusters of, on
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average, 2 individuals, to 67 clusters of, on average, 3 individuals, to 40 clusters of, on
average, 5 individuals and to 20 clusters of, on average, 10 individuals. Figure 10 refers
to a total number of individuals of about 100; in the case of part (a), they are arranged
in 50 clusters of, on average, 2 individuals whereas for part (b) we have 20 clusters of,
on average, 5 members. From those graphs, we can draw the following conclusions.

(a) The test reacts at the right place in each cases, i.e., at a square size of //32 x [/32
(4N x 4N = 32 x 32): the response is actually often quite large.

(b) At 4N x 4N = 128 x 128, 8 x 8, and 4 x 4, the test is relatively robust; the Z
statistic remains at almost insignificant values.

(c) At adjacent values of a significant one, there is a marked tendency to exhibit
higher Z. It is again a remanence of the unavoidable two-population effect. We would
like to point out that Shanks (1979) erroneously attributed this behaviour to ‘an effect
of testing for circular clustering with a necessarily square grid’.

(d) Contrary to the ‘2 within 4’ randomization test, the ‘4 within 16’ test is strongly
sensitive to the number of members of the clusters (compare Figures 2, 9, and 10).

0:9 I l
P
0.8 s
0.7 —
0.6 —
0.5 / _
0.4
0.3

0.2

0.1

- —
I

| . —

0.0 1.0 2.0 3.0 4LOK

Fig. 11. Probability Py (Z > K') as a function of the parameter K = 0 for the Z statistic of the ‘4 within

16’ randomization test (continuous line). Three estimates of Py, (Z < K') are also represented. The three

relevant simple hypotheses are: (1) 100 clusters of, on average, two members with a dispersion of //16 (dotted

line); (2) 67 clusters of, on average, three members with a dispersion of //16 (dashed line); (3) 40 clusters
of, on average, five members with a dispersion of //16 (dashed-dotted line).

0.0

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System



1986Ap&SS. 120. . 263G

292 E. GOSSET AND B. LOUIS

In summary, the test behaves well and seems to be more sensitive than the previous
one. A concrete investigation confirms this statement. In Figure 11 are plotted
P, (Z > K) as afunction of (K = 0) and P, _(Z < K) for different simple hypotheses
(these are: 100 clusters of, on average, 2 members distributed with a dispersion //16;
67 clusters of, on average, 3 members distributed with a dispersion //16; 40 clusters of,
on average, 5 members distributed with a dispersion //16).

In Figure 12, we have plotted the same functions but for two different simple
alternative hypotheses (these are: 50 clusters of, on average, 2 members and 20 clusters
of, on average, 5 members).

0.9 T | I
P .
08
0.7
0.6
0.5
0.4
0.3

0.2

0.1

0.0

40 K

Fig. 12. Same as Figure 11 but where two different estimates of P, .(Z < K) are considered. The two
relevant simple hypotheses are: (a) 50 clusters of, on average, two members (dotted line); (b) 20 clusters of,
on average, five members (dashed line).

Again o™ and 7 can be easily read off those curves. The power of the test is clearly
quite good. As long as we have more than two members by cluster, the «* and f* can
even‘both be made quite small. This result is very encouraging; nevertheless, it must be
kept in mind that these situations are probably not very realistic.

We investigate next the behaviour under the partial alternative hypothesis H . The
regular distributions are built up in the same way as previously but are two-dimensional.
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128 64 32 6 8 L
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Fig. 13. Run of the mean {Z ) over the simulated distribution of the Z statistic of the ‘4 within 16’

randomization test against the number of quadrats on one line of the investigating grid. Error bars are + 1

standard deviation of Z over the simulated distribution. The distributions of 150 individuals over the field
are regular with a periodicity of //32 and a random phasing.

