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Foreword

A mathematical model of light reflection for lighting simulations : why ?

Since the early developments of Lighting Science, light reflection has always been assumed to be
uniformly diffuse. Except in some situations.

indeed, it must be recognized that the inaccuracies introduced by such a crude approximation could
not be tolerated in some situations. In spite of this inconvenience, many years have passed before
scientists really investigate other modelizations.

What is the reason of these new developments ? Is it the advent of the computer, which makes the
complex phenomena more accessible ? Perhaps computer science played a significant role. But,
more than other reasons, the evolution of the philosophy of lighting scientists has been the real
detonator. Indeed, the illuminance is no more considered as the unique indicator of a good lighting
installation : from now on, the luminance and the distribution of luminances in the visual field are
also considered as fundamental parameters.

The reflection factor, as a global energetic factor, was sufficient to calculate the illuminances and
flux transfers. This is not true anymore, if it is wanted to simulate a distribution of luminances,
because the complex interaction between light and the objects of our environment cannot be
accurately modelized by only one parameter.

It must be also precised that the present work is not intended to denigrate the Lambert law of
diffuse reflection. it has indeed been (and will always be) very useful in lighting simulations. But
we must not considered this law as a postulate anymore, pretending for example that : "anyway, a
more realistic model will not change significantly the workplane illuminances". Interior lighting
cannot be limited to simply illuminate the working plane : the imagination of the designer must be
allowed to be developed in more complex directions.

Lighting is not only a technology. It is also a living science which, among others, has an urgent
need in research, idea and theories. | will cite here the eminent James A. Worthey :

"Current methods of lighting design involve a mixture of theory and
intuition. An important goal of research should be increasing the role of
theory and decreasing that of intuition”

(Lighting Design & Application, July 1991, p.16)



On the 9th october 1992, the participants to the seminar "Computer Programs for Light and
Lighting", organized in Vienna by the C.L.E. (Commission Internationale de I'Eclairage), have
formally communicated their urgent need in research works, in the field of measurement and
modelization of non-lambertian reflection.

Embrechts Jean-Jacques

Lidge, the 3rd november 1993
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1.1

Chapter 1 : Introduction

Light penetrates into our world as electromagnetic waves or photon fluxes, llluminating the very
jarge as well as the very small objects, the visible and invisible ones.

Our world is material : clusters of atoms, but also volumaes, surfaces, static or moving objects,
from the very small to the very large ones, from the microscopic to the macroscopic world.

Light reflection originates from the interaction between light and materials, from the vibration of
the electrons on the rhythim of the electromagnetic field, when photons collide with the atoms of
the material medium.

The illuminated material reveals its identity. The cluster of atoms becomes an object, the volumes
and surfaces are viewed as spaces and colours. Our material world acquires all its significance and
beauty thanks to light reflection : this is the complex reality.

To observe the macroscopic world in order to understand the microscopic one, trying to
understand the "invisible" and predicting visible effets : this will be the aim of this work dedicated
to light reflection.

To observe and understand will be the objectives of the two following chapters. The main physical
results concerning the light reflection will be recalled in the second chapter. it will be seen that
the discontinuity between air and another medium gives rise to what is called the surface
reflection. The properties of this reflection will be analysed in terms of the nature of the medium
(metal ‘or dielectric), and in terms of the geometry of the surface (plane or rough). The
heterogeneity of the medium will give rise to the volume or bulk reflection. Then, surface and
volume- contributions will be associated to give the spatial distribution of the reflected light
intensity.

Qbservations are followed by measurements. The chapter 3 starts with the definition of the
photometric quantities associated with light reflection and the methods currently in use to
measure: them. It will be shown that reflection goniophotometry (or gonioreflectometry) is not yet
sufficiently- developed, and that it will be necessary 1o conceive our own measurement system.
This apparatus is also described In chapter 3, together with its requirements, options (plane of
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incidence, spectral domain, ...), limitations and, finally, its accuracy. The measured quantity will

be the radiance or the luminance factor, if the detector is a spectrophotometer or a luminance- The problem of computing illuminances and luminances in an interior is approached in chapter 5.

meter, respectively The difficulty here is to modelize obstructions and walls reflection by a non-lambertian model.
Therefore, a calculation procedure, based on the radiosity technique, is introduced.
The first results will show the spatial distribution of light, after reflection on several materials
used in lighted interiors such as wood, glass, paper or pavements. They also reinforce the visual
observations and lead to the conclusion that the Lambert taw of uniform diffusion is not sufficient

to describe all phenomena. The next step of the work is thus introduced : it wili be assigned to

This procedure will then be developed in a lighting software called LUXCALC. Several tests of this
software have been carried out, including a comparison with in-situ illuminances and luminances
measurements. Finally, the general model of light reflection described in chapter 4 will be
introduced in LUXCALC. Its influence on the calculated values, on their accuracy and on the

modelization.
computing time will also be analysed.

The modelization of light reflection is really the central part of this research. It is described in
the fourth chapter. The model of surface reflection is an extension of the theory of P. Beckmann
about the reflection of electromagnetic waves by rough surfaces. The extension consists in a
veclorial approach and an expression of the theoretical results in terms of photomeiric guantities,
such as the luminance factor. The vectorial approach of the scattered field will allow us to consider
the dielectric materials and their optical properties.

This theory is compared with measurements resuits obtained with the apparatus described in
chapter 3. The comparison shows that it Is necessary to include in the model, a mathematical
function to take into account the shadowing effects between surface elements. This study is mainly
based on measurements carried out on frosted clear glass samples. This material has the two
following interesting properties : first, it only reflects light with its surface (no voiume
scattering) and, secondly, its optical characteristics are well-known.

The model describing the volume reflection will derive from an experimental study of light
reflected by an opaline glass sample. The plane surface of this sample insures that the surface and
the volume components can be separated during the measurements.

Finally, both models of light reflection are associated in a general expression, described by the
equation (4.52). Five parameters are necessary to define each material : the refraction index, a
surface roughness parameter, the amplitude of coherent surface reflection (the contribution
which gives the image of the source) and the amplitudes of the incoherent surface and volume
reflections. A mathematical procedure has been developed to determine the parameters of any
material, from reflection measurements in the plane of incidence.

This general model has been compared with other models, including the Lambert law and some
more sophisticated ones. The comparison shows the benefits afforded by our five parameters
expression.
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Chapter 2 : Physical properties of light reflection

2.1. Light reflection on a plane surface

Consider a parallel beam of light propagating along a straight line in the air. It could have been
produced, for example, by a small source placed at the focus of a converging lens.

If the light beam falls on another medium, the following phenomena are observed :

- ~one part of the beam is reflected in the original medium (air);

- the other part of the beam penetrates info the second medium, and is finally absorbed if this
medium is sufficiently thick.

Let us analyse the case where the interface between both media is perfectly plane.

In this case, the reflected beam remains parallel and propagates along a direction which is
symmetrical from the direction of incidence, with respect to the vector normal o the surface
(fig.2.1). The reflected light rays belong to the plane of incidence, defined by that normal and the
direction of incidence. This reflection is called the specular or regular reflection. Typical
examples of it are the reflection of light on a glass sample, or on a quiet surface of water.

incident light reflected

‘ light

transmitted light

Figure 2.1 : Specular reflection on a transparent medium.
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The other part of the light beam propagates again along a straight, but different line, in the
transparent medium : this phenomenon is called the refraction.

Some useful expressions are recalled hereafter.

The incident light is here considered as a monochromatic electromagnetic wave of angular

_)
frequency . The incident electric vector Ej is perpendicular to the plane of incidence, and 6; is the
angle between the direction of incidence of the plane wave and the normal to the surface. Then, it

follows (1, p.39] :

- J(k x singj - k s0j - ot) 2
E oyl = e;( X sing; z coshi - ot} Ty
[0) 2n
k= c = n (2.1)
incldent wave | W =
‘ Er®/
®
_)
Ei
9' 9|
z>0: air

_)
Figure 2.2 : Reflection of a plane wave E; , polarized in a direction perpendicular to the plane of
incidence, by the plane surface z=0 (symbols : see text).

"\" is the wavelength, "k" is the wave number and "c" is the speed of light in the medium (2>0).

1we use the convention here that the term "perpendicular polarization” refers to an glectric
vector perpendicular to the plane of incidence.

2.3

When. the plane wave reaches the plane interface (XY) between both media? , a reflected plane
._)
wave: Ep Is created, which propagates in the original medium (z>0). Also, a transmitied plane

)
wave Ep Is created, which penetrates into the second medium (z<0), such that :

- i ino; -

E (xy.z) = R e](k X sindj + k z cosej - wt) 1—;

- j(k x singy - k z cosdy - ot) =

B (cyzd) = Te ol ! vony (2.2)

The reflection and transmission coefficients ( Rs and Tg, respectively) of the perpendicularly
polarized wave are given by the Fresnel expressions [1, p.40] :

cos6i-n cosot

Rs = €0S6j + N Coshy

2 €086

Tes — 01
8= Cos6j+ n cosby

(2.3)

"1 is the refractive index of the second medium, i.e. the ratio between the speed of light in the
first (z>0) and the second (z<0) media. Introducing Snell law (singj = n singy) , we have :

R cosj- Y n? - sin2e;
.=
cos6j+ Y n2 - sin29;

2 €c0s0j

(2.4)

Tg = -
cos8j+ Vn2 - sin29;

.—)
The electric vector Ej now lies in the plane of incidence, in a direction perpendicular to the

direction of propagation (fig. 2.3). In this case, we have [1, p.39] :

2 theory, this sentence is only correct, if the dimensions of the plane are infinite. The
influence of finite dimensions will be examined later.
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puc - . = j(k x singj - k z cos8; - ot)
Ei (xy,2.t) = (cosj 1x + singj 1z) e

g i ) = jk x singj + k z coso; - at)
Er (xy,2t) = Rp (-c0s6j 1x + singy 1z) €

- , = j{k x sin8t - k z cos@y - ot)
—E—)t (x,y,zt) = Tp {cos6y Tx + sinby 12) eJ( (2.5)

ml

incident wave ﬂ 7

LN

2>0: alr

—* D :
Figure 2.3 : Reflection of a plane wave E; polarized in the plane of incidence, by the plane surface
z=0 (symbols : see text).

The Snell law can again be applied, which gives the following Fresnel expressions for the

reflection and transmission coefficients :

R n2 cosdi- Y n2 - sin29;
P he coshj+ VY n2 - sin2g;

2 n cosBj (2.6)
n2 cosgj + \'n2 - sin2e;

Tp=

Bl i larizatl

The incident electric vector lies along any direction perpendicular to the direction of propagation.
it has a paraliel component (Ap) and a perpendicular component (Ag).

2.5

The reflected energy is proportional to the square of the reflected wave amplitude [1, p.41], that
is 1o (1Ap Rpl2 + |As Rg|2). The reflection factor R 2 is the ratio between the reflected and

incident intensities :

2 _|Ap Rpl? + |As Rs|?
A A+ 1As2 (2.7)

Figure 2.4 shows the dependance of this reflection factor on the angle of incidence 6;, in the case of
an air/glass interface (n=1.52). Note that this factor tends to 1, if the angle 6 tends to 90° :
under grazing incidence, all the energy is reflected by the interface.

If the plane-wave is polarized in a direction parallel to the plane of incidence, there exists an angle
ajg for which the reflected energy vanishes : this is the Brewster angle. In the case of an air/glass

interface, this angle is- arctang(n)=56°40' (see fig. 2.4).

1,0 f

0,9
0.8 - (a)
0,7 < (b
0,6 -2 (c) ){7;/

0,5 /

0,4 /
0,3 /
0,2
0,1
0,0

Reflection factor

90

Angle of incldence In degrees

Figure 2.4 : Reflection factor of an air/glass interface (R 2) as a function of the angle of incidence
of light (in degrees) :
a) wave polarized in a direction perpendicular to the plane of incidence
b) natural light : average value of (a) and (c)
¢) wave polarized in the plane of incidence.

3 The amplitudes A are generally complex numbers and their modulus is noted |A].
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The natural light {1, p.44] is characterized by an electric vector with a constant amplitude (at a
fixed point), but polarized along a rapidly changing random direction. Yeh [11] gives the following
information : the periods of light oscillations are less than 2.6 10°15 seconds (corresponding to
780 nm in vacuum), whereas the period of polarization variations is about

10-8 seconds for natural light. If the average value of the reflection factor (2.7) is taken over a
period greater than 108 seconds, we obtain the reflection factor for natural light represented by
curve (b) in figure 2.4,

The colour of reflected light
The question here is to determine if the spectral distribution of the reflected light is the same as
the incident light spectrum. In other words, does the reflection factor depend on the wavelength ?

The analysis of expressions (2.4) and (2.6) indicates that only the refractive index "n" is able to
introduce a wavelength dependence. In fact, it Is easy to show that this index effectively depends on
the wavelength : when light travels from air to glass, it can be observed that the deviation of the
light beam, expressed by the angle 8¢ (see 2.3), depends on the wavelength. This is the well-
known phenomenon of the dispersion of light, associated with the refraction. it necessarily implies
that the refractive index "n" changes with the frequency of light oscillations (see Snell law).

This spectral dependence originates from the interaction of light (and particularly the incident
._)
electric vector Ej ) with the atoms of the refractive medium. These atoms are polarized under the

influence of the field ET and their charges (ions and electrons) are vibrating at the same
frequency. This motion of the electric charges creates electromagnetic waves which radiate outside
the body. In liquids and solids where the interactions between atoms are important, the waves
radiated by all electrons are in phase and create the specular reflection.

Sommerfeld [9, p.26] and Jenkins and White [6, p. 455] state that only a thin atomic surface
layer is responsible for this specular reflection, since the waves created in the bulk of the
medium are cancelled by interferences. Thus, the specular or regular reflection will also be called
the "surface reflection”.

The intensity of the reflected wave depends on the amplitude of the vibrating charges' oscillations.
it the frequency of the incident electromagnetic wave is one of the resonance frequencies of the
charges bounded to the atoms of the medium, then the vibrating amplitude will be amplified and the
incident energy will be partly re-emitted (as a specularly reflected wave) and partly

2.7

{ransformed into heat : the medium does not transmit the electomagnetic waves at this frequency
6, P- 455), and this phenomenon is called sglective absorption.

it follows that an important regular reflection generally coincides with selective absorption. For
most dielectric homogeneous media, a charecteristic resonance is observed in the ultraviolet
domain (it is caused by the electrons vibrations) and another one in the infrared region (caused
py the heavier ions) : see figure 2.5. Glass, for example, has a selective absorption band for
wavelengths lower than 380 nm and greater than 2.5 pm.

n
A
2 1
A M
N A I\*II
. 14 2y
7 7 L
™~ visible infrared radio waves A
far U.V. near far

Flgure 2.5 : Typical variation of the refractive index "n” of a dielectric homogeneous medium, as a
function of wavelength. The resonance frequencies are noted A1, A2 and A3.

(From Jenkins et White [6])

So, It can be concluded that the specular reflection on a dielectric homogeneous medium generally
depends on the wavelength. However, this dependence is not very accentuated in the visible region,
except for a few material4, and this reflection will be considered as non-selective {9, p. 39, and

18]. Therefore, the light source and its image in the medium have the same colour.

This assumption has also been adopted by Rombauts [8], who futhermore attributes the
representative value n=1.5 to all dielectric materials. However, it can be seen on figure 2.6, that
this second assumption is too restrictive. In the following, the value of the refractive index will be
kept as general as possible.

4 For gxample, the fuchsine pigment selectively absorbs the yellowish-green radiations and
transmits a saturated red coloured light,
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Figure 2.6 : Refractive index of some materlals, as a function of wavelength (um). For
birefringent crystals, ngis the ordinary refractive index
and ne, the extraordinary refractive index.

From Yeh [11]

Light reflection is again specular. However, the following differences are observed :

light which penetrates into the metal is immediately absorbed : the penetration depth is very
thin, only a small fractional part of the wavelength [6]. Metals can be considered as opaque
materials;

the reflected intensity is much more important than the intensity reflected by a dielectric
medium, even at non-grazing incidences;

light reflection by metals is often colored : the image of a white source is yellow in gold, red i
copper, and so on... (see fig. 2.7).

2.9
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Figure 2.7 : Reflection factor (percents) of some metals at normal incidence,
as a function of wavelength (A ).
From Jenkins et White [6]

The origin of this different behaviour is to be found in the existence of free electrons which create
surface electric currents. These currents transform the incident energy into heat dissipation, but
also Into specularly reflected waves. Therefore, the high absorption due to free electrons
corresponds to a strong reflection : this coincidence has already been observed for dielectrics at
the resonance frequency.

In the wave propagation equations, and in the Fresnel formula (egs. 2.1, 2.3, 2.4, 2.6 et 2.7), the
real quantities: (k, n-and even 6y) are replaced by complex quantities containing the conductivity of
the medium. It follows that the Fresnel reflection coefficients are no longer real, but complex
values. Also, the polarization of the reflected wave is generally different from the polarization of
the incident wave : see references [1,6,7] for further details.

The spectral dependence of the metaliic reflection Is more accentuated than the dependence
abserved for dielectrics : see, for example, figure 2.7. Note that the first observation of this
section, concerning the opacity of metals, must be precised : in fact, metals can be transparents at

some specific wavelengths. This is the case for silver at 320 nm (fig. 2.7), and for sodium
at 200 nm.
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The colour of the image of the light source in the metal tends to be less saturated, as the angle of
incidence approaches 90° (grazing incidence). Indeed, for 8j = 90°, the equations (2.4) and (2.6)
are still valid for metals and give Rg = Rp = -1, at all frequencies (see fig. 2.8). It follows that
the wavelength dependence of the reflection factor vanishes, and that the reflected light rays have
the same colour as the incident light rays. This can be observed, for example, with a copper plate
illuminated by an incandescent light source : at grazing incidence, the image of source is not

reddish, but white.

100%

R —

Reflectance
o
Q
B

0535 —p== 60° 50°
Angte of incidence

Figure 2.8 : Refleclion factor (percents) of goid and silver, as a function of the angle of incidence
(in degrees). The incident light is either polarized in a direction perpendicular to the plane of
incidence (rs) , or in the plane of incidence (rp).

From Jenkins et White [6]

Some authors [8] attribute this phenomenon to the existence of two kinds of reflections for metals:
one is a typical dielectric surface reflection (spectrally neutral), and the other is a typical
colored metallic reflection. Both reflections would be specular and, therefore, both reflected
beams would be superposed In the same direction. At normal incidence, the colored metallic
reflection would be the more important, whereas the dielectric surface reflection would prevail at

grazing incidence.

It is difficult to corroborate these assumptions with the electromagnetic theory, since two
different contributions can hardly be observed in the expression of the reflection factor [1]. In
this work, the following interpretation is preferred : light reflection on a plane conducting
surface is specular, and the reflection factor depends on the angle of incidence and on the
wavelength. Both dependences are combined to give the metaliic reflection.

. | Jelectric. med|

in real situations, most objects and materials are heterogeneous media : a celling covered with
glossy oil-painting, a varished table, a colored glass, polished plastic objects, these are several
axamples of plane surfaces belonging to this category.

The following phenomena can be observed for these materials :
. a specular reflection, which is generally not colored, as it is the case for transparent
dielectrics. The reflected intensity increases with the angle of incidence;
. a diffuse reflection (light is spread in all directions), which is generally colored (fig. 2.9).
The reflected intensity is less dependent on the angle of incidence. It follows that the viewing
_ direction.seems to have no Iinfluence on the lighness and on the colour appearance of the
illuminated surface, except in the specular diretion.

