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Summary. Using Monte Carlo techniques, we derive a three-
dimensional version of the well-known Kolmogorov-Smirnov
test; the extension is of the type described by Peacock (1983).
Such a test is of great practical interest when one wishes to in-
vestigate the spatial distribution of a set of data points, partic-
ularly for the case of small size samples. A comparison with
assumed three-dimensional density laws is made possible for most
of current applications. A table of critical values of the new
statistic is given for usual significance levels; empirical formulae
to simulate the asymptotic behaviour are given as well. The three-
dimensional extended two-sided Kolmogorov-Smirnov test is
shown to be sufficiently distribution-free such that it can be widely
and safely used.
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1. Introduction

An everlasting source of enlightenment in astronomy is the study
of the distribution of celestial objects. Information can be gained
either about the physical properties of the objects themselves or
about the structure and the characteristics of the underlying entity
that involves them. The study of the distribution of quasars and
galaxies provides important clues for our understanding of the
physics and the history of the universe. On the opposite, the
structure of the clustering of galaxies is an important fact when
one wishes to investigate their formation process and conse-
quently to understand their physical properties. The same is true
at a smaller scale: some special groups of stars or related objects
can indeed be used as tracers of the structure of the Galaxy. The
investigated distribution is not necessarily purely spatial but
parameter spaces can also be of great interest. Good examples
are, for instance, periods of variable stars or shapes of their light-
curves. Using conventional cluster analysis, Mennessier (1985)
has tentatively classified Mira variables; the discrimination is
based on the distribution of the full amplitudes and asymmetries
of the lightcurves relevant to different spectral regions. Many
other examples could be cited.

All such problems reduce themselves to a common approach:
a statistical study of a distribution of data points in a given space
(a point process). Questions of concern are not only the search
for the overall characteristics of the distribution from which the
data points are drawn but also the intrinsic character of the
parent population; is the latter uniformly random, contagious or
regular (see the introduction of the paper by Gosset and Louis

(1986))? The inverse problem is also considered: given a model
for the parent distribution, e.g. via a theoretical density law, what
is the chance that the observed data points could have arisen
from the assumed law? To answer these questions, a variety of
tests have been designed but of course most of them are limited
to univariate analyses (one-dimensional case). Several new
methods to study the distribution of points with respect to devia-
tions from randomness towards clustering or regularity have
recently appeared in the astronomical literature. The most inter-
esting ones are: the Statistical Reduction of Population (SRP;
see Zigba, 1975), the Multiple Binning Analysis (MBA, classic
and/or with randomization tests; Gosset and Louis, 1986), the
Nearest Neighbours Analysis (NNA; see Clark and Evans (1954),
Thompson (1956), Rose (1977)), the Correlation Function Analy-
sis (CFA; see Fall, 1979, for a review and Sharp, 1979, for some
improvements), the Power Spectrum Analysis (PSA; Webster,
1976) and, finally, the Extended Kolmogorov-Smirnov test and
the Generalized Power Spectrum Analysis (EKS and GPSA;
Peacock, 1983). They all have their own characteristics and a
thorough analysis must probably involve the majority of them
simultaneously. Initially, the different tests have been designed
for two-dimensional applications. The generalization to the third
dimension is easy for some of them such as the MBA even with
the randomization tests (Gosset and Louis, 1986) or the PSA
(Webster, 1982); however, the same is not true for the EKS test.
This is disappointing as it is a matter of common knowledge
that the one-dimensional Kolmogorov-Smirnov test is very effi-
cient. Its two-dimensional extension seems to have retained most
of the attractive features of the original one (Peacock, 1983). This
alone would suffice to justify its widespread use. On another side,
the two-dimensional Extended Kolmogorov-Smirnov test is very
pleasant to utilize as a first step before the application of the
GPSA. All that is very encouraging about the necessity and the
possibility to conceive the extension to three dimensions.

In this paper, we investigate such an EKS test. In Sect. 2, we
recall some features of the one- and two-dimensional tests
necessary to the understanding of the remainder of the paper. In
Sect. 3, we introduce the three-dimensional version along with
an algorithm to be used for the computation of the relevant
statistic, whereas in Sect. 4 we deal with its distribution as de-
rived from our simulations. A table of critical values for most
usual significance levels and empirical formulae simulating the
asymptotic behaviour are also given. In Sect. 5, we investigate
the distribution-free character of the statistic.