An illustration is given in Figure 13 where one can see the run of (Z ) against the
number of quadrats on one line for a regular distribution of 150 individuals with a spatial
periodicity of //32. As long as the maximal dispersion of the positioning of an individual
around a node is less than about half the periodicity, the ‘4 within 16’ randomization
test turns out to be sufficiently powerful. It is, however, sensitive to the mean number
of individuals on any one node and to the relative kind of regularity over the two
coordinates. Nevertheless, we tried also to better refine its power and to estimate the
p~ . Figure 14 shows the obvious «~ and the two most extreme curves representing the
p~ . Any realistic regular distribution will hopefully give a f~ within these two functions.
One can see again that, without being perfect, it is at least possible to derive interesting
results with this newly developed test as it presently stands.

5. The Three-Dimensional Binning Analysis

Encouraged by the behaviour of the two-dimensional test, we thought it would be
interesting to consider the three-dimensional case. It is easy to derive the corresponding
procedure; it is no more than a direct extension of the ‘4 within 16’ randomization test.
The name will, of course, be the ‘8 within 64 randomization test. If we consider a
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Fig. 14. Probability P, (Z < K) as a function of the parameter K < 0 for the Z statistic of the ‘4 within
16’ randomization test (continuous line). Two extreme estimates of P .(Z > K ) are also represented
(dotted line). See text for more details.

8N 3

1
0=y nf-— S?,
igl 8N3 !

three-dimensional field partitioned in 64N> cells, the relevant statistic is

where

(5.1)

and

64N 3

S;= ) r.

i=1

Formulae equivalent to Equation (4.4) and Equation (4.5) are also needed. The
expectation over the randomization process is given by

E@)-—CY "V (g5 -2
SN3(64N7 — 1)

(5.2)
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and the variance is given by
56(8N> -1

= 3 > 3 3 [SoS, — STIP +
(64N> — 1)* (64N> — 3) (32N> - 1)

N 56(8N3 — 1)
(64N3 - 1) (64N3 — 3) (32N3 - 1)

[4S3S1 - 3S22 - SOS4] .

(5.3)

The remaining part of the procedure is the same as in Section 4. The relevance and
the results of the present test may be expected to be as good as those for the ‘4 within
16’ randomization test, and actually even better since the randomization distribution is
larger still (about 4.5 x 10*7).

6. Applications

At this stage, it is interesting to apply both the ‘2 within 4’ and the ‘4 within 16’
randomization tests to concrete cases in order to demonstrate their utility. Our sole aim
is to illustrate the subject.

6.1. APPLICATION 1

The first data set is one-dimensional and consists of the redshifts of 58 confirmed
quasars detected in a UV-excess survey performed in the field of NGC 520 by Swings,
Surdej, and Gosset (to be published). Due to the method of selection of the candidates,
the redshifts range from z = 0 to z = 2.3 and the repartition is clearly non-uniform. The
distribution of redshifts has been investigated using the ‘2 within 4’ randomization test
on the field of length / = 2.3 and with random phasing. The result is shown in Figure 15.

2 I | | | l [ T l I T |
Z
° 10,
1, }— Y —]
[ ]
[ ]
o
[ ]
O —
®
[ ]
®
-1 —
[ ]

. | 1 1 1 | 1 1 | | | |

-10.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4,0 -3.0 -2.0 -1.0 0.0 1.0 Log, Az
0.00098 0.00195 0.0039 0.0078 0.0156 0.0312 0.0625 0.125 0.25 0.5 1.0 2.0 Az

Fig. 15. Analysis of the distribution of quasar redshifts in the field of NGC 520: run of the Z statistic of
the one-dimensional 2 within 4’ randomization test against the logarithm in base 2 of the investigated
redshift scale; the relevant scale is also given.
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There are three important deviations. The first is a clustering at a scale of //2, i.e.,
Az ~ 1.15. The second denotes a regularity at a scale of //4, i.e., Az ~ 0.6. Both are due
to the presence of peaks caused by the emission lines of different quasars coming into
the photometric bands. Generated peaks lie at z~ 0.3 (Mgn), z~ 1.4 (Si1v) and
z =~ 2.0 (La). The effect is the same as that detected by Box and Roeder (1984) at a
periodicity of Az = 0.8625 (see, for example, the peak at N = 4 in their Figure 5) for the
quasars in the catalogue of Hewitt and Burbidge. The third deviation is at a scale of //32
(with a satellite at //64), i.e., Az ~ 0.07. The positive value indicates a clustering. The
relevant significance level is 0.10; this value is not conclusive but is sufficiently large to
be of some interest. It is to be associated mainly with a concentration of quasars around
z~0.95. This peculiarity has already been reported for the nearby field around
NGC 450 (Swings et al., 1983, 1985).