Figure 2.9 : Reflection and scattering of light on a dielectric heterogeneous medium
(plane interface).

Both reflections overlap in the specular direction. As the angle of incidence tends to 90°, the
achromatic surface reflection is more and more important. At grazing Incidence, the image of the

source (which has the same colour as the real source) is even masking the view of the medium
itself.

2.11
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Again, the origin of the diffuse reflection is to be found in the interaction of light with the

particles of the medium.

Carniglia (3] and Croce{5] mention defects of homogeneity in the bulk of thin dielectric films,
which are different from surface irregularities. These defects induce a spatial dependence of the
refractive index, and light scattering in the medium ( "volume scattering” [2,18,64] ). This
scattered light is partly re-emitted out of the medium : this re-emission is called the diffuse

reflection.

Light scattering in the medium is not due to the molecules : molecular scattering aiso exists in
homogeneous media and determines the speed of light in liquids and solids. Moreover, it is only

significant in a single direction : the direction of refraction [6].

Light scattering in the medium must rather be attributed to bigger particles : we can imagine them

Figure 2.10 : Simplified scheme of diffuse reflection

as "micro-media" randomly spread in the inclusive medium (see figure 2.10).

The simplified scheme shown in figure 2.10 also illustrates why plane metallic interfaces do not
diffuse light. Even if some impurities are present in the metal, light does not penetrate enough to
reach them and, therefore, diffuse reflection is not created.

The light scattering phenomenon does not explain all observations. indeed, light scattering Is a
special case of light reflection, when the size of the reflecting surface has the same magnitude as
the wavelength [6, p.456]. So, the scattered light is generally not colored for a non-conducting
particle. Therefore, how can we explain the colour of diffuse reflection ? Sommerfeld {9] does
explain the green colour of foliage as the following : chlorophyl is a plant-pigment which only
transmits green light, and absorbs all other radiations. White light which penetrates into the
foliage goes through the chlorophyl particles and becomes green by transmission. Then, this green
light is scattered in the bulk of the medium, without spectral transformation. The same phenomena

2.4, Note
Some materials have not been examined here, since they are seldom used in a lighting problem.
are observed with the pigments used in oil-painting.

For example, the reflection of light on crystals or anisotropic media gives rise to a reflected light

The conclusion is [6, p.446, and 64] that diffuse reflection is due to the combined effects of light beam and two refracted light beams [1,6,7,9].

transmission by selectively absorbing particles (the pigments) and multiple reflections or
multiple scattering on defects of homogeneity in the bulk of the medium. The complexity of all this
process, and the random distribution of the scattering particles inside the medium, lead to a "re-

Also, the layered media will not be analysed here. These materials are made of several dielectric
fllms, with. different optical properties. Light reflection on these media depends on the ratio

emission” of light in all directions, which seems to be nearly isotropic : see also the batween:the layers' thickness and the wavelength (filtering properties) : see reference [11].

measurements performed by Uetani and Matsuura [64].

5 see also the C.l.E. (Commission Internationale de I'Eclairage) definition of light reflection in
references [4] and [15).
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2.2. Light reflection on a rough surface
221, Fl | i

A surface Is called a "rough surfage”, if the corrugations (i.e. the height variations with respect to
the mean plane of the interface) are large-enough to significantly modify the light scattering
indicatrix of this surface. It will be shown later that the roughness of a surface depends on the
wavelength of the incident light.

it is supposed here that only the surface reflection is considered, i.e. the reflected light waves
created by the vibrations of the electric charges, which are bounded to the atoms located in the
vicinity of the interface.

Whatever the medium under the rough surface, the following phenomena are observed : the
intensity of light reflection which is high and specular for a plane surface, Is significantly
reduced in the case of a rough surface. Moreover, the reflected light is spread around the specular
direction, and this leads to a fuzzy image of the luminous source appearing on the surface. This
unsharpness becomes more important as the roughness of the surface increases. If the surface is
very rough, the image of the source is masked by the "valume" reflection.

it will also be shown that the roughness properties of a surface depend on the angle of incidence of

light. At grazing Incidence, the image of the source mentioned above becomes sharper, though the
roughness of the surface is kept constant. This can be observed for a road surface which seems to
reflect the sky when it is viewed under a grazing direction.

Finally, the roughness of a surface does not introduce significant colour modifications in the
reflected light : as for a plane surface, light reflection by a rough surface is generally non-
selective in the case of dielectrics, and selective in the case of metals. However, this cbservation
will be precised in the following chapters (§ 2.2.3).

2020 The Rayleigh's criterion

The theory of electromagnetic waves reflected by a rough surface will be developed in the fourth
chapter . Here is only presented the theory of Rayleigh, which is able to simply explain the
influence of the wavelength and the angle of incidencs.

; . i1 :
The choice of (—2 ) as lower bound is somewhat arbitrary, and some authors rather prefer z

Figure 2:11 : Reflection of a plane wave on a surface gradient; development of the Rayleigh's
criterion. (symbols are defined in the text).

Figure 2.11:illustrates the Influence of a step of.height "h" in a plane surface. The incident waves
are in phase at points A and B. They are no more in phase at A' and B', since the path AOA' is longer
than the path BP'B' . The path difference is expressed as :

2 h
cos6j

4 = —> — -3 —
A=|AO}+}0OC| «f CP| - | BP| = +|CP| - | BPY
. bagd 20 — - —
Since | CP| = | CP'| sing; and | BP'| = (| AC| + | CP'| ) singj’, we can write :

- > —
[CP| - | BP'| = - | AC] sin8; = - 2 h 1g8; sing;

and A =2h cosg (2.8)

Remember that the phase of the reflected wave (see eq. 2.2) is proportional to kA =(2 T}i 4 ) .

So, the reflected wave is coherent, only if kA << 1. However, If KA = &, the phases corresponding

‘to both reflected light rays are opposite and their contributions vanish. Rayleigh considered that a
surface Is rough it ka > 7, that is :

h> A
8 cosf; (2.9)

4

or 8 An interesting discussion of this problem can be found in Beckmann and Spizzichino [38].
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The influence of the wavelength is well described by the equation (2.9). As the wavelength

increases, the surface reflects light more and more like a plane interface, for a given step "h" and ‘

a given angle of incidence 6;.

The same specular behaviour Is observed at grazing incidence { as 8 approaches g ), for a given

wavelength. This can explain the behaviour of the road surface mentioned previously.

: : butions | tace reflect]

The following experiment illustrates again the criterion of Rayleigh : observe, at grazing
incidence, the image of a "white" (colour temperature = 4000°K) tubular fluorescent lamp on a
frosted glass surface (figure 2.12). The reverse side of the sample has been painted in black, to
minimize the influence of transmitted light reflection on it.

fluo tamp
4000°K

_ frosted glass
- black bottom

Figure 2.12 : Experiment showing two contributions in surface reflection.

If the viewing angle and the angle of incidence are close to 90° with respect to the normal N, the
image of the fluorescent lamp is white and sharp. Its colour is identical with the real lamp's
colour. As the viewing direction deviates from the grazing direction, the image of the lamp
gradually vanishes and is surrounded by a halo. Moreover, the colour of the image becomes yello
and then rapidly moves towards red, as the viewing angle decreases.

Balow a-given value of this angle, the image of the lamp disappears, leaving only the white halo.

This experiment can be explained as follows : at grazing Incidence (cos6;j= 0 in 2.9), all
wavelengths are specularly reflected. As 0j decreases, the corrugations of the surface create light
scattering. (leading to the halo) and the intensity of light reflected in the specular direction is
gradually reduced. However, this reduction depends on the wavelength : indeed, following the
Rayleigh's criterion, the first radiations vanishing in the specular direction are the blue ones
(short wavelengths) and, therefore, the colour of the image moves towards the complementary
colour (yellow). As 0 still decreases, only the longer wavelengths are specularly reflected, giving

a reddish image.

The volume reflection cannot be incriminated here, since the body of the glass sample is
fransparent. Thus, there would be two simultaneous contributions to surface reflection :

- avery dirgctional one, which is identical to the contribution of a plane interface. The
intensity associated with this component is reduced, as the amplitude of the surface's
corrugations increases. This reflection creates a sharp image of the source : gne point source

int of the i .
. the other contribution is generally less directional and spread around the specular direction,

creating the halo : here. one point source creates several points in the image

It will be seen in the fourth chapter that the model of Beckmann can take these two components
Into account, since the expression of the reflected intensity will be composed of two terms : one for
the coherent specular reflection, and the other for the incoherent reflected light.

2.3. Summary : spatial distribution of the reflected light

To sum up, light reflection on a plane surface is illustrated by the diagrams of figure 2.13.

The incident light intensity |; creates the specularly reflected intensity Ig : it is generally

achromatic (except for metals), and generates the image of the light source.
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homogeneous material

(non-metallic)

Figure 2.13 : Schematic illustration of the reflection on a plane surface.

If the medium is not homogeneous, a.part of the transmitted intensity is re-emitied as scattered
light (!q), spread in all directions. This scattered light has interacted with the bulk of the

material, and it is generally colored. There is no scattering in the case of metals, since light does
not penetrate enough into the material.

It the surface is rough (fig. 2.14), the following modifications are observed :

. the specularly reflected intensity s is reduced, as the amplitude of the surface’s corrugations
increases. An image of the source is still visible on the surface, if this attenuation is limited;

- part of the reflected light is transformed into surface scattering intensity (lsc ). The angular
spread around the specular direction increases with the amplitude of the corrugations. The
source Is still imaged in the surface of the material, but the image Is not sharp anymore : it
rather appears as a halo.

Furthermore, the influence of roughness depends on the wavelength and on the angle of incidence.

The light beams represented by ls and lsc are generally achromatic for non-metallic materials.
Sometimes, it can be observed that the reflected component I rapidly turns to yeflow, and then to
red, within a very short interval of angles of incidence. However, this behaviour is rather

exceptional.

2.19

Einally, it must be noted that some materials don't have a well-defined surface [8] : for example

a woollen carpet or any material with very rough surface. They will be considered here as a
limiting case of figure 2.14, for which lg and lgc vanish.

’homogeneous material

(non-métallic)

Figure 2.14 : Schematic illustration of the reflection on a rough surface.
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Chapter 3 : Measurement of light reflection

3.1. State of the art
3.1.1. Measured quantities

The measured quantities associated with light reflection on a material are defined in a report
published by the C.I.E. (Commission Internationale de I'Eclairage) in 1977 [15]. In this report,
several possible geometrical configurations to measure these quantities are listed : they will be
described later.

Perhaps the more usual quantity is the reflectance. It is defined as the ratio of the flux reflected
by a material 1o the incident fiux : see the International Lighting Vocabulary [4] I.L.V.,

§ 845-04-58. It depends on the spectral distribution of the incident radiation, on its polarization
state and on its spatial distribution.

In the case of an isotropic diffuse reflection, the reflectance is sufficient to completely describe
the luminous reflection properties of the material. Indeed, the isotropic diffuse reflection is
characterized by the Lambert law, which states that the intensity I, reflected in a direction 6

(figure 3.1) is given by :

Iy (8) = lyo cos 6 (3.1)

where Iy is the intensity reflected in the direction perpendicular to the macroscopic plane
surface.

!
|

Ir ()

Figure 3.1 : Lambert law
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The figure 3.1 illustrates that the element of surface dS receives the element of flux d@j = E dS,
where "E" is the flluminance at dS. The reflected luminous flux can be obtained by integration of
(3.1) over all possible directions of reflection : d®@; =« lro. Applying the definition of the

reflectance p , we have :

_dey  mlro (3.2)
P= do; “EdS

Introducing (3.2) in (3.1) gives :
Iy (e)=°—nE~ cos 6 dS (3.3)

Whatever the origin of the illuminance may be or, in other words, whatever the inciqence of light
in figure 3.1, the reflectance completely defines the spatial distribution of the reflected

intensityl.

Obviously, no material exactly follows the theoretical behaviour expressed by the Lambert law
(cfr. chapter 2). Therefore, other quantities must be defined to describe the reflection on real

materials.

In general, the luminance factor is introduced : it is defined [4] as the ratio of the luminance of a
surface in a given direction to that of a perfect reflecting diffuser identically illuminated.

. . . E
The equation (3.3) states that the luminance of the perfect reflecting diffuser (p=1) is equal to -
It follows that the luminance factor By2 is given by :

"L(eiv¢iverv¢f)
E(0i, ¢i)

Bvi(Bi, ¢i,0r, ¢r) = (3.4)

See figure 3.2 for the definition of the angles of Incidence (6j, ¢i) and the angles of viewing
6r, ¢r).

1 The isotropic diffuser characterized by p=1 is called the perfect reflecting diffuser
(I.L.V. 845-04-54) . .

2 The symbol "p" is more common, but "By" is rather used here to distinguish the luminance
factor from the radiance factor "Be", which is the same quantity not corrected by the
spectral luminous efficiency. "By" is also used here to avold confusion with an angle B which
will be introduced later.

3 No standard french translation

3.3

A surface with a symmetrical texture Is characterized by a luminance factor which only depends
on three angles, since the geometrical configuration is not influenced by ¢ .

k Figure 3.2 : Definition of the angles (6, ¢i, 8¢, ¢r) in a system with axis XYZ attached to the
element of surface dS.

The luminance coefficient "q" (I.L.V. 845-04-70 and 845-04-71) is the quotient of the

_luminance of the surface element dS in the direction ( 6r, ¢r) by its illuminance. It is directly

related to. the luminance factor since, by (3.4), By = n q. This luminance coefficient is mainly
_used In the U.S.A., where it is called the "bi-directional reflectance distribution function
(BRDF)", if the illuminance is produced by a directional incident radiation.

During light reflection measurements, the reflected radiation analysed by the detector has an
_angular extent which is never zero. So, the "luminance factor” and the "luminance coefficient" are
_only theoretical concepts. In practice, what is measured is the "reflectance factor” 3 (R). This is
;;;the ratio of the flux reflected in the directions delimited by a given cone with apex at the surface
 olement and centered on the direction ( 0, ¢r) to the flux reflected in the same directions by a
_perfect reflecting diffuser identically illuminated.

_ It the solid-angle associated with the given cone is close to zero, R is similar to the luminance
‘m;zzif‘actor. If the solid angle is 2r, R is similar to the reflectance.

: see the LL.V. [4], delinition n° 845-04-64
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3.5

it must also be noted that the directions of incidence and viewing can be inverted without changing
ihe value of the measured factor (Helmholtz principle of reciprocity). So, the following equalities
hold : Bv,0/45 = Bv,45/0 and By d/0 = po .

The publication C.I.E. n° 38 [15] describes nine modes of reflection measurement. Among them,

only tour are widely used :

. - the hemispherical/hemispherical moda : the incidence of tight is diffuse (illumination by an Detector

hemisphere with an isotropic luminance) and the reflected flux is encompassing the entire

w hemisphere. The measured quantity Is the reflectance at diffuse incidence (pdif).

; - nmmma]&gnmmg.dﬁ the incidence of light is diffuse and the reflected flux is only

1 encompassing a given cone (), the solid angle of which is to be defined. The measured
quantity is the reflectance factor Rdif/g'-

- the conical/hemispherical mode : the measured quantity is pg, where (g) identifies the cone

containing the incident flux.

- the conical/conical mede : the measured quantity is the reflectance factor Rorg' -

Source

45/0

V-

W
W2
N

The measurement of reflectances (pg o pdif) is generally carried out with the use of an d/d

integrating "Ulbricht" sphere, collecting the reflected flux. Only in particular cases (for example
in the study of standard diffusors [19,29)) is the reflected flux calculated by mathematically
Mt integrating the reflectance factor over all possible directions of reflection.

Y
W

0/45 0/

To measure pg, the sample should be illuminated perpendicularly, and the aperture angle of the  Flgure 3.3 : The most widely used geometrical configurations in the study of light reflection

light beam should be less than 10° [15].

; The measurements in the conical/conical mode are often carried out in the specular direction, to
i measure the regular reflection [15,30). Otherwise, the angles of incidence and viewing are often
45° and 0°, or 0° and 45° respectively. An example of such a measurement is the determination of

1 general, the measurements of reflection properties are carried out In comparison with a
mary or secondary standard of reflection, for which the measured quantity is known. Since
39, the C.LE. has defined the primary standard of reflection as the perfect reflecting diffuser,

hat is an ideal surface which would reflect all the incident flux. This perfect reflecting diffusor
not be realized in practice.

spectral reflection in colorimetry [13].

To sum up, the following geometrical configurations are the most widely used [16] :
45°/normal (noted 45/0)
normal/45° (0/45}
diffuse/normal(d/0)
normal/diffuse(0/d)
diffuse/diffuse(d/d)

fore. the calibration of secondary standards cannot be performed as relative measurements
lrather in an-absolute way. More precisely, the simultaneous measurements of the Iuminance,
sample and its illuminance are necessary : see eq. (3.4). The reader who is interested by
roblem should consult references [16,23,29] for more details.

The first three configurations give a reflectance factor . If the incident and reflected beams are
sufficiently thin (10° following [15]) , the reflectance factor can be considered as a luminance f
factor. The last two configurations give a reflectance.
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ol distibution.of the reflected 1

The quantities measured by the configurations illustrated in figure 3.3 do not completely describe
the spatial distribution of flux reflected by any material. Therefore, the approximation of an
isotropic diffuser is often used, in order to simplify the problem or to allow an easy
standardization of the reflection properies. With this approximation, it is sufficient to measure

3.7

since the development of computers, the conception of lighting softwares results in more and more
finished and sophisticated products. Also in this field, an increasing demand for more general
indicatrices of diffusion is formulated. Indeed, this could lead 1o better simulations, since the
performances of the softwares are now strongly influenced by the accuracy of the data, more than
by the calculation procedure itself.

only one or two quantities of fig. 3.3. Everywhere around the world, goniophotometers are now developed to measure the spatial
distribution of the flux reflected by several materials [8, 19, 21,22,24,28,31]. However, no
_natandardized” apparatus has still been adopted : each of them are conceived and adjusted for a
particular application : the study of reflection standards, metallic materials for luminaires
reflectors ‘and semi-diffusing materials are some examples of treated applications.

For example, the reflectance of paper is measured under diffuse incidence, in-a viewing direction
perpendicular to the sample [15]. Kok and Monard [27] use the same geometry for the
measurements of building materials. Erb [23] is measuring Pv,45/0 and By,dro for several

reflection standards.

This measurement technique is still very new : not only the apparatus, but also the measurement

However, several applications require a more accurate description of the diffusion indicatrix, i.e. .
~ _procedures are not standardized. Nothing else than the general principles of C.LE. publication

the spatial distribution of the reflected intensity or the luminance factor. . i
n°38 [15] is recommended, concerning the specification of angular steps, aperture angles for the

» incident and reflected beams, distance between the s

The study of reflection standards [19,25] has already been mentioned above. Also in road lighting, ;; ource and the sample ...

the international publications have recommended, several years ago, the measurement of the

juminance coefficient of the road, for an angle of viewing of 89° from the normal [12,14]. The .
l ] 3,2, Measurement of the luminance factor in the plane of incidence : principle

standardized representation of this measurement is illustrated in figure 3.4.
3.2.1. Aim of the study
Figure 3.4 : Luminance factor or luminance coefficient (q) of a road sample. The standardized

representation shows the"iso-r" curves (r=104 q cos3y). The sample is placed at (0,0) in the
diagram. The source is placed at (x.y,H) and illuminates the sample under an angle of incidence y.
The angle of viewing Is 89° from the normal. (C.1.E. Publication n° 30-2 [14]).