As a draft of this paper was ready to be submitted, we be-
came aware of a study by Fasano and Franceschini (1986) that
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proposes to extend the classical Kolmogorov-Smirnov test in a
completely different manner than us: this method is briefly
analyzed and commented upon in Sect. 6. Conclusions form the
last section.

2. The one- and two-dimensional extended
Kolmogorov-Smirnov tests

The one-dimensional Kolmogorov-Smirnov test is the most im-
portant general test of goodness-of-fit besides the so-called Pear-
son y2. The latter has the disadvantage of requiring a binning of
the data and some information can be lost in such a way. This is
due to the discreteness but also to the non-recognition, or at least
non-utilization, of the ordering of the sample. Let us define X
to be a continuous random variable and the X /s (j = 1,n) the
relevant observations of an n points sample. Generality is pre-
served if we suppose that the X s are arranged in an increasing
order. The assumed parent distribution corresponding to a null-
hypothesis of randomness H, can be modelized by a hypothetical
probability density function (pdf) fx(.) and we shall call

X

Fi)= | f(&d¢ 1)

—
the cumulative distribution function (cdf). In terms of probability,
we obtain

F$(x) = P(X < x) (V)]

where the right member denotes the probability of the event
written in parentheses. We still have to define the sample dis-
tribution function (sdf)

FSx)=0 ifx<X,,
F{x)=jn ifX;<x<X;,,withj=1n-1,
Féx)=1 ifX,<x. (€)

As a matter of fact, this function is increased by 1/n each time a
data point is passed through. It is clear that it can be considered
as a tentative approach of the hypothetical cdf if fy(.) is the true
pdf of the variable X. A test can be based on the greatest devia-
tion between the two functions. The statistic

DV = sup |F&(x) — FY(x)| 4
all x

is the one adopted under the name of two-sided Kolmogorov-
Smirnov. The distribution of D{" has the advantage of being per-
fectly distribution-free, i.e. completely independent of F(x) when
the null-hypothesis holds, whereas the Pearson x? is only asymp-
totically distribution-free. As D!} is known to be roughly propor-
tional to 1/ Jn, it is preferable to use an alternative statistic

Z® = /nDM. ©)

For more details on the Kolmogorov-Smirnov test, we refer
the reader to Kendall and Stuart (1967) for some theory and to
Birnbaum (1952) for a tabulation of critical values. We just men-
tion that, for the asymptotic behaviour, we have

PZY>z)=2Y (—1) lexp(—2i°2?)
i=1

~2exp(—2z%) (for large z). (6)
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Peacock (1983) has shown that, if Z, symbolizes the critical
value of Z, for a given significance level, the quantity

o = 1 - Z /2 ()

can be useful in treating a small sample case in the same way
as the asymptotic one. For most of the interesting significance
levels, i.e. those in the range .20 to .01, we have within a good
approximation

oM =020n"0¢ (®

provided that n 2 5 which is not restrictive at all in astronomy.

In conceiving the two-dimensional extended Kolmogorov-
Smirnov test, Peacock (1983) has encountered two difficulties.
The first one is the arbitrariness of the chosen direction when
cumulating the data. In one dimension, this is not crucial since
we have

PX<x)+ PX>x)=1, )
or, similarly
FYx) + F3(x) =1, (10)

where C and D denote cumulating in the X increasing and de-
creasing direction respectively. For the two-dimensional case, we
obtain

PX<x,Y<y+PX<x,Y>))+PX>x,Y<y)

+PX>xY>y) =1, (11)

and there are three independent ways to perform the cumulation.
The procedure adopted by Peacock (1983) is to consider each of
the four directions in turn (CC, CD, DC, DD) and to adopt the
largest of the four differences

D = max (DS, DEP, DP€, DPP), (12)

where, for example,

D3¢ = sup [Fy(x,y) - Filx, s (13)
ally

with

FSe0) = T § fuendan, (14)

and FS(x, y) is of course a function which is increased by 1/n
each time a data point appears in the quadrant containing the
points (&,7) such that £ < x and n < y. The equivalent expres-
sions for the other functions are straightforward. Using Monte
Carlo techniques, Peacock (1983) has studied the statistic

Z® = JaD®. (1)

He has derived its distribution in the framework of a null-
hypothesis of uniformity on a square and proposed an analytic

expression for the asymptotic distribution:
P(Z@ > z) ~ 2exp(—2(z — 0.5)%), (16)

which holds for significance levels less than 0.20. In order to

convert Z@" to Z2" he has also obtained
5P =0.53n70°, 17

We would like to point out here that, based on a combination
of our own simulations and of the results by Peacock (1983), we
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prefer for the asymptotic formula the following expression

P(ZD > z) ~ 2exp(—2.5(z — 0.63)?). (18)

The modification is not essential and would be purposeless
if we would limit ourselves to the two-dimensional problem. Its
interest will be underlined in Sect. 4.