A complete and detailed statistical analysis will be published elsewhere. It is quite
interesting to note that the large-scale anomaly (which is an observational one) does not
prevent us from detecting the smallest one, and this without any preliminary assumption.

6.2. APPLICATION 2

More than a decade ago, Gouguenheim (1969) published a list of galaxy redshifts vy
measured from H1 21 cm lines. Most of the observed galaxies had optical redshifts v,
known from the literature. In Figure 2 of her paper, Gouguenheim (1969) shows an
histogram of vg;; — v,,, Which, according to her, suggests that the differences must be
distributed almost normally with a standard deviation of 60 km s ~ !, in agreement with
the two estimated errors of 35 and 50 km s !, respectively, on the radio and optical
redshifts. We apply here the ‘2 within 4’ randomization test to the distribution of these
differences. The investigated field is —220km s~ ' to +220km s~ '. The run of Z
against the characteristic scale is shown in Figure 16. Z is near to 0 for
A(Vgy — Vope) = 220 km s ', confirming the symmetry of the distribution. The next
point (A(vg; — vop) = 110 km s~ ') denotes a marked clustering; this is the gaussian
feature. All other values are not significant, except one: for A(vgy — o) = S5kms ™,
Z equals — 1.92, denoting a regularity at a significance level of 0.0275. At first sight, this
is quite surprising. Some a posteriori refinements indicate that the period of the regularity
is probably closer to a higher value, perhaps reaching 70 km s ~'. This value is only
approximate but it is to be pointed out that such a regularity is readily visible in Figure 2
of Gouguenheim (1969). Several bins are overpopulated with respect to the theoretical
expectations, mainly near — 200, — 150, — 60,0, + 50, + 150, + 200 km s~ '. Of course,
the spectral resolution element of the radio telescope used in deriving the redshifts is
59 km s ~ ! wide, which could explain the regularity. It is tempting to compare this result
with the well-known conclusions of Tifft (1982a, b) who claims the detection of a
quantization of the redshifts. However, such an effect, if it exists, should be blurred when
making the difference between optical and radio redshifts as long as the errors on the
two are of the same order; this is clearly the case for the data set of Gouguenheim (1969).
This may be due to an instrumental effect although a definite answer is beyond the scope
of this paper. A detailed statistical analysis of the data of Arp and Sulentic (1985) as
well as of Tifft (1982a, b) will be published subsequently.
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Fig. 16. Analysis of the distribution of the differences between optical and radio redshifts of the sample

of galaxies of Gouguenheim (1969): run of the Z statistic of the one-dimensional ‘2 within 4’ randomization

test against the logarithm in base 2 of the investigated velocity scale (expressed in km s~ '), the relevant
scale is also given.

6.3. APPLICATION 3

Let us now investigate a two-dimensional field. We shall take the 71 detected quasars
as reported in the first version of the He er al. (1984) survey. The 5° x 5° field has
already been analysed by Peacock (1983) using the two-dimensional Kolmogorov—
Smirnov test and non-uniform (or generalized) power spectrum analysis. The run of the
Z statistic of the ‘4 within 16’ randomization test is shown in Figure 17. Let us analyse
the two largest deviations from randomness. At //4 —i.e., AO = 1?25 and log, Af = 0.32
— the Z reaches a value of 2.25 at a significance level of 0.0122. We rediscover the
non-uniformity previously reported by Peacock (1983) and tested through the two-
dimensional Kolmogorov—Smirnov method. The relevant significance level was 0.027,
which is the same order of magnitude as our value. The other deviation is again towards
a clustering and occurs at //32,i.e., A6 = 0216 and log, A6 = — 2.68 or an angular scale
of about 10 arc min. In this case, Z equals to 1.24, leading to a significance level of 0.11.
Again, this is not conclusive but it is of some importance in the framework of this paper.