Our study of mixed reflection started in 1987. At that time, only a few laboratories were equipped
“v\kmh an apparatus which could measure the spatial distribution of the luminance factor. Moreover
_ wa needed an instrument that would be flexible and easily available. So, it was decided to set up our

sH 104 . : ,
? : ' . ‘ \ ' ' ' ' ’ oyvn experimental apparatus, in the dark chamber of the Acoustics and Lighting Department of the
7 60 45 35 25 | University of Liege [21].
~ . ’ 4 i
...’ .. ‘ 10/64/ he measurement apparatus should be simple and classical, at the expense of the number of
7 2% ‘?o 16 “}ssible applications. However, the measurements have been considered accurate enough to
- qpport the modelization of mixed reflection, which was and still is the main objective of our

2T
T particular, the imi
<S " B measurements are limited to the plane of incidence. It will be shown in the
" llowin i i i
' g chapter that this already allows an interesting analysis of the reflection properties of

240 225 240 255 270 285
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From the beginning, we have introduced the spectral dimension, in order to take into account the
influence of the wavelength of the incident light.

3.2.2, Foreword

It has been explained in §3.1.2 that the luminance factor itself will not be measured, but rather
the corresponding refiectance factor .

However, both factors can be considered as equal, since the aperture angles associated with the
incident and viewing beams are small enough (their value will be precised later). So, the
expression "luminance factor” will be kept in the following.

Description of 1 !

The goniophotometric method Is fundamental if the spatial distribution of the luminance factor is
to be determined [16]. So, this method has been adopted and developed.

The following elements are common to all goniophotometric equipments (fig. 3.5) :
- the fight source (8), associated with a possible converging optical system (L);
- the sample of material, the luminance factor of which has to be measured;

. the detector of radiation (R), with its own optical system;

_an instrument to measure the angles of incidence (61, ¢7) and viewing (6r, r).

Figure 3.5 : Principle of the goniophotometric method.

The surface of the sample is considered as macroscopically plane, if the surface roughness is mueh
smaller than the dimensions of the sample, the distance between the source and the material and
also the distance between the sample and the detector.

3.9

_The light rays illuminating the sample should be as parallel as possible (same angle of incidence
a;). This condition is not met in practice, but it is well approximated by :

. enlarging the distance between the source and the sample and/or

. placing a converging lens in front of the source.

The same observations can be formulated for the light beam analysed by the detector.

The light wave reflected by the sample is measured in a direction defined by the angle 8;, which is

_ itself measured from the perpendicular to the macroscopically plane surface. in our measurement

system; the three directions (incidence, perpendicular to the sample, viewing) are situated in the
same plane, which is called the plane of incidence. Therefore, the determination of the angle ¢ is
not necessary. ‘

The measurements are limited to the plane of incidence, for the following reasons :
. first of all, to make the practical realization of the goniophotometer easier and to reduce the

measurement time for a given sample. This is important, since the instrument is not self-
acting : for example, the angles 6; and 6; must be changed manually.

Figure 3.6 : Definition of the aperture angles of the incident (1) and viewing (2) beams.
(C.LE. Publication n° 38 [15] )
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. secondly, the study of light reflection phenomena (see chapter 2) and their mathematical . .
the theoretical variations of the angles 6 and 6y d i in fi i
modelization (see chapter 4) show that most behaviours have their maximum intensity in the ) ) gies S r described in figure 3.5 are given here for a
| f incidence. This is particularly the case for the specular reflection? sample with a symmetrical texture :
1! . . -
piane o P y . from 0° to 90° for the angle of incidence 6;,
. . . . . . from -90° to +90° for the angle of viewing ©r.

The figure 3.5 describes the goniophotometer equipped with a point source and a punctual detector
This is not realized in practice : the geometrical extents of the source and the detector imply that
there are several possible paths from a point P of the sample to the source or the detector (figure
3.6). These different paths are situated in a cone with an extent characterized by the aperture

angle [15] (defined by the angle or half-angle at the apex).

_ However, the angle of incidence is practically limited at 80° by the condition of a constant

illumination on the analysed area. Also, the viewing angle will be limited at 70° or 80°, since the
; analysed surface must be included in the real surface of the sample : it depends in fact on the size
_ of the sample and the aperture angle of the detector. Finally, it must be noted that it is impossible

to measure in the configuration 6; = -0r , when the sample is hi
Also, the surface analysed on the sample is not punctual. The detector can be situated at the apex o o ple Is hidden from the source by the

a cone with a finite aperture, which includes all the "visible" directions and which is generally
delimited by a diaphragm. This cone defines on the sample a finite area, which Is the analysed

detector.

surface (fig. 3.7). ~ Calculat .

R

detector “’:The figure 3.8.a is a plane view of the path followed by the light rays between the sample and the
. detector F. The surface analysed on the sample is located in a plane perpendicular to the figure. At
_ the beginning of the study, the detector was the monochromator of a spectrophotometer (see §3.3)
~~“;‘épd “E" stands for the entrance slit of the monochromator. The maximum dimension of the slit is
_ldcm: this is much smaller than the distance between the sample and the slit (about 1 m).

diaphragm

analysed surface analysed surface

. o
he surface of the sample can be rotated around the vertical axis z , in order to change the

viewing direction. The point E on the sample belongs to this axis and the direction §= is

* sample
Qrizontal.

sample

Figure 3.7 : Modification of the analysed surface on the sample as a function of the viewing angl
he sample is seen from the slit F through a cone with aperture 2w , determined by a circular

diaphragm D. The plane of the macroscopic surface of the sample is defined by two axis : the
.—)

The geometrical extent of this surface grows with the viewing angle oy, if the aperture angle of 5
rizontal axis u and the vertical axis v.

the cone o is kept constant : see figure 3.7.

We have decided to work with a constant aperture angle ® , instead of keeping the analysed surfa ere [s another axis system which is fixed and centered in E : the axis ;) is paraliel to the optical

constant : indeed, this option leads to more simple goniophotometers [26]. However, this also
implies that the sample must be homogeneous. In particular, the illuminated surface should
completely include the analysed surface. This condition will- introduce limitations in the values

the angles of incidence and viewing.

o B . -
Is EF, z is vertical and y is the third axis of the system. The axis 3 can be rotated in the
rizontal plane (xy) : the angle of rotation is noted «.

4 Of course, this observation is true for materials which have a symmetrical texture, i.e.
materials with reflection properties which do not depend on the azimutal angle ¢j .
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dop = | (6p, ¢p, ip) Qp

\

ap = 8¢ cos ap
dp? (3.5)

Figure 3.9 : A viewing direction is defined by the angles 8p and ¢p.

_)
Np is the normal to the sample at P.

‘ -
_ In (3.5), the angles 6p and op define the direction PF from the point P (figure 3.9) and 7p

‘ _symbolizes the influence of the angle of incidence of light at P or, more generally, the spatial
k~-distributi0n of the incident light. dp is the distance between P and F.

Figure 3.8
a) Path followed by the light rays between the sample (hatched surface) and the entrance slit Fo
the monochromator : plane view and axis system
b) Detail of the entrance slit and the solid angle under which it is viewed by the point P of the
sample surface

in the coordinates system (x,y,z), we have :

P(u,v) = (u sin o, u cos o, V)

_)
Np = {cos o, - sin «, 0)

The figure 3.8.b is @ more detailed view of the slit F (area Sy) situated in a plane perpendicular { N
F= (L, 0, 0) et PF = (L-usina, -ucosa, -V (3.6)

—
x . S¢ determines a solid angle Qp with apex at a point P of the sample surface. The luminous flu
dap, leaving P and collected by the slit, can be approximated by the product of the solid angle Qp Which alve :
and the intensily reflected at the center of the beam (eg. 3.5).
dp2 =12 -2 ul sin o+ u2 +v2
Such an approximation supposes that the variation of the intensity and the luminance factor insid
the solid angle Qp can be neglected. Now, the corresponding aperture angle measured at the apex - -
PF.Np  Lcos
C0sBp=—" 5= —y ¢
IPFI INp| P

the cone s smaller than 1°, if we consider the dimensions mentioned above. Therefore, the
following mathematical developments are correct, if the variation of the luminance factor aroun

the viewing direction (+ 0.5°) is not significant. It can be already noted that the procedure is no
—
PF. x L-usina
cosop="5" "= 3.7
IPF| dp (3.7)

valid for highly specular materials |
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3.16
. . . ,
The definition of the luminance factorS can now be applied and the equations (3.5) to (3.7) lead to: A
. S¢ cos ap ) =
ddp = Pe(Bp. P ip) lo cos ép a2 - .
E

N L cos o (L -u sin a) 8

dop = Be(8p, 0p, Tp) lo S dp (3.8)

; i irecti i its surface.
lo is the intensity reflected by the perfect diffuser in the direction perpendicular to its Figure 3,10 ; Polar coordinates system defining the location of a point P on the sample, from the

reference point E.
The total flux entering the slit of the monochromator encompasses the contributions of all

elements of flux d&p, coming from the analysed surface of the sample determined by the cone of _ The emilting surface Sg on the sample is bounded by the curve containing the points P such that

aperture 20 (emitting surface Sg):

o= jjwp (3.9)

Sg

- -
he angle between PFand x must be o (figure 3.8.a) :

F'_, =COS @ (3.12)
|PF]

Doing this, it is assumed that the contribution of every point of the surface Sg to the total flux 4 using (3.7) :

entering the slit of the monochromator can be expressed by the equation (3.5). This is justif'ied b
the fact that the distance dp is much greater that the dimensions of the slit. Applying the definitio

L - R{w) cosy sing
VL2 -2 L R(y) cosy sina + R2(y)

= COS O
of the perfect diffuser gives :

=> R(y) = Lge (3.13)
cosy sino tgw * Vi cos?y sin2a

E
lo = Lo dSp = — dSp (3.10)

where L and Ep are the luminance and the illuminance of a perfect diffuser located at point P and
covering the surface dSp. The element of surface (dSp) can be expressed in polar coordinates by
dSp = p dp dy ( see figure 3.10) .

e solution -V has no physical sense, because there is only one unique positive value R(y), for
comprised between 0 et 2r, In our experimental procedure.

ing on further with the analysis of (3.11), it is assumed that Bg is constant in every point P of
€ mittlng surface. This implies that the sample should be as homogeneous as possible, but also
it the |uminance factor should not depend too much on the incidence and viewing directions
onging to the same incident or measured light bundle. The practical angular extents (in

grees) of both bundles will be precised later. However, we can already mention that the
rimental procedure defined here is not suitable for highly specular materials.

Finally, using (3.9) and (3.10) :

R(yw) )
. E(p.y) p Lcosa (L-p COSY sina) d 3.11)

®= |dy fﬁe(ep,¢p-lp) ro o (L2 - 2 p L cosy sino + p2) 2 P

0

0

3.11), Be( Op , dp , ip ) is then approximated by Be(6 , 1), where 6 is the mean viewing angle

i i i the detector is a
5 the spectral dependence of the luminance factor is here obvuou§, since '
specxro%ehotometer. However, this dependence will not be explicitely stated, in order to keep
the symbolization clear (otherwise, we should have noted Ba(M).

_)
ined by the. direction EF (figure 3.8) and 1 is the mean angle of d'incidence defined by the
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- : . -
direction SE ( S is the location of the source which is supposed to be punctual). So, the following cos o DF X _ L-pcosy sina (3.18)
= 5 = : )
expression can be written : |PF| VL2 - 2L p cosy sina + p?
2 Rw) it will be shown in the following that :
- Syl cosa J‘ E(p,w)p (L -p cosy sina) ., ~
= P - - p (3.14)
CI)"Be(épl) d‘Vo (L2_2p L cosy S|na+p2) 2 0<5<o=24° (3.19)

1!

0
indeed, figure 3.11 represents the dependence of cos 3 on the coordinate p, for a given value of the
angle y. it is shown that the angle & reaches its maximum value for the maximum value of p, that is

-[59(6 , 1) Is not the accurate value of the luminance factor of the sample, for the given angles V ‘
p=R(v) - Applying the definition (3.13) of R(y) in the expression (3.18). gives :

6 and 1, but rather a mean value which effectively approaches the true value fq(d , 1) only if the

iti bove is verified.
second condition expressed a (008 8)miy = 005 (5.20)

The expression (3.14) can be integrated analytically in the case of a uniform illuminance ot the

0S8
sample : 1,0 7 S N WY
0,8-—————— ~ == cosysina >0
2n - =+= cosy sino, <0
; T Ol —
p (L-p cosy sina) msin“o 3.15 08 T :
dy f ; 2y 299 = " cosa (3.15)
L2-2p L cosy sina + p*)
J (L2 -2p Loosy P N L __%
b |
021 —— — — — T~~~
and, finally : 0,0 L v v
0,0 0,5 1,0 plL
® = Bol6 , 1) E Sy sin2e (3.16)

“Flgure 3.11 : Cosinus of the angle § (see text) as a function of the polar coordinates (p,y) of the

If the sample is illuminated by a point source located at distance D, with an intensity |, and under point P belonging to the sample

the angle of incidence 1, we have :

t must be remembered that the angle o is determined by the circular aperture of a diaphragm,
ced between the slit of the monochromator and the sample. An approximate value for @ is given
by the following ( see figure 3.8 ) :

in2
| S¢ sin a)) (3.17)

¢=be(6,i)cosi( v

diaphragm radius __ 1.25 cm
distance diaphragm-slit ~ 30 ¢m

lgo-= = o=24° (3.21)

1.2.5. Unceriainty on the viewing angle

) - ! ) te : if the size of the slit is taken into account, about 0.5° must be added to this value (cfr.§3.2.4).
The angle &2 0, between the direction of the reflected light ray EF (figure 3.8) and the directio

— - . )
of the ray PF, where P belongs to the visible surface Sg , can be written :
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2 6. Uncertainty on the angle of incid

The description of figure 3.8 is recalled in figure 3.12, which also includes the light source S.

yﬂ;

xv

Figure 3.12 : Plane view of the source, the sample and the axis system

_)
We must now calculate the angle ©2 0 between the principal direction of incidence SE and any

direction of incidence SP, with P belonging to the visible surface Sg :

—
SP=(usina-DcosB,uoosa+Dsinﬂ,v)

_)
SE=(-Dcosp,Dsinp,0)

._)
§)PSE D + u sin{B-a)

- - (3.22)
cost= =
|§E>| D VD2 + 2 u D sin(B-a) + u2 + v2

It is remembered that D is the distance between the source S and the point E on the sample.
The minimum value of this function for P(u,v) belonging to the visible surface Sg can be
calculated, which givesS :

0<1<53 (3.23)

6 The upper bound of (3.23) corresponds to the worse situation when there ‘is no lens between
the light source and the sample. Indeed, it can be understood that a converging lens reduces

the divergence of the incident light bundle.

k petalled calculations are presented in appendix 3.1.

4.3. Description of the equipment

{ was first intended to measure the spectral radiance factor and to analyse the influence of the
wavelength on the reflection properties of a material. Therefore, the detector must be a
speclrophotometer, i.e. a monochromator followed by a photomultiplier and a measuring
nstrument. 'We used the spectrophotometer Zeiss PMQII, equipped with the monochromator

-~ m4qlll.

_ The light source is an incandescent lamp (Philips "cinema”,110V, 500W, E27, TYP-375E). It is
k\ supplied with- stabilized 220V, followed by a 220V/110V transformer . The stabilization
arantees the constancy of the luminous intensity |, emitted by the source in the direction of the
mple (see"eq. 3.17). The power supply of the source itself can be adjusted by a potentiometer,
petween 0 and 110V.

ich a powerful source is necessary, since the minimum luminous intensity required to carry out
e spectral measurements is high. Indeed, the radiant fluxes measured by the spectrophotometer
narrow wavelength bands (5nm) are very weak. This requires a high amplification of the
photoelectric current. However, a too high electric amplification leads to the instability of the
measured value-[34]. So, it is interesting to provide enough light from the source in.order to keep
e measured flux within reasonable limits.

plano-convex lens can be added to the lamp, in order to enhance its luminous intensity in the

tion of the sample, and also to enhance the parallelism of the incident light rays. However,
this last property of the lens is difficult to obtain, because the light source is not punctual. lts

mensions cannot be neglected, if they are compared with the focal distance of the lens (9 cm,

erture 6 cm).

e lens is also interesting, since it reduces the unwanted radiations created by the fight
lections on objects situated in the vicinity of the sample : see figure 3.13.

must finally be mentioned that the measurements are carried out in-a dark room, again to
ce the influence of unwanted radiations.
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unwanted flux

tical (see equation 3.13), the more stretched as |o| grows. This is illustrated by the picture
which is obtained by lighting the exit slit of the monochromator and, so, forcing the light
ys to follow the opposite path, from the detector R to the sample E.

unwanted flux

effective flux

unwanted flux

- i T l
= =
i Y = perator

Figure 3.13 : Comparison of the incident light beam without and with lens.

The figure 3.14 shows the arrangement of the measuring apparatus. The viewing direction has
been fixed, since the detector (R) is composed of a heavy and clumsy equipment. On the contrary
the sample (E) and the source (S) can be rotated around the same vertical axis passing through

point E.

The light source (S) and its lens (L) are located at the end of a rotating arm of 1.47 m (fig.3.15).
The rotation of this arm around the vertical axis passing through E is represenied by the angle p

Measuring apparatus of the spectro

which can be practically adjusted between 5 and 180 degrees.

Figure 3.14 : Arrangement of the measuring instruments : plane view

The sample is fixed on a carriage of the optical bench, at the same height than the source, that is
1.295 m above the floor (height of the filament). The bench is associated with the viewing
direction. Therefore, the surface of the sample is vertical and the plane of incidence is horizontal.

The luminous radiation reflected by the sample in the horizontal direction parallel to the optical
bench is deviated at right angle by a mirror M (6 cm X 4.cm) and sent to the monochromator R.

5( ) sample
bench

A R Y

This compact arrangement allows the operator to easily access the sample and the measuring
display of the spectrophotometer (fig. 3.14), without making useless movements. The operator is
also able to move around the sample without influencing the measured radiation.

SiXe uoiyeyod

g
q
ek

The circular aperture of the diaphragm D (diameter 26 mm) Is placed in the path of the light rays
and limits the reflected light bundle analysed by the monochromator. The rotation of the sample
around the vertical axis in E is represented by the angle a. The area of the sample viewed by the
monochromator through the aperture D is circular and centered in E, if the sample is
perpendicular to the optical bench (o= 0 in figure 3.14). If a0, this area becomes nearly

Figure 3.15 : lustration of the source S on its rotating arm and of the sample on its carriage.
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The distance between the diaphragm D and the entrance slit of the monochromator (passing
through the mirror) is approximately 30 cm. Therefore, the length of the light path between the
sample and the entrance slit was comprised between 92 and 99 cm during the experiments.

- the illuminance of the sample must not be uniform;

the abolute value of the luminance factor Bg is derived;

A pointer attached to the sample holder directly indicates the value of the angle o on a protractor,
To measure the angle B, several discrete locations of the rotating arm (every 10° step between

the procedure is too tedlous : indeed, to insure the stability of the light source and the
B =10° and § =160°) have been marked on the floor, using a mirror on the sample holder [21].

detector, both measurements of @ and ®o; must be made within a short interval of time. So,

for each configuration (6,1), substitution of both samples would be necessary;
Several adjustments were necessary before starting the measurements. The adjustment procedure

is detailed in reference [21]. To sum up, the two following operations must be done : put, most of all, this procedure requires a reference sample for which the luminance factor

pe re1((),?) is known, for each angle of incidence 1, each angle of viewing 8, and each

- to guide the light beam analysed by the monochromator in an horizontal direction, parallel to wavelength if the measurements are to be carried out in the spectral domain.
the optical bench;
- to adjust the zero position for the o and B graduations. Since such a reference sample is not available, the following method has been preferred.

it is also noted that some opaque screens must be added to the arrangement of figure 3.14, in ordet
to: 3.4.2. Relative method of comparison
. avoid the direct illumination of the entrance slit of the monochromator, the mirror M or the ‘

diaphragm D.