The second problem encountered by Peacock (1983) concerns
the distribution-free character of his test statistic. In the one-
dimensional case, this property is a direct consequence of the fact
that it is always possible to modify at will the pdf by applying
any one to one transformation (preserving the ordering) without
affecting the statistic. The same does not hold for the two-dimen-
sional case. Nevertheless, Peacock (1983) has shown that in
practice the statistic Z{?) turns out to be sufficiently distribution-
free for most cases such that it is extremely useful.

A parenthesis ought to be opened here: astronomers usually
do not realize that the estimation of a parameter from the sample
can induce problems. Generally, the cdf is chosen as belonging
to a parametric family of the type F§(x, §), where 0 is an unknown
parameter (not necessarily scalar). Instead of fixing it in advance,
one usually prefers to derive from the observed sample a quantity
denoted #, the appropriate estimate of 0. By analogy with Eq.
4, one therefore has the statistic

D = sup |FS(x) — F{(x, )],

all x

(19

the distribution of which is unknown. However, the tradition is
to refer DV simply to tables of DV such an approach can lead
to a strongly conservative test and consequently to a loss of
power (Noether, 1967). An example of such an application is
available in Sect. 5 of Peacock’s (1983) paper when he estimates,
by a maximum likelihood method, the parameter « (the centre-
to-edge variation in plate sensitivity).

3. The three-dimensional extended Kolmogorov-Smirnov test
3.1. The statistic Z>

Encouraged by Peacock’s results, we define the statistic

z) =D, (20)
where
D£3) = max (DCCC, DCCD’ DSDC’ DCDD, DDCC DDCD DDDC DDDD)
(21
with, for example,
D€ = sup |[F°(x, y,2) — F$5.4x,1,2)|, 22
all x
ally
all z
and
x y z
F§S2x9.20= [ | | frvdénwdédndu (23)
—0 T —Tw

and finally FS°Y(x, y, z) which is a function increased by 1/n each
time a data point appears in the three-dimensional octant con-
taining the points (&, 7, 1) such that { <xand n <y and u <z
Let us now see how it is possible to compute the new statistic.

3.2. A comment on the computation of Z>

It is sufficient to limit our investigation to the example of DSC,
the transition to Z{> being immediate. The computation of the
cdf usually brings no problem; a grid can be computed in ad-
vance. The main challenge comes from the sdf. Another difficulty
is the necessity to limit strongly the number of loci where the
difference sdf-cdf has to be considered without any possibility to
miss the true supremum. For the one-dimensional case, the cdf
being a monotonic function and the sdf a strictly increasing step
function, the supremum is necessarily located at one of the data
points. The investigation is therefore limited to

x=X;, Vie[ln]

i.e. performed n times. The two-dimensional case is slightly more
complicated because the supremum needs not to be located on a
data point. However, following similar considerations on the cdf
and sdf, we can restrict ourselves to the loci

(xa y) = (Xi’ Y]) V(la.l) € [1’ n] X [1’ n] N

Peacock (1983) suggests to perform the search on all the n?
possibilities which, to extract Z{?, will necessitate 4n> computa-
tions. The same argument will lead for Z{® to a number of 8n.
We believe that some of them are actually needless. We describe
in Appendix A an algorithm which restricts the investigation to
a smaller number of locations.

4. The distribution of the Z{> statistic

Using Monte Carlo techniques, we have derived the distribution
of the Z{¥ statistic for a grid of values for n. Each Z{® distribu-
tion is based on a minimum number of simulations which is never
less than — and rarely equal to — 5000. Those results rely of course
on constant density laws within a cube, i.e. uniform distributions
of the simulated data points. The determined distributions are
given in Fig. 1 whereas the critical values for the different n and
for some significance levels of interest are included in Table 1.