Such a feature is actually not surprising in a visual survey since, when one candidate
is discovered, it is tempting to search for a second. We are nevertheless interested in
this small-scale clustering more especially for its existence in the data than for its reality
as a significant physical feature. So, we have also computed the two-point autocorre-
lation function of this field of quasars. The result is visible in Figure 18. The statistic
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Fig. 17. Analysis of the distribution of the two-dimensional positions of the quasars in a field near the Virgo

cluster. The data are taken from the first version of the survey of He et al. (1984) as published by Peacock

(1983). The figure represents the run of the Z statistic of the ‘4 within 16’ randomization test against the
logarithm in base 2 of the investigated angular scale A0, where 6 is expressed in degrees.
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Fig. 18. Investigation of the same field as for Figure 17 but with the two point autocorrelation function
analysis: run of the w(0) statistic against the angular separation 6 expressed in degrees.

w(0) (Fall, 1979) clearly exhibits discrepant values for 0 of less than 15 arc min! All this
confirms the power of the new test and its inter-scale robustness.

7. Conclusions

In this paper, we have described, discussed and analysed the best known significance
tests usually associated with the binning analysis (BA). We have shown that better ones
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can be obtained when using randomization processes. We have studied their behaviour.
For one-dimensional BAs, we used the ‘2 within 4° randomization test almost in its
original version as proposed by ecologists (Mead, 1974). For two- and three-dimension-
al BAs, we have suggested new randomization tests: respectively, the ‘4 within 16’ and
the ‘8 within 64’. The methods have been explained and their power tentatively
investigated for some practical situations.

These latter randomization tests have certain advantages.

(a) They have an inter-scale robustness: the value of the statistic Z is quasi-indepen-
dent of the features present at smaller or higher scales and this without the necessity
of a model for these scales (which differs from the Generalized PSA where a probability
density function is needed).

(b) They can discern between the two kinds of deviation from randomness: a positive
value of Z indicates a clustering; a negative one a regularity. For example, the 32 test
is unable to recognize such a type of tendency.

(c) They are able to detect clusterings at different scales even when the clusters are
densely piled on top of each other. (The PSA also enables this.)

(d) They are easy and quite fast to apply with any kind of computer and a well-
conceived algorithm.

(e) Due to the inter-scale robustness, it is possible to compute the Z statistic at scales
other than //2”" (n=1,2,3,4,5, ...): for example, (I + Al)/2".

Their main disadvantage is the discrete nature of the investigating grid. We do not
wish to present these tests as the universal panacea, but we nevertheless think they are
sufficiently efficient to take their place beside the others (PSA, CFA, ...) and that they
ought to be used jointly with them.
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Appendix A
In the following, we consider the statistic
0=v/m,

which usually is assumed to be distributed under the null hypothesis of Section 1.1 with
an expectation

E@©) =1
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and a variance

2N
var(0) = m )

or

2
var(f) = ——,
(6) N1

depending on the authors (Greig-Smith, 1952). At first, it should be noted that the
counts are Poissonian only by approximation. In fact, if one decides to be rigorous, the
probability law to be used is at least the multinomial one. In this case, the statistic

1 X 2
0= - r,— —
ng:l( N)

is distributed with an expectation

E(Q)JXX_,—1 (A.1)

and a variance

AN -1 2N-3
N3 nN2

ar(0) = (A.2)

If N, the number of cells, is large with respect to 1, we shall have

E@6)~1, var(6) ~]%<1 - 1)

n

and in order to recover Equation (2.2), one still has to assume that n, the number of
individuals, is also large. It is clear that both assumptions are not always true and we
strongly suggest that use be made of the more rigorous formulae (A.1) and (A.2) given
above.

Appendix B

We consider 16N? squares. The count in the ith quadrat is 7, and the expression of the

statistic is
1 4AN?2 16N 2 2
0= |:4N2 Y. n —( > ri)] (B.1)

4N? i=1 i=1
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with

The randomization process is performed by permutations of the r,. There are 16N?2!
possible permutations. We can symbolize one of them by the function p(i) and write 7,
for the permuted counts. The statistic is then

1 4N?2 16N2 2
6, = 4N2[4N2121n (,-—21 rp(i)>:| (B.2)
with
k=4q
m= ) Ty
k=4i—3

However, for the sake of simplicity, we shall drop this heavy notation but keep it
implicitly. The expectation over the randomization process is given by

1
E(9)=§ 16N2! -

where the summation is extended to all the 16 N2! possible permutations.