The reference is here the luminance factor of the tested sample itself, at specific values of the
- reduce the unwanted radiations reaching the surfaces located around the sample : such

hgles of viewing and incidence, respectively 6yof and fyef.
surfaces are the monochromator box and the measuring instrument of the spectrophotometer,

The measured flux has been expreséed as (38.17) :

3.4. Determination of the luminance factor? . . N
D + Be(d, 1) cos i

Substituti thod .
®rof + Bo(Oraf , Tref) COS Tref
A reference sample with known luminance factor is used in the same conditions as the tested

T W - R cos i 13
sample (same angles T and &). It follows, from (3.14), that : Bel(6 ,1) = Be(bref . iref) *—c‘ég‘tf—f (m) (3.25)

- N . L)
Be(d0, 1) = Bg (o0, 1 Oref (3.24) The value of the luminance factor is again obtained with two flux measurements (& and ®ref). The

relative distribution of the luminance factor is now determined in the plane of incidence. This

. qistribulion is relative because the factor -ﬁe(érgf , fref) is of course unknown. However, this
aclor can be measured by the comparison with a reference sample, in one of the standard
geometrical configurations described in figure 3.3. For example, the configuration iref = 45° and
. Braf = 0° can be chosen.

The quotient of both readings, multiplied by the reference luminance factor, gives be.

7 More precisely, we should talk about the spectral radiance fagtor, since the detector is a
spectrophotometer. The reader can easlly distinguish both quantities by the context. See also
footnotes 2 and 5 of this chapter.
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Another requirement is that the illuminance of the sample has to be uniformly distributed on its

3.25
~ adjusting the value 100% of the flux on the measuring apparatus : this value corresponds to a

surface, if the expression of the flux (3.17) is to be used. given reference position of the source and the detector;

Moreover, the proportional relation (3.25) is valid if the light source intensity (I} is kept
constant during the procedure, a condition which is not rigorously met in practice. This is also
true for the detector stability. Therefore, it is preferable to write the following expression,
where "K" is the "stability factor" :

wmmmammmm : the angle B (figure 3.14) is fixed between 10°

and 150°, by 10° steps;

orienting the sample: at each angle B , the value of the reflected flux is determined (in
percents), for the angle o varying between -70° and +70°, by 10° steps. Remember that this
angle is limited, by the condition that the visible surface must be kept included in the real

- N - N cos f )
Be(6 ., 1) = K Bolbref . fref) —cogi '(—) (3.26)
surface of the sample;

cos i |Dref

The error of taking K=1 will be analysed later. B
if an absolute measurement. is wanted, the factor Be(Oref , fref) must be determined (see

3.25);
3.4.3, Summary of the formulated hypothesis

1) Itis assumed that the contribution of every point of the visible surface Sg to the total flux ,
e lower and upper bounds of the angle o must now be precised, for a given value of the angle .

First, the incident light should always come from the same side of the normal. This is illustrated
in figure 3.12 : it has been decided that the light should always come from the negative values of
"y, which implies that § 2 a.

entering the slit of the monochromator can be expressed by the equation (3.5).

2) The luminance factor is approximately constant in the vicinity of the given viewing direction
and of the specified direction of incidence. The angular interval to be considered is 2.4 degress

around the viewing direction and less than 5.3 degrees around the direction of incidence.
Moreover, the light source must always illuminate the same face of the sample, which leads to

Moreover, the sampie must be quite homogeneous, meanin that- is approximately constant a
P 4 9 g Po PP y (B - o) < 90°. So, the lower and upper bounds for the angle o are :

on its surface.

o _ B - 80° < a < min(B,70°)
3) The sample is uniformly illuminated for the relative method of comparison.

' 10° < B < 150° (3.27)
4) The light source and the photoelectric detector are stable during all the measurement

procedure corresponding to the method of comparison. The figure 3.16 llustratres the domain of the possible values of the viewing angle 6 (also noted 6,

at the beginning of this chapter) and incidence angle 7 (= 6;). Respecting the sign conventions

. ntroduced in figures 3.5 and 3.12, the following relations have been applied to derive fig. 3.16 :
3.4.4, Measurement procedure In practice

) stanling configuration parameters : these are the electric power supply of the source (V), the
wavelength adjusted at the monochromator and the width of the entrance slit. In most
situations, the entrance slit is fixed at 0.15mm. Therefore, the resulting bandwiths are the
following : 3 nm at 400 nm, 6 nm at 500 nm, 10 nm at 600 nm and 14 nm at 700 nm [34].

T=08{=p-a (3.28)
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The hatched domain cofresponds in practice to the configurations where the sample is obscured by

ire 317 : Spectral radiance factor Be (%) of y j
the detector. Within the greyish zone, the luminance factor is obtained by applying the Helmholtz g P Pe (%) of a sample of agglomerated wood, as a function of

Sinciple of reciprociy: o viewing angle 6 (in degrees). The relative intensily (I= Be cosd) Is represented on the right,
The curves correspond to measurements at the following wavelengths :

- - 450 ——), 500 ) 600 N (e .
506 = 0, 1= 8) = Bald = -0, 1= -0) (3.29) ; 450 nm (-—-) nm (---), 550 nm (. ), 600 nm\ (-++), 650 nm (—-).

By ’\S‘o

+70

Figure 3.16 : Domain of the possible values of the viewing angle 6 and the angle of incidence i
(degrees) in the plane of incidence (see text).

The sample has the following dimensions : 25.3 cm X 19 cm. its spectral radiance factor has been
determined by the procedure described above. The results at five wavelengths are illustrated in

480 nm

figure 3.17.

e

-~
<]

For an angle of incidence of 10°, it can be seen that the measured spectral radiance factor is gta
approximately constant at alf viewing angles (deviation : + 20% at 450 nm and + 10% at

650 nm). However, a specular behaviour clearly appears for an angle of incidence of 80°.

Under 10° incidence, the relative spectral distribution of the radiance factor Be is

i
12 20 3B 48 68 88 78

18 228 38 48 €@

approximately the same at all viewing angles. This is illustrated in table 3.1, where the arbifra

value 100 has been atiributed to the radiance factor -Be at 550 nm. So, the hue and saturation of
the material colour do not depend on the viewing direction, since both colour attributes are relate
1o the relative spectrum of the reflected tight. However, the luminance, which represents the
third dimension of colour, is somewhat greater at positive viewing angles (forward scattering)

than at negative angles.

i

~7% -88 -G8 -<48 -38 -28 -8 @
A

-8 -GR BB -48 .30 -28 <10 ©
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Two measurements have been performed on the same sample of agglomerated wood : the first

wavelength A(nm) measurement with a lens placed in front of the source, and the second measurement without lens.

6 (degrees)] 450 500 550 600 650 The relative deviations between the results of both measurements hardly exceed 2 percents. It is
Hown in reference [21] that the deviations greater than 2 percents are probably due to unwanted
-70 60 80 100 118 142 radiations, which are significant in the measurements without lens (reflections on the surfaces
-40 57 78 100 118 136 ocated around the sample).
0 64 80 100 119 134 ‘
+10 65 81 100 119 134 : Note : The lens must be so orlented that the sample (or, at least, its visible surface) is
+40 65 81 100 117 133 illuminated as uniformly as possible.
+70 68 85 100 115 134
Under 80° incidence, a strong tendency to the equalization of the reflection spectrum clearly 34,7, Influence of the polarization of the detected light

appears in the specular direction (see 6=70° in table 3.2). Indeed, the surface reflection ;
predominates in this case. So, the reflection tends to be achromatic for non-metallic material, The monochromator can introduce an influence of the polarization of the detected light on the
measurement results. This influence can be comprised between 10 and 40 percents [17,30]. Of
course, the light emitted by the incandescent lamp in our apparatus is not significantly polarized.
But, polarization may appear after "surface” reflection (see figure 2.4). Therefore, the
polarization state of the reflected light will depend on the angles of incidence and viewing. As a

consequence, the total transmittance of the monochromator will also depend on both angles.

Note : the reference value which has been used to transform relative measurements into
absolute measurements (see. § 3.4.2) is the spectral radiance factor B o.d /A(X) .

This factor has been determined in a previous study [20] with the apparatus RA3 o
the Zeiss spectrophotometer [34], by comparison with a white reference sample o

diffuse reflection (Zeiss n°20011). In order 10 analyse this Influence of polarization, a polarization filter (fig. 3.18) has been

ntroduced in the detected light beam, after reflection on the wood sample. The filter is
perpendicular to the analysed light rays. The monachromator is tuned on the wavelength 600 nm.

L Polarization Filter Type 10 K 03 6320
Y Suitable for Stress/Strain Optics, for laboratory and/or
6 teaching purposes.
wavelength A(nm) 5 N Lo AT Middle range transmission for white light =~ 33%.
3 \ /’ Total transmission for 2 filters with axes of polarization
6 (degrees)] 450 500 550 600 650 _54 parallel > 20%.
g3 \ Total transmission for 2 filters with axes of polarization
2 \ perpendicular, 0.002%.
18 133 Damping power: less than 1:10,000.
-70 67 84 100 1 ! | 2 Polarization, more than 99.99%. _
-40 61 83 100 118 143 353300 350 900 920 500 550 600 ;hfrrpal lLoad rina\ix. =~ 72°(d3 at cr:)ntlmuous service.
137 wavelongth » (om) olarizat on axis is marke at t 8 Tl m. o
0 62 81 100 120 Mounted in rotational holder with scale in 1° divisions,
+30 67 86 100 113 128 @ 78 mm aperture.
00 110 117 , L )
+50 74 88 ! Figure 3.18 : Polarization filter used for the test
+70 84 97 100 104 114
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The measured fluxes corresponding to B=110° and several polarization filter orientations are

presented in table 3.3. The amplification of the spectrophotometer is kept constant for all M/Mr

=110°
measurements8. The polarization filter s circular and can be rotated in its plane, around the B
optical axis. Its orientation is indicated by the angle & , between a reference direqlion drawn on the 1,7
filter and the direction perpendicular to the plane of incidence (fig. 3.19). s ==
T o

N
.

g+ 5-90°
L\1‘-.- §=270°

P & without filter

1,3

sample

reference direction

1,1

& 3=135°

0,9 +—## ; === 5315°

I 44 ¥ ¥ L] T 1
30 40 50 60 70
a ()

detected radiation
(optical axis)

polarization
filter

lgure 3.20 : Ratio between the flux M reflected by the sample and measured with polarization
iiter,- and the reference flux My, corresponding to an orientation of the filter §=0° (all other

Figure 3.19 ; Definition of the angle & describing the orientation of the polarization filter. parameters of the measurement being the same).

The ratios between the detected fluxes and their reference flux, corresponding to an orientation of
he polarization filter 8=0°, are shown in figure 3.20. The following observations can be made :

the:influence of the polarization filter orientation on the measured flux can be significant :
deviations up to 50% are observed in the detected flux values, for a given value of the viewing
Filter orientation Viewing angle o (degrees) ] angle o;
8 (degrees) 70 60 50 40 80 this ‘influence is particularly important between 50° and 60° (B=110°) : these geometrical
__conditions correspond to the direction of specular reflection;
0 100 95 71 43 20 two symmetrical orientations of the polarization filter (5 shifted by 180°) lead
45 137 154 111 56 25 approximately to the same results. The small differences can be attributed to the
90 127 137 98 52 23 measurements errors;
135 97 90 67 42 20 the measurement results obtained "without filter" are very close to the average value of two
5 225 137 152 108 56 25 fluxes, measured for two filter orlentations shifted by 90° from one another.
270 124 134 97 52 24
315 97 88 66 41 20 This last observation is very important. Indeed, it is known that the average value obtained for
wo perpendicular directions of vibration gives the luminance factor for natural incident light
WITHOUT FILTER 117 121 87 49 2LI 19,30]. In the above example, this means that the measurements executed "without filter" can

pproximate this luminance factor with an error less than 5%. The maximum deviation is
8Except for the results obtained "without filter”, for which the relative values have been

adjusted to match the average flux, calculated for all filter orlentations, and corresponding
to 0=30° and 40°. Indeed, it is at these angles that the influence of polarization must be
minimum.

blained in the direction of specular reflection, where the influence of polarization is the most
ignificant.
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o plane of incidence. In the same manner, the instabllity of the spectrophotometer can be
pressed by an uncertainty of 0.5%. Better resuits are obtained if the detector is periodically
fibrated during a complete measurement of the diffusion indicatrix.

At non-grazing incidences, the surface reflection of the agglomerated woed sample is weaker and
the Influence of polarization vanishes (fig. 3.21, p=10°) : in this figure, it is seen that the
deviations induced by the orientation of the polarization filter are less than 3%.

is concluded that the total instability error (lamp-+detector) is about 1% on the measurement

M/Mr ﬁ =10°
1,10
] fue 1 ted radiati
1,06 it the incident light beam is focused by a lens during the measurements, the unwanted radiations
7 o {reﬂecﬁons,...) have a negligible influence (< 0.5% detected for 100% incident light, o=0°,
1,02 j zz;zo 2=550nm, entrance slit= 0.15mm ). Without lens, their influence becomes significant, even if
0'93q -4 3=135° screening is used outside the optical axis : up to 3% are detected for 100% incident light in o=0°,
o Light reflections on the walls and the light grey floor of the dark chamber are amplified with an
0,94 unfocused light beam and are mainly responsible for this error,
0,90
-80 -60 -40 -20 0 20 40 60 80

About 1% for most measurement configurations. This error can reach 5% in the specular viewing
direction, when the surface reflection contribution is significant. This is particularly the case at
razing incidences, i.e. for p > 110° (see §3.4.7).

a ()

Figure 3.21: Ratio between the flux M reflected by the sample and measured with polarization
filter, and the reference flux My, corresponding to an orientation of the filter 5=0° (all other

The polarization errors can be avoided by taking iwo measurements at each angle of incidence and
_ aach angle of viewing : these two measuremenis must be performed with a polarization filter

rlented in two perpendicular directions of polarization. However, this increases the duration of
the total measurement procedure.

parameters of the measurement being the same).

Comment ; these arguments are based on flux measurements. However, the equation (3.26) shows
that the luminance factor Is proportional to the quotient of two detected fluxes, namely
the one corresponding to the given angles of incidence and viewing, and a reference
flux. It would be wise to define this reference flux for incidence and viewing directions
not corresponding 1o specular reflection, in order 1o avoid polarization influence on

+) reading errors® on the angles o and §

_ Assume that the graduation 0° has been accurately determined on each angular scale.
this reference value. Once this decision has been adopted, the above arguments directly  The value of the angle o is read with an uncertainty of about 0.2°. This implies a relative error on
the measured flux comprised between 0.3% and 1%, for the wood sample and B=10°. The greatest
arrors (1%) are observed for the less significant values of flux, corresponding to a "negative"
(backward) grazing viewing direction which is close to the direction of incidence.

apply to the luminance factor measurements.

3.4.8, Measurements errors

For B = 110°, this error can reach 3%, if the angle of incidence is greater than 60°, and 4% if

The main sources of errors are the following : B =140°.

. nstabilit

The lamp must reach its stable working conditions. Then, it has been observed that the luminous

9 These errors must be distinguished from the uncertainties on the angles & and 1 (§3.2.5 and

intensity slightly fluctuates (+0.5)% during a complete measurement of all reflected fluxes in 7 3.2.6) .
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The angular graduation for f has been built from the graduation for a, replacing the sample by a

torefore, the following estimations are obtained, by adding the instabilities errors (1% on K),
plane mirror [21]. So, the above-mentioned errors must be doubled to take into account the ‘

1
arroron ( cost ?) and the errors on the fluxes ® and ®yef (2.6% because 1<60°) 11 ;
uncertainty on the angle B.

7% for 1 < 60°
10% for
20% for

To sum up, the uncertainty on the readings of o and B leads to errors of about 0.6% on the
measured flux, if the angle of incidence is less than 60°. Otherwise, the same error can reach 2%
outside the specular viewing direction, and 8% in the vicinity of this direction!0, Of course, these
conclusions depend on the type of material analysed , and particularly on its specular behaviour,

2 60°, outside the specular direction
2 60°, in the specular direction

—_ =

ese are of course upper bounds for the measurement errors, which are hardly encountered in
ctical situations. However, they clearly point out the interest of measuring the angles as
ccurately as possible.

Therefore, the measurement procedure proposed here is not convenient for the determination of
the regular reflection, but well for the mixed luminous reflection.

+)_spegtrophotometer error

Only few information on this error can be obtained from the constructor of the PMQII [34]. An
error of about 0.3% is mentioned for a transmission measurement. Moreover, errors due to stray
light inside the monochromator are less than 0.2%. An error of 0.6% has been adopted here (the 3,51, Principle of the measurement

polarization errors are not included in this contribution : see above).

5. Measurements with a luminancemeter

n figure 3.14, the spectrophotometer is replaced by a luminancemeter which is situated directly
fong the axis of the optical bench (no deviation of the reflected light beam by a mirror in this

In conclusion, the total uncertainty on the measured flux is less than 2.6%, if the angle of ase). The luminancemeter is a Photo Research Spectra Spotmeter 1500-01.

incidence is less than 60°. Otherwise, this error can reach 14% in the specular direction of
he measurement with the luminancemeter, equipped with a photopic V(1) filter, gives the

istribution of the luminance L(6,1). The light intensity emitted by the source is again kept
constant. This luminance represents in fact the mean value taken on the visible surface Sg of the

viewing.

We can now evaluate the maximum error on the luminance (radiance) factor. First remember its
sample, which is seen through the optical aperture of the apparatus (1°). As the illuminance of

he sample is proportional to the cosine of the angle of incidence 1, an expression similar to
3.17) is obtained :

expression (3.26) :

- . e . cos | @
Pold ) = K BolOret . ol “gog't (arer)

K=1 (3.26)

LB, + Buld , 1) cos i (3.30)

L . . The measurement of a reference value By (6 » fref) is nece i i
The uncertainty on the angle of incidence 1 = B -  (eq. 3.28) is about 0.4° (0.2° on & and ). Bu(Oref . fre) | ssary to determine the proportion

1 actor ‘in' (3.30), which gives :
This leads to an error on the factor( cos i) of 0% in i=0 , 1% in 1=60° and 4% in 1=80°, '
P . ©os Tref /L(6,1)
B .= Bulbror ol "ot (L) (3.31)

10 These evaluations have been confirmed by the analysis of the reproducibility of the U The uncertainty on ( Be(dref , fref) cos 7r91) should also be added : it depends on

measured values on the agglomerated wood sample [21]. the measuring instrument used to determine this valus,
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The determination of —ﬂv(éref , Tref) is carried out by an illuminance measurement E(iref) in sacondly, if the angle of incidence is kept constant, the luminance factor decreases at grazing

the reference direction of incidence fref (the illuminance meter is a "Spectra® Photometer
/Radiometer, Model 301"). So, (3.31) becomes :

_ylewing directions.