From a comparison with the work of Peacock (1983), one can
see that Z{> is around 1.5 time farther from Z{V than Z(».
This statement makes us confident in our results. The offset is
practically constant except again that the P(Z> > z) function is
slightly steeper. For significance levels of interest (between 0.20
and 0.01), the distribution of Z (i.e. the asymptotic one) is well
represented by

P(Z® > z) ~ 2exp(—3(z — 1.05)?). (24)

This formula is quite convincing when compared with the well-
known distribution of Z{! (see Eq. 6) and with the one of Z®?
as proposed above (see Eq. 18). We have illustrated the three
curves in Fig. 2.

In the three-dimensional case, it is likewise possible to relate
finite sample distributions to the asymptotic behaviour; Z& can
be reduced to Z& by a simple scaling factor. Our simulations
show that we have within a good accuracy,

3 =1-2¥/ZQP =015n"°° (25)

provided that n is greater than 5.

We wish to end by giving an approximate formula relating
the size of the sample to the relevant critical value for a signifi-
cance level of 0.01 and thus propose

AP(ZP > z) = 0.01) = 2.38 — 2.1/n. (26)
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Fig. 1 a and b. Distributions of the Z{ statistic as a function of n: a from left to right n = 3, 5, 10, 20, 50; b from left to right n = 7, 15, 30

Table 1. Critical values of Z{» as a function of n and of the
significance level.

Significance levels

n 0.20 0.15 0.10 0.05 0.01
3 1.53 1.56 1.59 1.63 1.68

5 1.65 1.70 1.74 1.83 1.97

7 1.7 1.76 1.81 1.91 2.08
10 1.76 1.82 1.87 1.98 2.17
15 1.81 1.87 1.92 2.04 2.24
20 1.83 1.90 1.95 2.07 2.27
30 1.86 1.92 1.98 2.10 2.31
50 1.89 1.95 2.01 2.13 2.34
100 1.91 1.97 2.03 2.15 2.36
oo? 193 1.99 2.05 2.18 2.38

? As simulated by our approximate formula

5. The distribution-free character of Z$>

As mentioned above, the Z{¥ statistic is not necessarily distribu-
tion-free and we need to investigate this problem in order to
demonstrate the generality of the results of Sect. 4. From the
work of Peacock (1983) on the two-dimensional test, we know
that the statistic Z{? has the desired property as long as the two
random variables X and Y are not too strongly correlated.
Again using Monte Carlo techniques, we computed the dis-
tribution of a statistic defined in the same way as Z{> but based
on different null-hypotheses. Several three-dimensional pdf, ex-
otic or not, have been used (both to compute the cdf and to
generate the data); all are freely inspired from the patterns of
Fig. 3 of Peacock’s (1983) paper. A special effort has been made

P(Z,)2z)

1.0 5

03 —

003

0.01 T T T
05 1.0 15 20

z

Fig. 2. Diagram of the empirical formulae simulating the asymptotic
behaviour; from left to right, the one-, two- and three-dimensional tests

not to neglect patterns with a marked correlation. We conclude
that for Z{), the correlation between the random variables ap-
pears as the determining factor too but only extremely correlated
variables are problematic and, as will be shown, those cases are
not realistic or at least are irrelevant to a three-dimensional test.
In fact, only two pdf’s give deviations standing out of the statis-
tical fluctuations (Poisson noise of the simulations).
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Fig. 3. Investigation of the distribution-free character of the Z§) statistic:
from left to right, the null-hypothesis is modelized by:

— pdf N°1 (high correlation of three random variables),

— pdf N°2 (high correlation of only two random variables),

- uncorrelated or factorizable pdf (See text in section 5 for more
details)

These are
Sxyz(x,y,z) =const. #0 ifandonlyif x>~y=~z
and
Sfxy.zZx,y,z) =const. #0 if and only if x ~y, any z

corresponding to zero density everywhere except on a diagonal
line of constant density (trial pdf N°1) and on a diagonal plane
of constant density (trial pdf N°2) respectively. The two resulting
distributions of the statistic along with the assumed one are given
in Fig. 3 for the case n = 30.

In conclusion, practically all our simulations result in a dis-
tribution of the statistic extremely similar to the one derived in
Sect. 4. A severe case of deviation, although still realistic, is the
one relevant to pdf N°2: it is clear that there is some perturbation
of the distribution but from a practical point of view, the resulting
uncertainties are negligible (cf. Fig. 3). In fact, the distribution
relative to the pdf N°2 can be considered as a border-line case.
However, the distribution relevant to the pdf N°1 is more trouble-
some as the error is no longer negligible. Nevertheless, we think
that cases “between” pdf N°1 and pdf N°2 are somewhat un-
realistic. At least, they can be considered as irrelevant to a three-
dimensional test because the correlation is so strong that one
can always reduce the problem to a two-dimensional one by a
simple change of variables. The Z{¥ statistic is therefore suffi-
ciently distribution-free for all cases of practical interest.