E0) = ! [ 2216ivzr+

16N?! 4N? i=1
4ANZ
2
+4N<x 2 z Z (Fai—a¥ar_ o+ Tag_a¥ay 1+ Tay 3Ty
p i=1
1682 \2
+ Py olai oyt Vg olay t Tap_1¥a) — Z ( Z ri) }
V4 i=1

It should be noted that, in the first and third terms, the internal sum is invariant with
respect to the permutations. Let us consider the second term. We have six subterms of
the type

4N?2

Y2 TroTen s

p i=1

where f(i) and g(i) have four permitted values, namely 4i — 3, 4i — 2, 4i — 1, 4i. The
effect of the summation over all the possible permutations is to remove the restrictions
imposed by f(i) and g(i). So, we have 16N?! x 4N? x 6 terms.

Of course, only

16N2(16N? — 1)
2

C‘IGN2 -
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of them are different. Consequently, the number of times that each appears is

I6N?I x 4N? X 6 x 2 16N> x 3
16N2(16N2 — 1) (16N2 - 1)

We can recreate them from a double sum. Then, the expression of the second term
becomes

16N2| % 3 16N2 16N?

- 2 rr
(16N2—1) l_zl ; o

i#k

A factor of 2 is included in the double sum. So, we have

1 16N 2 3 x 4N 2 16N2 16N2 16N2 16N?2
E(9)=|:4N2 r?4 — r.r rr}
4N? i=zl (16N2 - 1) 121 kzl ko 121 21 y
i#*k

1 16N 2 3 4N? 16N2 16N32
=*|:4N2<1————‘3 ) 3y r,.2—<1 X ) > ¥ rrk:|
4N? 16N? - 1) i=1 16N%2 -1/ /=1 =1

2 _ 16N? 16N? 16N2
GN” - 1) [ NS -y zrrk]z

T ANZ(16N? - 1) ! R

@N2 - 1)

= T s,S, - S2]. B.3
AN2(16N2 - 1) L8 : (B3)

The variance can be computed from
var(0) = E(0%) - (E(0))*. (B.4)

We still have to compute E(6?). We find

1
E(6?) = 02 =
&) 16N2! ; ?
— 1 Z 1 [(4N2)2 (4%2 n2>2 —_
16N21 % (4N?)? S

~2.4N? ‘%2 n? (1%\’2 r,.)2 + (1%’ r,.)4:| . (B.5)

i=1 i=1 i=1

Concerning the third term, we obviously have

1 16N 2 4 1 1 16N 2 4 1 .
E[(4N2)z(f=zl ri) ] " 16821 §(4N2)2<1-_21 r’) T @N?y Si. (B9
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For the second term of B.5, using the same method as for the computation of E(6),

we have
2 16 N2 2 4N2 )
El -— r; ny|=
I: 4N2(i;1 )igl ]
2 3 3
S12<S2+— S-S S2>:
4N? 16N2 - 1 16N2 - 1

2 2 2 4
- e oD (4(4N? - 1)S2S, + 354) . (B.7)

The first term of B.5 remains
4N2 4aN2
i=1 k=1
If we develop the argument of the expectation, we obtain 4N x 4N?2 x 100 terms. Out
of them, 4N? x 4N? x 16 are of the form
O
and through the summation over all the permutations, they give

16N2 16N2
X rri=53. (B.8)
k=1

i=1

From the remaining terms, 4N? x 4N? x 48 are of the form
2
2150y e hiie) -
Obviously, r7,, will give an S, term whereas r ., Will give (ST — S,). We obtain

2x3

15,57 - 531, (B.9)
There remain 4N? x 4N? x 36 terms of the form

Aol e o k) -

If i # k, all are different and will be taken into account later. If i = k, we have 4N? x 36
terms, of which 4N? x 6 are of the form

2 2
AT ey
and they give

2 %3

T [S2-5,]. (B.10)
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We also have 4N? x 24 terms of the form