{h phenomena are furthermore bound by the Helmholtz principle of reciprocity.

o6, 1) = o oS Tref (M) (3.32)
cos T \E(irer) < therefore not accurate to simply modelize this keramics sample by a uniform diffusor outside

; specular zone of reflection. This problem will be analysed more intensively in the next
The uncertainty on the viewing angle is now w=1° (instead of 2.4° in § 3.2.5) and the uncertainly apler. in particular, it will be seen that the increase of the surface reflection intensities at
ilng incidences implies an attenuation of the light "re-emitted" by the bulk heterogeneities of

y material.

on the incidence angle is only 2°, instead of 5.3° (Appendix 3.1).

The following amendments must be made to the study of § 3.4.8 , concerning the measurement

errors Luminance factor

—
]

- the detector is not influenced by the polarization of the incident light [32];

- the accuracy of the illuminance measurement influences the error on the luminance factor
(see eq. 3.32);
- the most important errors coming from the angular readings are unchanged.

g¢é

3.5.2 EQQ!'QEYIQD . measurement on a tunnel wall sampla

This measurement has been undertaken within the activities of the C.1.E. Technical Committee TC
4-24. It should be examined if a keramics wall tile could be considered as a uniform diffusor,
verifying the Lambert law, or not.

-0 -70 -50 -30 -10 10 30 50 70 90
viewing angle (degrees)

The keramics sample is not a favourable one for our measurement procedure, since It already Flgure 3.22 : Luminance factor of a tunnel wall keramics. The measurement resulls are presented

shows a specular behaviour from an angle of incidence of 20°. here for three angles of incidence : i= 0°, 50° et 80",

he measurements performed on this keramics sample can inform us about the reproducibility of
_the results obtained. In the following are compared two luminance factors measurements of the
ame surface aimed on the sample, the second measurement being operated four hours after the
irst one. The deviations observed between both measurements only come from the instability of
he light source and from the angular errors (see § 3.4.8).

The measurement results in the plane of incidence are presented in figure 3.22. A (nearly)
lambertian behaviour (constant luminance factor) is observed outside an angular zone of about
20° around the specular direction. Within this zone, the luminance factor reaches very high
values. However, two additional deviations from the Lambert law can be found :

- firstly, the mean luminance factor In the "diffuse” zone decreases at grazing incidences. It is
Qutside the specular viewing direction, the mean deviation between both measurements is 1.8%

nearly constant until an incidence of 60° ( bv = 0.75), and then continuously decreases unti
for an angle of incidence T = 0° and 4.3% for 1 = 80° : see figure 3.23.

( By = 0.6) at 80°%
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deviations (percents) tunnel wall keramics pendix 3.1. Uncertainty on the angle of incidence
40
minimum of the following function must be found (see eq. 3.22) :

30

. mean

B maximum D+ usi

n{B-o
CoS T = Bo) (3.A1)

VD2 + 2 u D sin(p-o) + u2 + v2

nong all points P(u,v) belonging to the visible surface Sg of the sample, which is seen through
10 slit of the monochromator.

o} 10 20 30 40 50 60 70 80
Incidence angle (degrees)

u s kept constant, (cos 7) is minimum for the maximum value of v (cfr. 3.A1), i.e. for the
t P situated at the periphery of the surface Sg :

Figure 3.23 : Relative deviations observed between two luminance factor measurements of the
same keramics sample.

cos T2 D+ usin(f-a)
VD2 + 2 u D sin(p-a) + R2(y)

(3.A2)

This observation confirms the conclusion of § 3.4.8 which states that the angular errors tend to
increase with the angle of incidence. Besides the configuration (1=80°, 6=70°) for which the
deviation is 32%, all other deviations are less than 10%. They are even less than 5% for

incidences up to 40° (see fig. 3.23) : this corresponds to the estimations given in § 3.4.8, if we
take into account the unfavourable character of this particular sample.

() must then be expressed as a function of u. Equation (3.13) gives :

Ltg o

. (3.A83)
sin o tg o + V cos2a + tg2y

u = R{y)cosy =

he positive sign (just before the square root) corresponds to (cos y > 0), whereas the negative
gn corresponds to (cos y < 0). Applying (3.A3) gives:

+uVeos2a +1g%y = Ligw-usinoiga

This unfavourable character is also illustrated by the deviations observed in the specular ,
direction, which are comprised between 5% and 18%. Remember that these deviations are mamly
due to the steep gradient of the luminance factor and its significant influence on the angular

errors.
COSZ\V=1+:2 = X m 1 2
Another measurement has been performed to test the influence of the situation of the surface oy 1 220 _u: 8in o) - cos2a
aimed on the sample. The mean deviations then rise to 3% (for i=0°) and 6.5% (i=80°), outside
the specular direction. if these values are compared with those illustrated in figure 3.23 (from 2 u2 .
e ' ‘ R2(y) = —5— = u2 sin?a + 1920 (L - u sin a)? (3.A4)
1.8% to 4.3%), it is concluded that a difference of about 2% can be attributed to the non- cos<y

uniformity of the surface of the sample.
pplying (3.A4) in (3.A2) leads to a function of one variable (u). The roots of the first derivative
e given by :

u (D (sinZ(a - ) - sin2q ) - sina tg2e (L sin(p - @) + D sina))

+ L tg20 (L sin( - o) + D sina) = 0 (3.A5)
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Table 3.A.1 ;
Plywood sample, The reference value 100 corresponds 1o By,do/0 =0.391.

If the factor of u (within brackets) is positive, the minimum value of (cos t) corresponds to the‘
solution of (3.A 5). Otherwise, the minimum of (cos 1) is, either in (“=Hw=o)" or in
(u=-Rw=n).

LUMINANCE FACTOR
With D = 1.5m, L = 1m and o = 2.4° (see §3.3 ), we have : obs/inc 0 10 20 30 40 50 60 70 80

=70.0 98.1 93.1 90.1 90.3 92.7 97.2 106.,0%*%%*k* 1381

(cosT)min = 0.996 , L.e. Tmax = 5.3°, for a=70° and p=80°, it |a| <70% 260.0 99.6 92.6 88,7 90.0 91,1 94,7kkrxkx  106.0 117.7
— i - - ~90° _50.0 98.9 92.3 89,7 89.2 90.9%*%xx*xx 94,7 97,2 107.1
{cost)min = 0.978 , i.e. Tmax = 12.2°, for a=80° and $=90°, if o] <80°, 73000 1000 951 90.4  90.axkmesxx  90.9  91.1 92,7 100.7

-30.0 105.4 97.0 93, 9%wkdkAw 90.4 89.2 90.0 90.3 96.9
~20.0 112.4 105.3%*k#kk* 93.9 90.4 89.7 88.7 90.1 96.3
-10.0 128, 3*%***kk%x  105,3 97.0 - 95.1 92.3 92.6 93.1 96.3
LOQxwxxxxx 128,33 112.4 105.4 100.0 98.9 99.6 98.1 100.7
10.0 122.3 136.1 127.0 116.1 111.3 109.9 108.2 106.9 114.3
20.0 107.4 122.,3 137.6 133.9 127.8 124.4 123.1 125.0 131.3
30,0 100.7 109.8 128.8 151.4 150.2 146.1 149.3 149.0 150.0
40.0 94,4 104.7 120.8 144.6 173.5 179.8 180.7 181.0 186.4
50.0 92.7 102.4 118.0 139.8 171.9 218.7 224.8 233.1 245.9
60.0 91,8 101.5 117.0 137.0 171.2 220.9 305.0 332.9 375.5
70.0 91.0 100.7 113.7 136.4 169.6 219.6 321.3 569.9 744.9

The aperture angle o is 1° instead 2.4° in the case of a luminancemeter (see §3.5). So, the
minimum values become :

(cost)min = 0.999 , i.e. Tmax = 2.0°, for a=70° and B=70°, if jo| <70°;
(COST)min = 0.997 , i.e. Tmax = 4.3°, for @=80° and B=80°, if Ja| <80°.

Appendix 3.2, Measurement results for several material samples

Jable 3.A2.
These measurements have been performed with the luminancemeter as detector. The results are 2
presented below as luminance factor relative values (in comparison with the luminance factor Bv,400 =0.887.
Bv,40/0 . corresponding to the angle of incidence "inc"=40° and to the angle of viewing "obs"=0¢),
The reference valiue for this factor has been fixed arbitrarily to By 400 = 100. LUMINANCE FACTOR
obs/inc 0 10 20 30 40 50 60 70 80

The absolute value of the luminance factor By,40/0 has been indicated within the caption of each

table. =70.0 93.9 93.8 92.6 91.4 92.2 93.1  93,3%kxxwx%x 101,9

-60.0 97.4 95.9  93.7 94.5 93.3 92, TkwEkkhk 93.3 98.7
=50.0 99.4 96.6 97.0 94.1 94, 1*wwxkknk 92.7 93.1 95.8
-40.0 100.0 99.3 96,9 96, 6x*wknkx 94.1 93.3 92,2 93.9
~30.0 104.3 101.6 99, 7H#**kkkk 96.6 94.1 94.5 91.4 94.9
-20.0 106.3 103, 7#%k&ukx 99.7 96.9 97.0 93.7 92.6 90.2
-10.0 108.9%***%*x 103,7 101.6 99.3 96.6 95.9 93.8 91.9
LQ#x*xx%kxk 108,9 106.3 104.3 100.0 99.4 97.4 93.9 88.4
10.0 108.1 111.9 110.2 105.2 104.5 103.1 99.0 96.1 104.2
20.0 105.4 110.8 111.9 111.9 109.7 106.4 103.3 109.2 107.9
30.0 102.8 103.5 111.9 117.1 115.2 113.8 117.8 117.8 119.4
40.0 97.5 103.0 108.8 114.7 125,5 132.3 131.5 134.1 139.0
50.0 96.4 101i.1 104.6 113.2 131.0 151.6 159.0 165.3 182.7
60.0 94,3 96.6 102.9 115.3 129.7 158.6 209.7 244.8 291.3
70.0 89.5 93.9 101.5 111.6 129.7 161.5 241.4 447.2 698.2

An exception is the keramics sample, for which the absolute luminance factors are directly given,
in percents. Moreover, the angle of viewing is extended up to 80° for this sample.

The symbols " ***** " indicate that the measurement is not possible in this configuration of
source and receptor : this is the case in the direction of retroreflection, or when the luminance of
the image source in the specular direction is too high.
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Jable 3.A3 ;
_ Table 3.A5 :
Opaline glass sample, The reference value 100 corresponds to By 40/0 =0.415,
Q_Bv,40/0 =0.934,
LUMINANGE FAGTOR LUMINANCE FACTOR
obs/inc 0 10 20 30 40 50 -60 70 80
obs/inc 0 10 20 30 40 50 60 70 80
-70.0 85.6 90.8 89,0 83.8 89,0 89.4 86.4kwkxkwk 58,2
_60.0 99.2 96.8 95.3 96.6 98,7 97.8%%xkxxx 86,4  64.0 _70.0 84.1 88.7 86.5 89.1 89.5 91,1  90,1¥*****xx 79,0
-50.0 100.6 98.4 99.7 100.9 101.5+%****x*  97.8 89.4  68.8 _60.0 93.8 92.8 93.3 93.3 96,0 97.4%**xxxx 90,1  85.1
_40.0 100.0 100.1 101.0 101,8*#%*x*x 101,5 98.7 89.0 62.3 _50.0 ©95.7 95.0 95.3 98.2 98,9x%%¥x*x%x 97,4 91,1  80.1
_30.0 100.4 101.0 102.1#%x#%x%* 101.8 100.9 96.6 83.8 67.8 _40.0- 100.0 97.3 99.4 100,9%**x*x%xx 08,9 96,0 89.5 78.1
-20.0 101.8 101.S5#**#*#xx 102.1 101.0 99.7 95.3 89.0 69.2 .30.0106.4 102.4 101.7****x*x 100.9 98.2 93.3 89.1 76.9
-10.0 102.7%*#%%%%* 101.5 101.0 100.1 98.4 96.8 90.8 61.0 _20.0 119.5 110.2%*xxxx%x 101,7 99.4 95.3 93.3 86.5 80.3
JQrkxax%x 102,7 101.8 100.4 100.0 100.6 99.2 85.6 66.8 10.0131,9%*%xxx% 110,2 102.4 97.3 95.0 92.8 88.7 71.5
10.0  103.0%%%*#%*x 101.7 101,6 102.3 102,7 95.5 89.4 59.9 _Qx*xxa%x  131,9 119.5 106.4 100.0 95,7 93.8 84.1 70.8
20.0 102.2 101.9%*%%xxx 104,0 104.5 102.0 99.4 86.3 64.4 10.0 132.6 -137.0 ©130.9 118.3 108.4 100.0 - 90.0 84.5 67.6
30.0 101.3 102.5 104.4%%k#x+%x 104.9 105.3 98,1 90.8  66.4 20,0 118.5 131.4 139.7 135.7 120.9 105.3 95.6 84.4 62.8
40.0 102.5 103.2 105.0 105.2%*+*x%*x 103.9 102.8 92.3 68.8 30.0 106.8 119,1 137.0 148.4 142.7 127.4 107.0 = 89.0 79.9
56.0 101.8 102.7 103,0 105.6 105.2%k*x*** 105.4 94.4 70,2 40,0 100.2 108.4 123.1 147.1 168.4 166.5 .145.9 126.1 94.4
60.0 99.8 99.2 100.8 101.3 104.3 106.4%wxw*x*  97.6  74.0 50,0 96.3 98.9 109.7 133.6 177.3 222.3 245.1..236.7 204.1
70,0 91.0 91.4 92,0 94.2 96.5 98.0  99.0%**%k*k 55,9 0.0 91.9 93.1 97.6 117.2 166.3 255.4 439.5 641.8 546.5
70,0 86.4 86.6 89,1 99,5 133.,4 275.3 675.5 2460.4 2080.6
Table 3.A4 .
Jable 3.A.6 :

Opaline plastic sample, The reference value 100 corresponds 1o Bv,d0/0 =0,519,
White wall pavement, The reference value 100 corresponds 1o Bv,40/0 =0.780,

LUMINANCE FACTOR
obs/inc 0 10 20 30 40 50 60 70 80 LUMINANCE FACTOR

-70.0 85.8 90.9 86.2 82.6 91.6 90.9 96, 1***kkkk 69.5 obs/inc 0 10 20 30 40 50 60 70 80

-60.0 98.2 95.0 93.2 98.0 100.3 103,9%*#*kx* 96.1 68.6
-50.0 99.2 97.6 101.1 103.4 107.3*%**x** 103.9 90.9 73.3 -70.0 81.5 86.6 85.7 82.8 85.3 85.7 89, 5% *kkkhk 67.9
-40.0 100.0 102.3 103.9 106.7**#*xkx*x 107.3 100.3 91.6 59.4 =60.0 94.9 93.7 92.6 96.0 96.3 98, g *FKRK KK 89.5 60.4
-30.0 104.1 104.3 106.5***xx*x% 106,7 103.4 98.0 82.6 64.0 =50.0 97.5 97.5 99.1 99,7 103,5**k%kx% 98.6 85.7 60.4
-20.0 109.3 108.3%*x%*x%x* 106.5 103.9 101.1 93.2 86.2 71.4 -40.0 100.0 100.8 100.9 104, 3**%%x*x*x%x 103,5 96.3 85.3 57.9
~10.0 118.2%%x*x*x%* 108.3 104.3 102.3 97.6 95.0 90.9 60.0 =30.0 101.2 101.4 105.4***xx** 104.3 99.7 96.0 82.8 62.9
LOxx*xkxx  118.2 109.3 104.1 100.0 99.2 98.2 85.8 62.1 =20.0 - 102.3 105,4%*%*%**x 105.4 100.9 99,1 92.6 85.7 64.6
10.0 125.3*%%%%x%% 114.3 103.9 102.2 102.4 95.4 86.4 53.7 ~10.0 106.5****%*% 105,4 101.4 100.8 97.5 93.7 86.6 61.2
20.0 111.7 126.3***%*%xx 113,7 108.1 103.3 98.1 82.8 59.7 LO**xkkkx  106,5 102.3 101.2 100.0 97.5 94.9 81.5 60.4
30.0 105.5 109.6 127.3%**x%*x** 114,9 106.0 97.1 87.2 61.3 10.0 108.1****x*x%* 302,3 100.9 99.6 98.6 91.4 84.9 52,1
40.0 101.8 104.8 110.8 129,5%#*%x%xx 114,2 104.6 89.0 62.7 20.0 103.8 103.3******%x 101,1 100.4 97.0 94.0 81.9 57.9
50.0 100.8 102.4 105.8 113.2 150.1%%***%x 119,9 99,2 64.0 30,0 102.6 102.5 102, 5%*%****% 99.6 97.7 92,6 81.5 54,6
60.0 98.5 99.0 100.8 104.3 115.4 162,7*****%x* 149.3 91.7 40.0 - 102.6 101.0 100.8 101.1**x*%*%* 96.4 91.4 80.7 58.8
70.0 89.5 89.9 90.4 93.0 97.7 111.6 204.5%***#xxx 141 4 50.0 100.5 99.4 99.4 98.6 97, 9k Kk kh*k 92.3 80.7 57.1
60.0 96.7 96.0 95.1 94,1 94.6 94, 6FrFKFwKKk 82.8 56.3
10.0 88.0 86.8 85.8 86.3 85.9 85.6 88, Sxkkkhkhk 50.5
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Table SA7 : _
WMWM v,40/0 =0.288.
LUMINANCE FACTOR
obs/inc 0 10 20 30 - 40 50 60 70 80

-70.0 99,8 107.0 114.4 123.0 132.7 148.7 179.0%****x* 262.8
-60.0 100.0 104.9 110.7 116.3 128.5 144, 7*%**xx%x 179.0 195.7
-50.0 100.3 103.3 107.0 114.2 126.4%*+*x%* 144.7 148.7 163.8
~40.0 100.0 103.1 107.1 116.d**%e*xx 126,4 128.5 132.7 150.5
-30.0 100.1 103.5 110,3%**x%%x 116,4 114.2 116.3 123.0 134.6
-20.0 102.0 107,1xwxxx%%x 110,3 107,1 107.0 110.7 114.4 121.3
-10.0 105.8*%%%**% 107.1 103.5 103.1 103.3 104.9 107.0 113.6
LO**x#%%x* 105.8 102.0 100.1 100.0 100.3 100.0 99.8 102.2
10,0 105.0 100.8 98.6 97.7 97.3 95.9 96.6 94.3 107.2
20.0 100.9 98.4 96.9 96.0 94,1 94.2 91.9 95.9 105.8
30.0 98.6 96.5 95.1 92,9 93.1 90.3 91.1 94.7 104.5
40.0 98.3 95.6 93.1 92.1 90.3 90.5 91.7 96.4 108.1
50.0 98.2 93.7 91.0 90.2 89.3 91.8 94.0 100.8 118.6
60.0 96.6 93.3 9%2.1 89.8 91.1 92.1 99.0 111.6 140.5
70.0 97.8 94.9 91.4 91.7 93.3 98.6 108.4 132.7 195.3

Picture 3.1 : View of the experimental equipment set up to measure the:luminance factor.
From left to right : the sample on its carriage, the measuring apparatus of the spectro and the
Table 3A8:

Tunnel wall ¢ ics. The. lumi [ is directly indi | |

monochromator. In the foreground are the diaphragm and the deviation mirror.
(picture by G. VERDIN).