6. An alternative way to make the extension

When a first version of this paper was ready to be submitted
for publication, we became aware of a paper by Fasano and

Franceschini (1986) who introduce an alternative way to con-
ceive the extension of the one-dimensional Kolmogorov-Smirnov
test. Their statistic is based on a deviation defined as

Dn = sup |Fn(x’ }’) - FX,Y(x’.V)' . (27)
O

Clearly, they restrict the search of the supremum of the deviation
between the sdf and the cdf to loci harbouring a data point. Of
course, the true supremum will generally be missed but the maxi-
mum deviation computed in such a way will have a tendency to
vary in the same manner as the true supremum does. Therefore,
the Fasano and Franceschini’s (1986) statistic is probably well-
behaved, at least as long as the genuine parent population distri-
bution and the assumed one are not too different. Both Peacock’s
statistic and the one of Fasano and Franceschini degenerate
in the one-dimensional problem to the classical Kolmogorov-
Smirnov test. The advantage of the approach by Fasano and
Franceschini is the small number of loci (n) where the investiga-
tion is to be made. However, their statistic is sensitive to the
correlation between the two random variables and therefore re-
quires the publication of three entry tables: the added parameter
is the correlation coefficient. The latter can be estimated from
the sample but some problems can arise as we state at the end
of Sect. 2.

7. Conclusions

We have presented in this paper a three-dimensional version of
the Kolmogorov-Smirnov test. An algorithm to systematically
explore the space and compute the sdf is presented and an expres-
sion for the Z{¥ statistic is given. Using Monte Carlo techniques,
we have derived its distribution; a table of critical values has
been given for most usual significance levels as well as empirical
formulae to simulate the asymptotic behaviour. The distribution-
free character of the Z{» statistic has also been investigated and
we conclude that the test is sufficiently distribution-free to be
widely and safely used. Only cases of extremely high correlation
are not to be treated blindly. The new statistic may be fully used
in astronomy as well as in other fields of research; it is an effi-
cient alternative to the Pearson y? test. An example of application
has already been evoked in Gosset et al. (1986). Our work is also
a first step towards the conception of a more general N-
dimensional test.
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J. Surdej and J.P. Swings for having carefully read and
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comments by an Anonymous Referee have led, we hope, to
improvements. A preliminary discussion with J.A. Peacock has
been determining as well.

Appendix A

In this appendix, we describe an algorithm to compute the Z{3
statistic. The basic philosophy being the same for both the two-
dimensional and the three-dimensional cases, we feel preferable
for the comprehension to begin with a small example in a plane.
We consider the computation of DSC. In Fig. A.1, we show a
square with five points. Dashed lines are also drawn which delimit
the cells where the sdf keeps a constant value: this value of FSC
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Fig. Al. A square plane with five data points. Dashed lines delimit the

cells of constant sdf FS¢ within which the relevant values of the latter
are indicated

is indicated at its relevant location. The cdf being monotonic,
the search for the supremum can be restricted to the data points
and to the points at the intersection of two lines. It is preferable
to perform a systematic exploration taking the X; one by one,
following an increasing order. As an illustration, let us imagine
we arrived at x = X5 we have to position ourselves at

(x’ Y) = (X3? Y3)
and after that at

(x,y) = (X3, o).

At both places, the sdf has two values. The greater one (denoted
sdf*) is a direct function of the order of the relevant Y;: as we
have Y, > Y, > Y,, the sdf* takes respectively the values 2 x
0.2 =0.4 and 3 x 0.2 = 0.6 as can be seen in Fig. A.1. The lower
values of the sdf (denoted sdf~) can be computed from the sdf*
by removing one step if we are on a data point and two steps if
we are at the intersection of two lines.