2
7T ey i -

With the permutations, we have 16 N?! X 4N? x 24 terms and only

3!
3 :
C16N2 ~t

21
of them are different. This means
16N?(16N* — 1) (8N> - 1).
Consequently, the number of times each term appears is

16N2! x 4N2 x 24
16N2(16N? - 1) (8N2 - 1)

So, we have

2 16N2 16N2 16N2
ﬂ WX A Z Z Z r2r.
2 16N*(16N? — 1)(8N? - 1) =1 «=1 /=1
i-‘/&llc_;éllc?’-‘l

The 2 in the denominator comes from a correction for a redundancy in the triple sum.
Finally,
12

(16N* - 1)(8N%-1)

[S,82 - S2 - 25,5, + 25,]. (B.11)

There remain 4N? X 6 terms of the form

AT no ) -
It should be noted that, as only four different values exist for the functions f, g, 4, ¢, all

these terms are necessarily identical. We have 16N2! x 4N2 X 6 terms of which only
Ci - are different. Each one appears

16N?! x AN? x 6 X 4 x 3 x 2
16N2(16N? — 1) (I6N? — 2) (16N? - 3)

times and we obtain, temporarily,

18 x 4 16N2 16N2 16N2 16N2
2 2 2 YooY rnnr,,.
(16N? - 1) (16N* = 3)(8N* = 1) X 24 =1 k=1 (=1 m=1

itk k#l [#m
i#*l k#m

i (B.12)

The 24 in the denominator comes from a correction for a redundancy in the quadruple
sum.
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We still have to take into account the 4N? x (4N? — 1) x 36 terms with i # k. In this
case, we obtain 16N2! x 4N? x (4N? — 1) x 36 terms, of which only Ci, - are differ-
ent. Thus,

18(4N2 _ 1) 16N2 16N2 16N2 16N?

AR B.13
(16N2 - 1) (16N? — 3) (8N? - 1) ,{v‘l ; ,Zl mz_l ! ®.13)
itk k#1 I#m
I#i_#/::ém

The quadruple sum involved in Equations (B.12) and (B.13) can be expressed in terms
of the §;.

16N2 16N2 16N2 16N?

Lo X L T

i=1 =
#k k;él Isém

i#l k#m
i*m
16N2 16N2 16N2 16N?2 16N2 16N?2 16N2
=HD VD VD VRN Y ¢ 17 6ZZerm
i=1 k=1 [=1 m=1 i=1 k=1 =
ixk k#l
i#l
16N2 16N?2 16N2 16N2 16N2
4
-3 ) Y rm-4 % erer,A—
i=1 k=1 i=1 i=1
i#k z;ék
16N2 16N2
=ST-68,87+6 ) Y riri+
i=1 k=1
itk
16N2 16N2 16N 2
3 4 2
+2.6 > Y rBr+6 Y r-35++
i=1 k=1 i=1
ik
16N?2 16N 2

+3 ) rt-488,+4 > rt-8,=

P i=1
= S%— 65,82 + 652 — 68, + 12558, — 125, + 65, — 352 +
+ 35, —485:,5, +4S, -85, =
= S% + 352 - 65,52 + 85,5, — 65, . (B.14)
Combining (B.12), (B.13), and (B.14), we obtain

18(4N2 - 1) + 3

4 2 _ 2 _
(16N2 _ 1)(16N2 _ 3) (8N2 _ 1) [Sl + 3S2 6S2S1 + 8S3S1 6S4] .

(B.15)

Now, we have to combine (B.6), (B.7), (B.8), (B.9), (B.10), (B.11), (B.15), and the
expression of — (E(0))? as deduced from (B.3). Through a long and tedious calculation,
we may group those terms in two large entities. The first consists of the terms in S,S7,
St and partly S5. The second will contain terms in S5.5,, S,, and the remaining S7. The
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first group gives

12(4N? -
) [SoS, = STT? (B.16)
(16N2 — 1)2 (16N? — 3) (8N> - 1)
and the second gives
2 p—
(16N° - 1)1?56?2 ;; oo ST 383 = SoSal- (B.17)
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