LUMINANCE FACTOR

obs/inc 0 10 20 30 40 50 60 70 80

-80.0 51.6 57.3 59.3 62.5 62.6 60.8 58,5 55, 0%*nxkxk
~-70.0 66.7 68.4 71.2  70.6 70.6 68.3 66, 9F*kkkix 55.0
-60.0 73.3 74.1 74.1  74.0 72,8  T1,9%k%kxkx 66.9 58.5
~50.0 75.8 75.8 75.1 74.5  73.8F%wkEA% 71.9 68.3 60.8
-40.0 76.7 75.0  75.3  74.4*kxxxxx 73,8 72.8 70.6 62.6
-30.0 75.6 75.6  74.1l¥kxkrxk 74,4 74,5  74.0 70.6  62.5
-20.0 77.6  74.6xxxxxxk 74,1 75,3 75.1  74.1 71.2 59.3
—10.0 100.1*****x**x 74,6 75,6 75.0 75.8 74.1 68.4 57.3
LQx**%xxx* 100,1 77.6 75.6 76.7 75.8 73.3 66.7 51.6
10.0 98.3 718.0 109.7 78.6 76.4 75.1 1.7 64.7 59.1
20,0 77.2 98.8 789.,5 110.8 77.2 74.5 70.5 68.9 58.0
30.0 75.5 77.3 102.1 939.6 111.6 75.5 74.0 68.7 56.3
40.0 74.4 74.7 77.6 113.3 1258.2 137.8 78.0 69.5 56.6
50.0 72.7 74,0 73.6 75.9 117.6 2301.6 179.7 79.1 63.0
60.0 70.7 69.6 69,9 72,1 76.1 180.4 5600.0 354.3 92.5
70.0 63.5 63.6 64.1 64.8 66.7 74.8 304.620610.0 1648.8
80.0 48.3 47.9 48.4 49.3 50.6 55.3 80.0 729.671410.0

Picture 3.2 : Light source and converging lens (picture by G. VERDIN).
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4.1
Pictures 3.3,

Visible. surface of the sample, obtained by.illuminating the exit slit of the monochromator
top : this surface is circular:for a=0°; '
below : it is nearly: elliptical for a=70°%.

{pictures by G. VERDIN)

Chapter 4 : Modelization of light reflection

. Introduction

1o analysis performed in the second chapter and the first measurements results described in the
ird chapter have shown that the Lambert model of diffuse reflection is not sufficient to correctly
present the behaviour of most materials encountered in Interior Lighting situations.

he fact that this model is still widely used today in calculation methods can be explained by its

ry simple formulation. Now, some new calculation techniques can take into account non-
mbertian diffusion indicatrices. But this possibility is still underestimated, because there exists
o general model for light reflection. So, it is now time for lighting engineers to develop and test
flection models which are closer to the real behaviour of materials.

his chapter, it is intended to derive a macroscopic model for light reflection, taking into
ccount the following requirements :

to give the intensity reflected by a material, for all directions of incidence and viewing;

this: model shouid be sufficiently general, and its applications should not be limited to some

_ particular surfaces : for example, to-slightly rough- surfaces, for which the mean amplitude of
the corrugations ‘is lower than the wavelength;

the modsl should only contain-a small number of parameters to represent a given sample of
material;

finally, it should not be too intricate, in order to allow fast calculations by computer. Indeed,
the determination of the luminous field in a complex situation can require many repeated
evaluations of the model.

The problem of light reflection by a rough surface will be first analysed. Volume scattering will be
eated in a subsequent section.
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4.3
4.2, Scattering by a rough surface rasentation : this will allow us to take into account the reflection coefficients at each point of
surface.

4.2.1. Qverview
, o other experimental approaches can also be found in the litterature. The first one is the model
The scattering] of electromagnetic waves by rough surfaces has been analysed in three main sflection described by Hori et al {47], which was intended to represent surface reflection by

directions. materials used in luminaire reflector design :

Firstly, through the small perturbation method (S.P.M. ), also referred as the Rayleigh-Fano
theory. This method assumes that the scattered electomagnetic fields can be expressed as power

series of the surface corrugations. These series are limited. to. the first, second or even fourth
order [35,55,56,59]. The phase of the electromagnetic fields can also be expressed as power
series : this method belongs to the phase perturbation techniques [41,42]. In practice, their

application is limited to the slightly rough surfaces.

11(8) = 1(8s) (1 - sin X)° (4.1)

is.the intensity of light reflected in the specular direction, "X" is a linear expression of 8
nd non-linear expression of 8 , whereas "o" is the "specularity factor", depending on the surface
oughness. However, how this model has been established is not clearly formulated.

. rhe second one is based on an empirical equation (type Pearson V) and was proposed by Mcon and
The perturbation theory has been widely used to analyse the scattering of luminous or X-ray encer [53,54] :
waves by multi-layered dielectric mirrors, with slightly rough interfaces. Vector theories has
been developed [2,43,44,45,49]. Some of them were able to derive the scattered energy in all
viewing directions, but the amplitude of the corrugations was always supposed to be lower than the
incident wavelength. This condition is difficult to meet when X-rays.are considered : so, Vidal and

Vincent [65] proposed a new vector theory which is also valid for very rough surfaces, but which

(4.2)

ihere & is the quotient of the radiance of the sample in the viewing direction 6 to the intensity of
he Incident light (W/mZ2). The quantities (x=90°-6) and (A,p,y) are experimental parameters.
has only been developed in the specular direction. he three last ones are determined by fitting the mode! with the diffusion Indicatrices measured in

he plane of incidence. The model has been particularly tested with slightly rough metallic
Secondly, the solution of the generalized telegraphists' equations [36,37] has led to the so-called ‘

"full wave solution”. The boundary conditions on the rough surface are expressed without any
approximation, such that they can lead to. general solutions. However, their formulation contains

urfaces. It is also able to take into account an “off-specular” reflection peak, which can be
erved under some well-defined conditions.

power series of the wavelength and it is generally too intricate for our purpose.

Finally, a third approach is the Kirchhoff approximation [38,50] which uses particular boundary
conditions. It is assumed here that the rough surface can be locally replaced (at each point) by the
local tangent plane. Therefore, this method is theoretically limited to surfaces for which the local

he model of light reflection which Is proposed in this chapter is based on a fundamental research
darried out by P. Beckmann [38]. Some refinements will be necessary, concerning for example

e preliminary assumptions or the introduction of the local reflection properties of the surface.
ndeed, Beckmann has developed his theory for perfectly conducting surfaces, which allowed him to

radius of curvature is greater than the wavelength.

This last approach will be used in this chapter. Perturbation methods are too restrictive in their onsider only a scalar electromagnetic field. We rather propose here a vector formulation which

applications, whereas full wave solutions are too complex. Moreover, the Kirchhoff approximation
has already been developed, mainly for one-dimensional surfaces, by Beckmann [38] who already

/ill be more adapted to describe non-conducting surfaces, and we will also extent the theory fo the

hotometric quantities which are more common in lighting science.
found very interesting results. This method will be hereafter reformulated, including a vector

L In french, the term * diffuslon” has been used in the original text
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, and a third surface integral on S- which vanishes, since the electromagnetic field and its
yatives-are supposed to be negligible in this shadow zone. The scattered electric vector is

ally obtained :

So, both formulations (the scalar and vectorial ones) will obviously present common features,
The option has been taken to reproduce Beckmann’s developments where they will be necessary tg
the general understanding of the present formulation.

Let a volume V bé bound by the closed surface S. E is a scalar function which satisfies the wave

equation? :
V2ZE + k2E = 0 (4.3)

Let M be a given point3 somewhere in the volume and G, the Green function of any other point M'

jkr
G(M") = £— (4.4)

where r Is the distance between the points M and M'. The Green function also satisfies the equatio
(4.3), except if M'=M.

The Helmholtz integral theorem [38] states that the function E at M can be derived from the
values of E and its first derivatives on the closed surface S :

o
E(M) = 1 f f [E 9G G a_E] ds (4.5) Figure 4.1: Incident plane wave Ejon a rough surface and application of the
4rn an an ,
S Helmholtz-integral theorem : see text.

where the symbol 5% represents the derivative along the normal directed towards the interior of is last expression is not exact in a theoretical sense, since the assumption of the vanishing field

1 S is only an approximation. Furthermore, this assumption implies that the electric field E
not continuous on the whole surface S, a condition which would be required to apply the equation
5). Therefore, the electromagnetic field described by (4.6) does not satisfy the Maxwell
uations. The exact solution can be found in Thourel [62] or in De Broglie [40] : it is referred as
e Koftler's formula. Two extra terms are added to the expression (4.6), but it is shown that
these ferms become negligible if the point M is sufficiently far away from the surface 4.

the surface S in dS.

Obviously, E could be one of the three components of the electric vector of the electromagnetic

N
field. In figure 4.1, the rough surface is illuminated by the incident plane wave E1 . The
reference volume V (belonging to the propagating medium) is bounded by the infinite sphere X, by
the rough surface St illuminated by the incident radiation and by the reverse side S which is not

directly illuminated. e figure 4.2 shows a rectangular rough surface extending from (x=-X) to (x=+X) and (y=-Y)

{y=+Y). The roughness amplitude is described by the function z= &(x,y). The altitude z=0 has

Applying the Helmholiz-integral theorem (4.5) leads to a surface Integral on the sphere T which ; been attributed to the mean amplitude of the corrugations.

gives the incident electromagnetic field at M, a surface integral on S* which gives the scattered

The medium below the surface is homogeneous.

2 "" is the wave number.
3 A great number of symbols will be used throughout this section. Bold characters will
represent points in the three-dimensional space.

4 This condition is always relative to the wavelength, which is about one micron for light
waves: Therefore, this condition is not restrictive in Lighting Science.
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-
calculate the Helmholtz integral (4.6), the field E and its first derivatives must be determined

the rough surface. With the Kirchhoff approximation , it is assumed that the field and its
rivatives are given by their value which would be obtained if the surface was replaced by the

Consider a monochromatic plane wave incident upon the surface. The direction of propagation R:

—
lies in the plane of incidence XZ and is characterized by the angle 61 between k¢ and the vector {
which is perpendicular to the mean plane of the corrugations. al tangent plane. This assumption is only valid, if the local radius of curvature of the surface’s

rrugations are much greater than the wavelength.

el
k1
Pl T
s 1z 5)
1
- Qds q
I effiN® &

N\ NN

-

-Y

. s i : > 3 =
Figure 4.2 : Geometrical parameters describing the rough surface scattering Figure 4.3 : Local axis system ( q, p ,n ) which has been defined to determine the

. . o
(the symbols are defined in the text). electromagnetic field on the surface element dS ( ' ).

— -
inci Eq lies i dicular to kq. it is paralle! to the polari . . A . —_— .
The incident electric vector Eq lies in a plane perpendicu ! P polarizalar ocal axis system has been created in dS to determine E and its derivatives : see figure 4.3, Let

—3
vector P which is described below : be the local unitary vector perpendicular to the surface element dS. The two other axis of the

— - - - - -
- stem ( p and q ) are located In the tangent plane : p is parallel o5 n x ki and q s
ki =k [sin61,0,-cos b1} - -
rallel to p x n . The incident electric vector (on the surface element dS specified by the

— —
- e 4 . . .
P = [ A* cos 01, A, A* sin 01 ] sition vector r' ) and the specularly reflected electric vector ( E1g ) can be expressed in this

al system by :

- -

R = j{ k{1 -ot) - =

Et(r)=Pe > 5 J{ K. ' -t - N -
Eiy (r)= e [Pop +Ppn+Pqql

N

Co=(xy.z]  ad k-—2% (4.7) S
- ](k1 - ot) - - -
Etis ()= e [RsPpp +Rp(Phn -Pqq )

A+ and A- are the amplitudes of the incident electric vector, respectively in the plane of incide

- =
JOkie I -ot) - -
and perpendicular to this plane. The radiation detector is located at distance R, from the centre e

s (1)

N
the surface, in the scattering direction ko defined by the angles 62 and ¢. 5

g - -
Pp= P.p ;Pq= P.q ;Pn: P.

-
n

. - -
P X n_ represents the cross product of two vectors p and n .
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where Rs and Rp are the Fresnel reflection coefficients (see chapter 2) depending on the loca| j(kRy-wt)

e - - - ) .
angle of incldence Si(_r)‘ ). The electromagnetic theory can also be applied to find the first (M) = k8 4 m- [cos 81 (P - Ps) - cos 62 (P + Ps) | sinc(vxX) sinc(vyY)

- -
derivative of the field E along the normal vector n :
- - - -
v y Vx = V.lyx, vy = v.ly (4.13)

-

- -
- - jlkie -0ty - o
(rY=jky.n e

-
[P-Ps(r)] (4.9)

=N

The Green function (4.4) and its derivatives along the normal vector are : _ 0p and ¢=0 : it can be concluded that a plane finite surface reflects light as a mirror, if its

; - 1
s (_r)’) ) eJkRO . - j k2. r
Ro he dimensions (X,Y) of the surface are of the same magnitude as the wavelength, then the
. ctric field cannot be neglected outside the specular direction anymore. It is reflected along some
2G (_)r') - ‘:; ; elkRO . - f{; 7 (4.10) lobes, determined by the maximum values of the product sinc(vxX) sinc({vyY).
on B ' Ro

if the distance R, between the receiving point and the surface is much greater than the waveleng
The expressions (4.8) to (4.10) can be applied to (4.6), leading to an original yectorial
expression for the Helmholtz-Kirchhoff integral theorem :

N
e coefficient of the vector P in (4.11) has been first developed in appendix 4.1, which gives :

Y X
j(kRy-wt) L - _)l" it - -
- e jv.r( -5 o = - ——>) v - = Wy jv.rgX Wy jv.rsy
Bo) - S [ [ e (v.n) Pe(r') - (w.n) P)eS (wn)ds = [e 1k oy Sl [ | ROET
(4.14)
- - - -
\7=k1-k2 and w =ky + ks (4.11)
N
s more difficult to solve the term containing Pg in the expression (4.11), since this vector
[ I finit [

w depends on_>r’ . In order to overcome this difficulty, we can imagine the rough surface as being
mposed of many smaller plane facets. If the dimensions of each facet are much greater than the
velength, then only the specularly oriented facets have a significant contribution to the
scattered field in the direction (682,4). This assumption is only valid if the corrugations of the

The corrugations of the surface are such that : E(x,y) = 0.

o
i i r corr i he specularly reflected electric field ( Ps |
In this case, the polarization vector corresponding to the sp y (% gh surface are not too steep, a condition which is similar to the Kirchhoff approximation

see also Bahar and Fitzwater [37]: "...in the high-frequency limit, in which the contribution to
18 scattered flelds come primarily from the neighborhood of the specular points of the rough
surface ...").

N
does notdependonr':
- - )
Ps(r') = [ -Rp A* cos 01, Rg A", Rp A* sin 61 ] (4.12)
- - -
f this assumption is valid, the vector Pg(r') can be replaced by Pg(61,02,6), i.6. the polarization

ector corresponding to the field locally reflected by the specularly oriented facets. Doing this, an
fror is introduced in the less significant contributions, corresponding to the facets which are not

—d
Since the cartesian coordinates of the vector r' are [x,y,0] , the solution of the integral (4.11)

gives :
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in the vicinity of the specular points. Finally, the following expression is obtained (see append '5* < 6*. A2 R? (61,02,0) Ez_
4.1 for the detailed mathematical developments) : sX Us = 1,82,0) 7
; 2 2 2
. . j(kRy-at) 5 77 X Y 177 5 A" = |ATT + |AY (4.18)
Es(M) = | =2zro— [Ps(61,02,0) )J( dx_é e dy + eg(M) ]
-, -
: Qg is the complex conjugate of Qs.
Y X
5 N = o - N L= 2 , . . o .
5 wyP - VxPs J‘ [ jv. r'] X WoP - vyP f [ jv. r'] Y § ~  © is a reflection factor depending on the direction of incidence (81), on the scattering (or
. X5 s e
ec(M) vz F e X dy + vz I -y @x wing) direction (62,0), on the Fresnel reflection coefficients at the specular points (Rs and
(4.15) } and on the polarization of the incident wave (A", A*). The expression of this factor has also
' on developed in appendix 4.2, for a scattering direction contained in the plane of incidence
- -0 or ¢=1) :
eE(M) is similar to the "edge effect", introduced by Beckmann [38] . It will be shown that thig

term leads to unsignificant contributions to the scattered intensity.

2 2
2 A" Rg(91,0 + JA* Rp(04,8
R (91,92)5 | s(01,02) | 2 ! p(01.82) | (4.19)

glecting again the "edge effect”, we obtain from (4.15) to (4.18) :

— > X Y X Y _(—) - - —))
, ~,/e_o 1 V.V 22 , jv.r~v.r ,
)= Ho (4n=Rg)2 (Vz Jz w2 R (91,92,¢)_)f(dx_\](dy_)f(dx_$ e dy

A similar development would lead to the magnetic field at point M :

=l

. — I(kRge) 9o X Y Y, N

Hs(M) =1\/ e aRe [0sfe102,0) - fdx [ e dy +ey(M) ) 5
XY [y, Exy)] and 1= XY, E(x',y")] (4.20)

—y

Q =[ A cos 04, -A* , A" sin 01 ]

-

- o -5 —3
Qy01.02.0) = Rp (3507 +Rs (¢ 3.

n ) n - ( Q. a’ ) a’ ) e elevation of the surface &(x,y) is a gaussian random variable, with mean 0 and variance o2.

- —
(4.16) _ ' depends on &, then the electric vector Eg(M) in the expression (4.15) and the scattered

= - an value of the electric vector int M. i " " i
Q and Qg are the polarization vectors corresponding respectively to the incident magnetic field vector at point M. Neglecting the "edge effect’, the coherent eleatric
and to the field reflected in the direction (82,0) by the specularly oriented facets. The scattered
intensity is defined by the Poynting vector :

i(kR-ot) 5o oy -
e 0 2 Vv Hvyx+vyy) Va8
. Es(M)> = j =5 Ps(01.02,0) [_)I(dX_\I(dy e <e “>
-3 -y k
ls(M) = ( Esx Hs ). 2 (4.17)

(4.21)

Neglecting the “edge effect”, it is shown in appendix 4.2 that the intensity is proportional to:
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: v
The symbol <vars is used to represent the mean value of the random variable "var" and <e z§> Is

defined as the characteristic function x(vz). It is shown that, for a gaussian (normal) distribylj
of the corrugations § :

62 v,2 rrafation length T, which implies that the finite surface contains at least several corrugations
x(vz) = e- 2 (4.22) ee appendix 4.3). The expression (4.24) becomes :
m .szy T2
which Is introduced in (4.21), and leads to : #ST209 rTlQm e 4m + 82 09 sinc2(vyX) sinc2(vyY)
m=1

02 sz
2 . .