Hereafter, we discuss an algorithm based on the preceding
considerations, but in the framework of the three-dimensional
extended Kolmogorov-Smirnov test. In what follows, we only
consider the computation of DSCC; the basic idea is the same
mutatis mutandis for the seven other intermediate statistics,
namely

CCD 1)CDC yCDD [yDCC [yDCD JyDDC DD
DS, pEPE, pSPP, pPCC pPeb pbDC 454 pPPD

In order to visualize things, let us imagine that the x-axis points
towards us, the y-axis to the right and the z-axis to the top. What
we hereafter call “space” is some relevant parallelipipedic closed
volume such that the pdf can be set to zero outside of it. We
then assume that the n data points (n sample)

(xsyaz)=(Xi’ 1fiazi) VlE [1,"],

are dispersed in this space and that the X;’s are ordered in an
increasing manner. To draw the sdf (in this case FSC) would of
course be impossible as it would require a fourth dimension.
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Nevertheless, we can imagine the sdf as a partition of the whole
space in cells where the sdf takes constant values; in general,
those cells have complex shapes with a large number of corners
and edges. The inter-cell borders are portions of planes perpendic-
ular to one of the axes; steps of the sdf are of course located
there. Since the sdf can be considered as a discontinuous function,
we can attribute to it at least two values at a discontinuity point.
One will be labelled + and will correspond to a limit approach
to the point from the top-right-front corner, the other labelled
— being accessed from the bottom-left-rear corner. Both of these
values are to be compared with the cdf as computed there. It is
interesting to note further that, for the same reason as for the
two other tests, the supremum is necessarily located on a corner
of one of the partitioning cells and nowhere else. A simple proof
of this goes as follows. Let us position ourselves at any point in
a cell; as the sdf is constant and the cdf monotonic, it is always
possible, except if we are in a corner, to find a travel direction
such that the cdf will increase or decrease (depending on whether
the sdf is respectively inferior or superior to the cdf). This implies
an increase of the difference between the two functions. All such
types of travel will automatically lead to a corner.

We will now imagine that we are at a corner (x, y, z): the sdf
is equal to j/n where j is the number of data points located in
the bottom-left-rear three-dimensional octant of (x, y, z). But j is
also a serial number of the corner among a collection of points
arranged in a very particular way. This statement is worth being
explicited. Let us consider the m™ data point

(x,,2) = (X, Y0, Z,0),
and place ourselves in the plane

x=X,.

m=1,n

Taking into account all the points
(y’ Z) = (ka Zk)y
and ordering them according to increasing y, we obtain
(Yot Zpao),  With ke [1,m]

and where p is the relevant new ordered numbering. In fact it
would be more rigorous to refer to the permuted Y by using a
different symbol such as Y* (Y}, = Y, for all ke[1,m]); this
heavy notation has nevertheless been dropped for the remainder
of the paper. Points to the left of Y, are of no interest since
they correspond to a cell edge, passing through the plane x = X,
perpendicularly to it, and not to a corner. Now, we consider in
turn points Y, with p(i) = p(m), m. Let us place ourselves on
the line

bow
y=Yu,

look at the points

with p(k) = 1, p(i),

and order them according to increasing z. We obtain
with p(k) € [1, p())]

and where q is the relevant new ordered numbering. Each point
below Z, ., corresponds at best to a cell edge, parallel to the
x-axis, and not to a corner: they are of no interest. Each point
below Z,,;, can also be neglected since it is connected to a cell-

withk=1,m

z=Zy

A C)
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edge parallel to the y-axis. Each in turn, we now consider the
points

Zypay With q(p(l)) = max (g(p()), g(p(m))), p(i) -

All are corners and the corresponding sdf * is simply expressed
by

(FF°9" =j/m  withj = q(p(}))

i.e. the serial number of the corner as stated above.

The computation of sdf ~ is less simple. However, it can be
calculated from the sdf * by removing some quantity function of
the respective arrangement of the data points:

(FR9)™ = (F7°9" —a/n

where a is determined by following a small set of rules. We give
those rules below without any demonstration, leaving it to the
reader. Using the same notation as above, in the plane x = X

—ais 1 if current y is Y,, and current z is Z,,

—ais 2 if current y is Y,, and current z > Z,,

—ais 2 if current y is Y, > Y, and current z is Z,,

—ais 3 if current y is Y,; > Y, and current z > Z,,
except that a is 2 if in addition z is Z,,,.

This algorithm permits to combine the cumulation of the sdf
with the systematic exploration of the space. Finally, let us point
out that it is necessary to take into account loci on the upper
borders of the space and that the algorithm is slightly more com-

(A.1)

(A2)

m>

plicated if we wish to include data points for which at least one
of the coordinates is identical.
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