<Eg(M)> + e sinc(vxX) sinc(vyY) (4.23) » 2 2n g 2
g =Vz© 6% = T (cos 01 + cos 62)
The electric field is only coherent in the specular direction, for the surfaces with dimensions
much greater than the wavelength. This coherence of the reflected waves in the specular directio Vxy =\/vx2 + vy2 : (4.26)
is attenuated if the amplitude of the corrugations (o) increases. So, for a very rough surface; th
scattered electric field is totally incoherent, even in the specular direction. In other words, the

he second term prevails for slightly rough surface (g and % << 1), It represents a mirror-like
phase of the electric vector has been totally randomized.

haviour, since it vanishes outside the specular direction. An image of the source clearly appears

the surface. This specular behaviour increases at grazing incidence, for a fixed value of g, So,
Neglecting again the "edge effects”, the mean scattered intensity is proportional to : A

mathematical model is well in accordance with the visual inspection of illuminated surfaces

X Y X Y . ™ Y ee chapter 2), even if the Kirchhoff approximation, which neglects the shadowing effects, is
Y XXV (y-y") :
<lg(M)> + 5[(dx idy )I(dx {(dy e Xp(Vz,-vz) aoreficaily not valid at grazing incidence.
v, (E-E) - 62 v,2 (1-C) first term of (4.26) prevails for significantly rough surfaces (g and % >> 1), since [38]
Xp(Vz)-Vz) = <@ > = @ (4.24)
To solve this quadruple integral, a more detailed description of the random rough surface is need E m ) vaxy T2 . - v2xy T2
in particular, the correlation coefficient "C" must be defined in equation (4.24). This coefficlen o9 m mt © 4m =§ e 49 (4.27)

expresses the dependence between the elevations § and &', at two neighbouring points of the surface

- —
with position vectors r and r'. The "horizontal" distance between them is noted "t".
plying the equations (4.20), (4.26) and (4.27) leads to :

For 1=0, & and &' are of course fully correlated, and this implies C=1. However, £ and &' become 5 2
- - v T
Io(M) = 2 18T (———V 'VT A% R %01,000) + o g
uo (41ERQ)2 VZ 1 2v¢) g e (4.28)

independent (C=0), if the distance tis great enough . Beckmann [38] assumed that :

12
C(1) = e T2
e vect v be
1he vector v can be further developed, which gives :
T='\/(X-X')2 + (y-y")2 (4.25) ‘ P ’

where T is the “correlation length" of the rough surface. High values of T correspond to smooth
corrugations,
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2
2 52 o =2, o - N -
(M o ’?& pis] (I)z A2 R “(61,82,9) o 452 tg%a 1.2 1/o=23 , O T/o=4 , . Tre=1
s(M) ~ po (4xRo)2 \© costo . 1
>
2 2 E 8
o Vz© (cos 04 + cos 02) 2 .8
C0S“0 =T,"= 5 (1 + cos 01 cos 02 - sin 81 sin 62 cos ¢) 2
V.V % 6
2
5 4
- T v
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1, N Figure 4.5 : Relative scattered intensity in the plane of incidence, expressed by the
6o~
equation (4.31) with R 2_1, as a tunction of( 2281) in degrees.
- . ~ I is the roughness parameter of the surface
Figure 4.4 : Definition of the angle « between the axis 1z and the vector perpendicular to the o g P ’
-
specularly oriented facets, with respect to the viewing direction Kp.
e expression (4.29) can be developed in the plane of incidence. In this case, the following
. - . olation has been adopted : 02 is positive if =0 (forward scattering) and negative if ¢=n
The angle o is defined In figure 4.4, as the angle between the axis 1z , perpendicular to the mean )
) ) . ckward scattering)6 :
plane of the corrugations, and the vector perpendicular to the specularly oriented facets, with
—
respect to the direction kz . The expression (4.29) is analysed hereafter, as a function of the:angl 2 5 (91 -92)
coséq = cose [ —5
a. In a first step, the variation of R 2 is not considered (see figure 4.5) : 2
- R 2 " 2
- if T2 2.83 o (strong correlation), the scattered intensity is maximum at =0, lLe. in the R 2 LA RG(BI) I+ [ A* Rp(8)) |
(91 102) = A2
specular direction (81=02,4=0);
« 0140
- If T< 2.83 o {weak correlation), the scattered intensity is maximum at a=a , defined by 8j = ’"1-5'3\ (4.30)

* 2 » ]
cos?q = 8T—2— , and a local minimum appears at a=0. However, this conclusion should be
g

carefully considered, since the validity of the Kirchhoff approximation is here questionable. iIs the local angle of incidence on the facets specularly reflecting in the viewing direction 62

éppendix 4.2). The following expression can be written in the plane of incidence :

"forward” means " in the half-plane of incidence containing the specular direction”, and
backward" designates the other half-plane.

(see
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2( |01+0 2 - -
R |——12—2| 41-2- 192(9-12—92) conclusion is corroborated by the works of Eftimiu [41,42] on perfectly conducting and lossy
o
Is(M) + cos4(9“°2) e (4.31) actric surfaces.
2

sther conclusion cited by Soto-Crespo et al [59] is that the ratio (—T—%s-@l) must be greater
This is our final expression for the scattered intensity at point M. This equation is in accordang

with the principle of recipracity, since the directions of incidence and scattering can be swapps
without changing the scattered intensity.

n 5, and that the angle of incidence 61 must be lower than 40°. Obviously, the shadowing effects
ch have been neglected must be more significant at grazing incidence (81 > 40°). Moreover,
tiple reflections are created for 6>T, and the local radius of curvature tend to decrease. This
|so a situation where enhanced back-scattering can appear, for o and T = A [57,58]. The

hhoff approximation cannot predict these back-scattering effects (see figure 4.5).

Aboutthe edqge effects

The determination of the scatlered intensity could have been performed without neglecting the

N
i tions (4.15) and (4.16). Indeed, it can be shown, after long and tedio \ . .
terms ¢ in the equations ( ) ( ) ed, It 9 us fambertian reflection can be observed for metallic surfaces such that ¢ = T [58], but only at

L . Y X .
mathematical developments, that the terms in e are proportional to 3 or 5, instead tof2 for il angles of incidence (81<20°).

main contribution (4.20). Therefore, if X and Y are much greater than 2, then the terms in : )
equation (4.29) expresses the scattered intensity, i.e. the radiant energy passing through a

ace of 1m2 perpendicular to the direction of scattering, in one second. Therefore, the scattered
nsity le by unit solid angle is :

2 2 _-|-2_ 2
. ,a s (T\2 A° R “(0q,62, - tgca

radiant flux incident on the rough surface is the product of the incident plane wave intensity

be neglected.

1.2.4. Validity of 1t lel and 1 i lion_i l .
The equations (4.29) and (4.31) have been derived under the following assumptions :

- the incident electromagnetic wave is a monochromatic plane wave;
- the distance between the receiving point M and the rough surface is much greater than:the ﬁ.% B X 8 ) and the section of the light beam intercepted by the surface :
dimensions X and Y of this surface. Furthermore, X and Y are much greater than the
wavelength;
- the medium under the surface is homogeneous, linear and isotropic;
- the amplitude of the corrugations of the surface is a random, normally-distributed variable;
with mean 0 and variance ¢2; ‘

— g0 -12 2
Dol = '\’uo (1A712 + 1A*12) Scosey (4.33)

) ation (4.32) becomes :
. the local radius of curvature of the surface and the correlation length T are much greater tha

the wavelength A; T2 )
I)2 1 202'9

s/ cosdo

- << T<< XY ando >>A. An extra coherent and nearly-specular contribution must be added in
(4.26), if o Is of the same magnitude as the wavelength;
- the shadows created on the surface by any element of this surface, and the multiple reflection

lo(01,02,0) = A 201.,02.0) 757 ez ( (4.34)

T COSO1

he reflection factor F 2 is equal to 1 for a perfectly conducting surface, and the equation (4.34)
an be integrated over all the scattering directions, to obtain the total scattered flux ®es. The table
1.1) gives the ratio between the total scattered flux (®es) and the Incident flux (®gj). This ratio
hould be equal to 1 for a perfectly conducting surface.

between the surface elements have been ignored.

k.

In their paper [58], Soto-Crespo and Nieto-Vesperinas compare the results of a numerical
simulation and the results of the Kirchhoff approximation, for several perfectly conducting; ong
dimensional rough surfaces. it is shown that the Kirchhoff approximation is valid for T > 0.5 X.
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; 4.19
This value is obtained (+ 10%) by numerical integration, if the roughness parameter (g) is _expressions (4.34) and (4.36) can finally be particularized to the case of a naturally
T od incident light, which is a non-restrictive assumption for lighting engineers (see
greater than 3 (for 81 < 70°), or (;) > 5 (for 0y = 80°). The Vahdny of the Kirchhoff Qﬂd‘x 4.2, equaﬁon 4.A14) ;
approximation is again illustrated here. However, it must be emphasized that the validity wijl i
i hadowing effect 2 [Rs|2+|Rpl|2
extended later by experimentally taking into account the shadowing effects. R “(61,02,0) = > (4.37)

re Rs and Rp are the Fresnel reflection coefficients which depend on the local angle of incidence

i Al2).
) angle of incidence : 01 (degrees)
I 0 | 10°| 20°| 30°| 40°| 50°] e0° | 70°| so0°
now intended to test the validity of the electromagnetic model described above. The material

0.5 0.06 | 0.06 | 0.08 |0.10 |O0.16 }0.30 | 0.68 }1.95 | 6.19 en for this study is a sample of frosted glass, because it fulfils the conditions of an

1.0 0.22 10.23 | 0.27 |[0.34 | 0.47 |0.72 | 1.15 | 1.86 | 3.61 ogeneous, linear and isotropic medium. In other words, the light reflected by the glass sample

2.0 0.63 |0.64 | 0.68 |0.73 | 0.80 |0.89 | 1.03 | 1.30 | 2.11 ue to surface scattering only, and not to volume scattering, since the material is transparent.

3.0 0.89 |0.89 [ 0.89 |0.88 | 0.89 j0.91 | 0.96 [1.10 | 1.61 eover, the optical properties of glass, such as its refractive index, are well known.

5.0 1.00 |1.00 [0.99 |0.98 | 0.96 | 0.95 | 0.94 | 0.98 1.23
10.0 1.00 |1.00 | 1.00 [1.00 |[1.00 |1.00 | 0.99 |0.96 | 0.99 scattered intensity has been measured in the plane of incidence with the apparatus described
15.0 1.00 | 1.00 ] 1.00 [1.00 J1.00 {1.00 | 1.00 | 0.99 | 0.96 apter 3. The wavelength is 550 nm. The measurement process gives the spectral radiance
20.0 1.00 | 1.00 | 1.00 |1.00 | 1.00 |1.00 | 1.00 | 1.00 |} 0.97 r Ba(61,02,A), for an angle of incidence 81 comprised between 0° and 80°, and a scattering
50.0 1.00 |1.00 Jt1.00 j1.00 11.00 |1.00 | 1.00 |1.00 | 1.00 o 02+ 01 comprised between -70° and +70°. The negative scattering angles 62 correspond to

ward scattering and the positive angle to forward scattering. The scattered intensity
(61,02,1) can then be obtained by the product of this radiance factor and the geometrical factor

The radiance is the quotient of the radiant intensity lg and the apparent surface Scosf2 : 0881 cos62) : see equations (4.32) and (4.36).

T2

2 2 ——tg2

2 R “(01,02,0) = 352 19°¢

L1020 = \ 22 Torasas (5)° STt o 4o (4.35)
w2 po 16m cosdp \© cosdo,

The radiance is equal to%:‘g‘i for a perfect diffuser. Therefore, the radiance factor of the rough

surface in the direction (62,¢) is :

\ree glass samples have been tested. Their surfaces have been frosted at the "institut National du
e" (LN.V.) with fine-, middle- and coarse-grain abrasives. These samples will be referred to
he text by the letters A, B and C, respectively. The dimensions of the analysed surface are

) cm x 10 cm, and the depth of the glass sample is 1cm.

) avoid light reflection on the reverse plane surface of the sample, it has been covered with two
72 yers of black oil-paint. Indeed, it has been observed that this operation reduces the reverse

- tg2a ane reflection by at least 90%.
2 1 T\2_1 402
Be<e1,92,¢) =R (91!921¢) 16 cosf1 coso (O’) e (4.36) -

4
cos*a
e intensities measured in the plane of incidence are first compared with equation (4.31). In
s expression, R 2 is the reflection factor of a glass plane surface (n=1.52), for naturally

larized incident light (eq. 4.37 and figure 2.4, curve b). Following the model (4.31), the ratio
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Ralative Imnternstty
between the scattered intensity and the reflection factor R 2 would only depend on the differen

between the angle of incidence 61 and the viewing angle 82.

Relative Intemsity

1 1 ) 1 L 1 I I ° ! 1 1 1 ]

-8 -7 -6 -S@& -4 -3 -2 —-12 @ 12 20 3R 49 s

dagreas

Figure 4.7 : Same as figure 4.6 for the moderately rough sample B.

1 1 0 L 1 1 1 j

1 |

-8 -7 -6@ -—-5@ -4Q2 -3@ -2 -1@ @ 10 =4 30 40 se Ralative Intemnslty

degrees

/
Figure 4.6 : Measured ratio A 92 (relative units ) as a function of the difference

(—Ogé—eL)— , in degrees (A = 550 nm). These nine curves have been measured for the slightly

rough sample A : they correspond to the angles of incidence from 0° to 80°, by 10° step.

1 . _— ‘
This ratio —I:-fié has been derived’ from the intensity measurements ; the results are shown for

the slightly rough sample in figure 4.6, as a function of the angles of incidence and viewing. The
prediction of the dependence in (81 - 82) alone is fairly good, until 81 =70°. However, the ourve
at 81 =70° and 80° slightly differ from the others.

This difference is again observed and well accentuated in figure 4.7 (sample B), and especially 1 1 L 1 1 L 1 LI - 1 L

the very rough sample C in figure 4.8. In this case, the curves diverge from the "ideal" law for the -8e -7@ ~68 -Se@ -4@ -32 -Z8 -18 @ te =ze 3@ 42 SO

degreas

incidence and scattering angles greater than 40°. Figure 4.8 : Same as figure 4.6 for the very rough sample C.

Is again possible to relate these conclusions to the validity of the Kirchhoff approximation,
hich holds for the angles of incidence smaller than a given upper bound, which tends to increase

th the roughness (:cr‘) : see §4.2.4. Our measurements corroborate this statement, since the

7 The expressions (2.4) and (2.6) give the Fresnel reflection coefficients.
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axt:argument is based on geometrical optics and the assumption that light propagates along
Tharefore, the function C(61) can be interpreted as the probability for a "useful” light ray

sample A can be viewed as a slightly rough surface, with small amplitude (o) and highly

correlated (T>>) corrugations, whereas the very rough sample C would exhibit just the opposit
b intercepted. A "useful” ray is here defined as a light ray falling upon a facet specularly

ted towards the scattering direction.

behaviour.

Thus, a first conclusion from these measurements is that the crude theoretical model described by
(4.31) should be corrected at grazing incidence. It will be shown in the following that this can be;
performed by taking the shadowing effects into account.

an be imagined that this probability must also be applied to the scattered ray, i.e. that a second
rection factor C(|62]) must be introduced in the model. This second factor depends on the

colute value of the scattering angle : so is the Helmholtz principle of reciprocity satisfied.
ally, the corrected equation is :

; R?( [uz2) 12 2 (15%2)
To derive equation (4.31), it has been assumed that the electric field at a surface element could b le(01,82) + C(81) C(l62]) 61-02 e 402 2 (4.38)
computed as the total field (direct + reflections) that would exist if the rough surface was locally 6054( 2 )

replaced by the Infinite tangent plane at this element : this is the Kirchhoff approximation,

emains. to test that this correction can lead to a better model for the scattered intensity. The

o
1z

1 step is to determine the function C(6) : all that is known about it, is that it must -
notonically decrease from 8=0° (C=1) to 90° (C=0). The following mean square expression has

an minimized to find the intermediate values :
incident wave

L 1 A 2
1, A=y T I [logle (81i,02)) - log le(81i.62)) ]
! ]
N SHADOW ZONE
\\\\\\\\N\‘\ 041 = 0° 10° woorrrvenne. ,80°
02f = -70°, -60° wcovivines , 60°, 70°, Oj # + 01 (4.39)

Figure 4.9 : The element of surface dS is situated in a shadow zone.

this definition, le is the measured scattered intensity and ?e (61i,82)) is the corresponding

This assumption holds as long as the incident wave can reach the element of surface dS without .
calculated intensity, given by :

obstruction. This is not the case in figure 4.9 where dS is situated in a shadow zone. A better
approximation would be that the total electric field vanishes at dS, if the multiple reflections

A 2( |811+82; 01i-62]
could be disregarded. le (811,02) = C(611) C(lozj)) R ( l ”2 ZJD I (’ 1'2 2") (4.40)

A correction factor C(61) has been introduced in equation (4.31) fo take these shadowing effects he unknows of the minimization problem are :

into account. Of course, this factor depends on the angle of incidence : if 81 = 0°, the rough surfac

unequivocally defined by &(x,y) is totally illuminated by the incident wave and C = 1. However,
91 = 90°, the shadow zone is covering the whole surface and C = 0. Between 0° and 90°, the

the value of C(0) for 6 = 10°, 20°, ...., 80° ; C(0°) = 1;
the value of Ig(w) for @ = 5°, 10°, ...... , 75° 14(0°) Is left undetermined since the

function C(61) is expected to decay monotonically. comparisons at 8pj = 84 have been excluded (see below).
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, ) ) ) o A 0B A C
The problem involves N=120 intensity comparisons and 23 unknows. Taking the logarithm j 1.2
equation (4.39) ensures that the minimization process always converges fo a unique solution
since the function A is convex [52, p.98). The direction of retrorefiection has been excluded O 1
there was no measurement at 8) = - 61;. The specular direction has been excluded to prevent t, § .84
coherent surface contribution from altering our conclusions (see eq. 4.26). . ;Lg'
S .64
Several comparisons between measured and calculated (by 4.38) intensities have been ; :é_' 4l
undertaken. For example, it has been observed that it was not convenient to directly define the §
intensity Iq by : .24
2(01-82 e e B e [ I BEnit S et oy S S
= o1 e~cz ig (—5‘) " : 0 10 20 30 40 50 60 70 aod 90
0034(91_;)2) V egrees

igure 4.10 : Correction factor C(6) calculated for the three frosted glass samples (A, B and C).

Of course, this expression could be interesting since, on the one hand, it only involves two

parameters ¢1 and ¢z and, on the other hand, it allows a direct evaluation of the model of o flgtire 4.11 shows the function lg(w) calculated for the sample A : the curve is designated by

Beckmann. However, the least square minimization could lead to unrealistic values of c1 and ¢ \qeneral model". This curve bears some resemblance to figure 4.5, which was based on equation

(for example, a negative value of ¢c2).

O general model [1 gaussian model

it must be recalled here that the surface corrugations are perhaps not normally distributed, or
that the reverse side of the glass sample (though painted in black) perhaps reflects a significan
luminous flux for some incidences.

It is therefore careful to keep the term l4 as general as possible.

The figure 4.10 shows the results of the optimization process (4.39) for the three frosted glas
samples (A, B and C). The correction factor C(6) not only depends on 8, but also on the roughne
of the surface, as could be expected. It is worth noting that the function C(8) converged to a
function monotonically decreasing between the values 1 and 0, though no constraint has been put

ld(ew)-in relative units

on its optimization.

o (degrees)

Figure 4.11 : Function lg(w) calculated for the slightly rough sample A. The curve (O) is the
result of the minimization process (4.39). Best fit curve with equation (4.41) is also
represented (gaussian model).
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However, if the analysis Is further proceeded, it is observed that the decreasing of the function
predicted by the gaussian model is much more accentuated for |a| > 30°, i.e. for [01- 62] > 60
particular, this model predicts that the intensity should vanish, when the viewing direction \
significantly deviates from the specular direction : this behaviour has not been observed durin

the measurements.

A better illustration of this departure from the gaussian model is obtained by the following
optimization : we have determined the values of the parameters (cy and cg), by least square
minimization between the model (4.41) and the curves "general model". So, the curves "gaussian
model" have been derived In figures 4.11 to 4.13. The most significant difference between both
model is the sharper decreasing of the gaussian model, and this is observed for the three rough
samples. This difference is more accentuated for very rough surfaces.

Besides the possible non-gaussian distribution of the corrugations and the unwanted reflection on
the reverse side of the glass sample, this behaviour could also be attributed to muitiple reflectio
inside the corrugations of the surface, which should increase with the roughness of the sample

O general model D gaussian model

400
35004
30004
25004
20004
15004

1000

ld(®) in relative units

5004

-80 -40 -20 0 20 40

® (degrees)

Figure 4.12 : Same as figure 4.11 for the moderately rough sample B.
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o general model [l gaussian model

3000,

25004

20004

15004

10004

{d{w) in relative units

5004

-80 -60 ' -40 -20

® (degrees)

Figure 4.13 : Same as figure 4.11 for the very rough sample C.

The roughness parameters (g) derived by the optimization process are :

5.05 for the sample A (figure 4.11),
4.16 for the sample B (figure 4.12),
3.06 for the sample C (figure 4.13).

e general model (4.40) gives fairly good results, since the relative deviations between
asured and calculated intensities for the glass sample A are 47% at (81= 80°, 82= 70°) and
5 than 15% for all other pairs (81, 82). For the sample B, the corresponding deviations are

33% and 14%. For the sample C, the relative deviations are always less than 10%.

However, the model (4.40) is not "user-friendly”, since too many parameters are required to
describe a rough surface. It is interesting, therefore, to analyse the deviations obtained with the
gaussian model (4.38). Besides the parameters of the function C(6), this model has only two
rameters : an amplitude parameter (c1) and a roughness parameter (co or IG- ).

The relative deviation between measured intensities for the glass sample A and the gaussian
equation (4.38) is less than 33% if |01~ 02| < 60°, except at (81= 80°, 82= 70°) for which the
deviation is 50% (see figure 4.14). However, the deviations can reach 100 % in the other
scaltering directions, since Ig vanishes in the gaussian model, while the measured intensity is

weak, but not zero. Therefore, the absolute deviations remain acceptable.
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The agreement is even better for the very rough sample C, since the relative deviations are |gg
than 30%, if |01- 2] < 90° jgure 4.15 shows a cross-section of the rough surface, containing the scattering direction 65,.
o, - . -

0, (degrees)

80 ¥
N

S

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70

-
6 (d ) Figure 4.15 : Cross-section of the rough surface parallel to the x axis.
egrees

\W > 90% Symbols are defined in the text.
N 60 - 90%
i 30 - 60% onsider a "useful" ray which is reflected by the surface in x=x. The elevation of the surface in
< 30% 1 15 Eg=(xk), and the slope.in xi is such that the surface element is specularly oriented. Imagine

hat the rough surface is described by its elevation at several equidistant points or elements of
urface, i.e. at X, Xk + ©; ... Xk + Nt. The elevation in (xx + it) is &; : see figure 4.15. The
levations &; are normally distributed, with mean &€=0 and standard deviation o.

Figure 4.14 : Relative deviations between the measured scattered intensities and the two- ~:
parameters equation (4.38) . The deviations are expressed in percents, for several discrete
values of the angles 81 and 6. Slightly rough sample A. '
he "useful" ray (82) is not intercepted if :
0.7, 8 Iytical model fo take the shadowing effects info account ~oa'd B <F o0
and o< & <&+ 10Ol 0
The function C(8) has been defined as the probability for a "useful” light ray not to be intercepl
by the corrugations of the rough surface. It monotonically decreases from 6=0° (C=1) to 6=90°
(C=0), and the slope of the decay depends on the roughness of the surface (fig. 4.10).

and - < &N <Eg+ Nrcotg 62 (4.42)

I the distance < is greater than the correlation length T, the elevations & can be considered as

It would be interesting if the same roughness parameter (g_) could be used for Ig(®) and C(8 }’independem values. Therefore, the probability associated with the inequalities (4.42) is :

(4.40) : so, the shadowing function would not introduce extra parameters in our model. An
analytical formulation of C(6) is proposed here; it is based on very simple arguments.



4.30

400 Eo+tcotgbp £o+Nrcotgp
P 62N = [pEo)deo  [p(&1) d&s . [piEn) den

2
_ Sl
202

N1
P(gl)—cm e

Introducing zg = %Q and the normat cumulative distribution function f(v) leads to :

zo?

2

3 N
e f(zo + | ;cotg 62) |dzg
\2n =1

P (x, 02, N} =

This probability only depends on the factor (% cotg 02).

4.31
gponding to (% =1) Is very close to the function cosbp. Therefore, the following analytical

assion Is proposed for C(0) :
T
p cotg 02 ;

T 2
'\/1 + (gcotg 92)

e distance © must be greater than the correlation length T (see above). However, if it is too
. the rough surface would be incompletely described. A satisfying compromise consists in

(o) = (4.45)

dbuting the value =T in (4.45).

st be recalled that the purpose of this study is not to perform a detailed and rigourous

(4.44)
alysis on the shadowing effects, but rather to obtain a simple analytical exprassion depending

ly on the roughness parameter (3—;) . It will be seen in the following that the introduction of this

prassion (4.45) in our general model for light reflection will lead us to very satisfying results.

Probabillty
1,0 ; k
2 o /6 =02 is model is based on the reflection of electromagnetic waves by rough surfaces, on the Kirchhoff
% ' .
0,8 \‘ N - t/6=0,6 proximation and the formulation of Beckmann [38]. The following amendments have been added :
A\ N & t/o=1 “
\ %= 1/0=3
0,6 \ - t/0=10 vectorial approach, to take into account non-conducting materials;

0,4

0,2

0.0

degrees

Figure 4.16 : Probability for a “useful” ray not to be intercepted, as a function of the viewin
angle 62 (degrees) and the roughness parameter % : se@e expression (4.44).

The limit of (4.44), for infinite values of N, has been computed by numerical integration. The
results are shown in figure 4.16. A more detailed analysis would reveal that the curve

introduction of the optical properties of the homogeneous material under the surtace, through
the reflection factor R °.

_ analysis of the intensity scattered in the plane of incidence and introduction of a correction
factor to take the shadowing effects into account.

@ final expression can be directly applied in lighting simulations. The following parameters are
cessary :

_ the ‘angles of incidence (81) and viewing (or scattering) (62,4);
the roughness parameter (-l:) ;

the Fresnel reflection coefficients of the surface Rs and Rp.
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The radiance factor is : apanese Uetani and Matsuura [64] have proposed a geometrical optics approach, without

T2 2
Rs[2+[Rpl? C(01) C(02) (1)2 1 4029
Po(01.62:0) = 32 cosfq cosb2 \6/ costa

ng into account these shadowing effects. Their expression for the surface reflection term is
¢ similar to our model (4.46) :

(cos 81 + cOS 92)2

2 _ RsP+Rpl2 1 pi(01,01)
GOS0 = 271 + cos 61 cOs 82 - sin 64 sin 02 COS ¢) e

B 2 Cos81 cos8p oSO

(4.49)

cos 25; = cos 61 cos 62 - sin 81 sin 62 cos ¢ 1,01) Is the probability density function of the quotient of the total projected area of the
cularly oriented facets and the reflecting surface S. The angles 6 and ¢; define the direction
;Sendicular to these specularly oriented facets : 65 is similar to the angle o appearing in

jation: (4.46).

The coefficients Rg and Rp depend on the local angle of reflection & and on the refractive index
of the air/material interface : see equations (2.4) and (2.6). The correction factor taking into
account shadowing effects is :
conclusion of the authors about their model is that it is not satisfying for incidences greater

-{y‘cotg 0 n 60°.; this again Hllustrates the necessity to introduce a shadowing factor.

'\/1 + (Ecotg 9)2

Note: For slightly rough surfaces (o < 1), an exira term corresponding to the coherent inten
must be added to (4.46) : see eq. 4.26,

C(e) =

Volume scattering

the re-emission of light which has penetrated into the bulk of the material and has interacted
its heterogeneous structure. It has already been illustrated in chapter 2 that the volume
The major interest of the model (4.46), assoclated with the expression (4.47), is that it-is flaction is distributed in all scattering directions, contrary to the surface reflection which is

described by a small number of parameters, in particular concerning the surface roughness. ather concentrated around the specular direction.

A second model is proposed hereatter, which is probably much closer to the real behaviour of letani and Matsuura [64] even state that volume scattering is nearly isotropic and lambertian.

gaussian surfaces, but which implies the determination of a great number of parameters : heir assumption is based on their luminance factors measurements, during which the surface and

ume contributions have been separated by polarization. Indeed, these authors assume that, if
e incident wave is polarized in the plane of incidence or in the perpendicular direction, then the
6ugh) surface reflection is polarized in the same way. This is quite correct and can be justified
y our equation (4.15), giving the scattered electric field. They also assume that the volume
flection.is not (or naturally) polarized, and this allows them to separate both contributions by
sarting two polarizers in the light ray [64].

[Rs[2+|Rpl2 C(81) C(92)
Be(61,02:0) = 32 cos01 cosla la(o)

(4.48)

Besides Rs and Rp, these parameters are the value of C(s), for & = 10, 20, ..., 80° and the valu
ld(a), for o = 0, 5, 10, ..., 85°. They must be derived from a complete measurement of the
luminance factor in the plane of Incidence.
nother technique is proposed here. The reflection on an air/glass interface is again used, since its

plical characteristics are well known. More precisely, we use a plane opaline glass surface,
hich is of course an heterogeneous medium. The surface and volume contributions are

Lighting simulations by computer is an application where the model (4.46) could be very
interesting. The model of Beckmann has already been applied in the field of image synthesis 60},

in this particular work, another approach is developed to describe the shadowing effects. eometrically separated, since the first one is only significant in the specular direction : in all

her scattering directions, the measuring apparatus detects the volume reflection.
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4.35
The size of the opaline glass sample is 20 cm x 13 cm. The reverse side of the sample has beg ) A
covered with two layers of black oil-paint. Indeed, it has been observed that this reduces the By(6.)) = (1-ps(l)) pd (4.50)
lane reflection by at least 90%.
ey ' s the diffuse reflection factor, defined as the quotient of the flux re-emitted by volume
The luminance factor is measured by the apparatus described in chapter 3, and the detector |s taring and the flux entering the material. This quotient is assumed to be independent on the

luminancemeter with its photopic filter V(A). The resuits are shown in figure 4.17 and in tabjg e of incidence.
4.2. The luminance factor has not been measured in the specular direction, because the mirror
like surface reflection was too intense.

Luminance factor (%) Opaline glass
Table 4.2 : Luminance factor of an opaline alass sample, measured for the angles of incidence o {=0°
. ' - 1=50°
("inc")_from_0° to 80° and for the viewing angles (* g o 1-80°
factor is here expressed in relative units ; the value 100 has been attributed to B4os.

obs/inc 0 10 20 30 40 50 60 70

- .6 90.8 89.0 83.8 89.0 89.4 86, 4%wkkiux
—28:8 33.2 96.8 95.3 96.6 98.7  97.8FFkrAA¥ 86.4
-50.0 100.6 98.4 99,7 100.9 101,5%****kk 97.8 89.4
-40.0 100.0 100.1 101.0 101.8%*x*#x*x 101.5 98.7 89.0
-30.0 100.4 101,0 102,1%%%x#%x 101.8 100.9 96.6 83.8 67.8
-20.0 101.8 101,5*%***xx 102,1 101.0 99.7 95.3 89.0
-10.0 102, 7***#%xx 101,5 101.0 100.1 98.4 96.8 90.8
[Qx%kxxk*  102.7 101.8 100.4 100.0 100.6 99.2 85.6
10.0 103.0%%%*x** 101,7 101.6 102.3 102.7 95.5 89.4
20,0 102.2 101.9x***x%%x 104.0 104.5 102.0 99.4 86.3
30.0 101.3 102.5 104.4*****%* 104.9 105.3 98.1 90.8
40.0 102.5 103.2 105.0 105,2k****%* 103,9 102.8 92.3 g
50.0 101.8 102.7 103.0 105.6 105, 2%%**w¥* 105;2 94.4 70.0
60.0 99.8 99,2 100.8 101.3 104.3 106, 4%%*** ***gz;f 74.9
70.0 91.0 91.4 92,0 94.2 96.5 98.0 99.0 59,

0
-90 -70 -50 -30 -10 10 30 50 70 90
viewing angle (degrees)

ure 4.17 : Luminance factor of an opaline glass sample measured in the plane of incidence; T is
angle of incidence. This factor is expressed in relative units, with 100% being attributed to
By(i=40°,6=0°).

18 ratio between the measured luminance factor (table 4.2) and the factor (1-ps()) has been
puted, in order to test the model (4.50). The reflection factor pg(i) is given by the curve b)

. ) qgure 2.4, for the air/glass interface (n=1.52).
A first analysis of these results shows that the assumption of a possible lambertian behaviour

only valid : calt be observed in table 4.3 that the mean value of this ratio is constant, within an accuracy of

% . However, the deviations around the average value increase with the angle of incidence. If it
considered that these deviations include the measurements' errors, then it can be concluded that
model (4.50) is well satisfying, from 8=-50° to +50°.

- at a given angle of incidence;
- for the viewing angles comprised between -50° and +50°.

This behaviour had already been found for the keramics sample, in § 3.5.2. It can be attributed &
the surface reflection, which is here perfectly specular, and which contains a significant part of
the incident energy : ps(i). So, only the complementary part (1-ps(i}) is available for the
volume reflection, and a more appropriate model than the lambert law would be :
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) . . By(6,0) for line al 4.37
Table 4.3 ; Analysis of the fatio 1-ps(P) , ) .
Luminance factor (%) Wall tile sample
150
Angle of incidence 1 (degrees) - 1=0°
d(degrees 0 10 20 40 70 80 g 1=50°
- 1=80°
-50 104.8 102.5 103.8 106.4 107.8 112.4 100 2
-40 104.2 104.3 105.2 | ----- 107.3 1018 :
.30 104.6 105.2 106.3 106.7 101.1 1108 W
-20 108.0 105.7 | ----- 105.9 107.4 113.1 50
-10 107.0 | ----- 105.7 104.9 109.5 09,7
o ]----- 107.0 106.0 104.8 103.3 109.2
+10 1073 | ----- 105.9 107.2 107.8 97.9 0= v " \

-0 -70 -50 -30 -10 10 30 50 70 90

+20 106.5 106.2 |  ----- 109.5 104.1 105.2 -
viewing angle (degrees)

+30 105.5 106.8 108.8 110.0 109.5 108.5
+40 106.8 107.5 tog.4 | ------ 111.3 - 1124
+50 106.4 107.0 107.3 110.2 113.9 114.7

jgure 4.18: Luminance factor of a wall tile sample measured in the plane of incidence; I is the
angle of incidence. This factor is expressed in relative units, with 100% being altributed to
By(i=40°,6=0°).

Average 105.9 105.8 106.5 107.3 107.8 107.8
Deviation | £2% +3% +3% +3% 16% +9%
Lurninance factor (%) Opaline plastic sample
For greater viewing angles {in magnitude), the model (4.50) is not accurate, probably becaus 150 -~
does not satisfy the Helmholtz principle of reciprocity. The following expression should be j ;:g;o
preferred . -2 {=80°

100

By(d,) = (1-ps(M) (1-ps(l6]) pd (4.51)
pd Is not considered as a reflection factor anymore, but rather as a constant value which does n 50
depend on the angles T and 8. Itis one of the parameters of the model which depends on the kind
material, as does the refractive index (n) which is used to determine pg(f) and pg(|0}). It can 0

be explained why the model (4.50) was valid between & = -50° and +50° : this is because the
factor ps(|6]) is approximately constant within this interval.

-g0 -70 -50 -30 -10 10 30 50 70 90
viewing angle (degrees)

The application of the model (4.51) to the opaline glass sample leads to maximum deviations 0
5% (i=10°), 12% (i=80°, 6<60°) and 18% (i=80°, 6260°), between the calculated and
measured luminance factors.

ure 4.19 : Luminance factor of an opaline plastic sample measured in the plane of incidence; T
he angle of incidence. This factor is expressed in relative units, with 100% being atlributed o
By(i=40°,6=0°).

mllar conclusions can be drawn for a wall tile sample and an opaline plastic sample (2mm
ck). Of course, the refractive index cannot be accurately predicted for both samples, but it is
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4.39
e coherent intensity which creates the image of the source Is expressed by the first term; this
'm vanishes outside the specular direction (82 = 81, ¢= 0). The specular reflection factor pg
‘pends on the angle of incidence 61, the refractive index (n) and the roughness of the surface :

again observed that the luminance factor is approximately constant between 6=-50° and +50°
a fixed angle of incidence. The deviations around the average value are of the same magnitude as th
deviations observed for the opaline glass, and they also increase with the angle of incidence

(fig. 4.18 and 4.19).

2 2
pa(01) = ag BsOUE4IR(01) (4.53)

Therefore, given that :
- the model {4.51) is fairly accurate for the opaline glass and two other samples (we can alsg

add here the keramics sample analysed in §3.5.2), ‘
- the physical phenomena involved in the process of volume scattering are so complex that a

must now be decided which value must be attributed to "as". The equation (4.26) expresses the

, . fa coshq )
pendence of this factor on the ratio (——x——' , l.e. on the roughness of the surface, but also

detailed analytical approach would be extremely difficult,

xplicitely) on the wavelength of the incident light.
- and given the measurements results obtained by Uetani and Matsuura [64],

w. experiments and observations (see chapter 2) have shown that the colour of the image
it has been decided to adopt the expression (4.51) as our mathematical model for volume flected by a non-conducting material was approximately the same as the colour of the source,

reflection. cept in the case described in §2.2.3. This contradicts equation (4.53).

Note

‘ cos61
. . ; . @ apparent discrepancy is eliminated, if it is considered that the ratio (G )is much
in this expression, pg Is practically independent on the wavelength, for most non-conducting

A

materials. On the contrary, pd is strongly affected by the wavelength and is mainly responsible eater than one, for usual roughness conditions and not too grazing incidence. As the ratio appears
_an exponential factor in ag (more precisely in the term 9 in equation 4.26), then this

ntribution to the luminance factor is often unsignificant (as -» 0). It is only significant at

the colour associated with the volume reflection.

azing incidence or for slightly rough surfaces : in these cases, asis close to unity. Intermediate
lues can hardly be found in practice : for 9 to be comprised between 0.01 and 0.99, o must be
the order of some tenths of wavelength (neither greater, nor smaller). This is the only

uation where ag is significantly different from 0 and 1, in an angular interval extending at

4.4. General model for light reflection and determination of the parameters for
any material

4.4.1, General medel including surface and volume scatlering ast on several degrees. This is the only situation where a complex dependence of the coherent

m on the surface roughness(s), the angle of incidence(61) and the wavelength(A) can be found.

The combination of the resulis obtained in §4.2 and 4.3 gives the following expression, which Is
valid for the luminance factor By, as well as for the radiance factor e : practice, two characteristic values are proposed for os :

J as =0, for significantly rough surfaces;
27 3(82 - 01) 8(9)

as = 1, for plane surfaces, or at grazing incidences.

Be(01,82,0) = ps(61) sin 201
T2 ) The second term of (4.52) represents the incoherent intensity reflected by the surface
oo |R512;|Rptz C(01) C(82) 1 e— 4g2 lgca 1. §4.2). The angle o and the shadowi.ng functi'on C(e) ar.e defined in equations (4.46) and
c0sBq cosb2  costu {447). Rs and Ry are the Fresnel reflection coefficients, which depend on the local angle of
ncidence 8j on the specularly oriented facets, and on the refractive index "n". The parameter osc
+ (1-psurf(81)) (1-psurf(82)) pd is the relative magnitude of this contribution.

Note : the angles are defined in §4.2.
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ne following phenomena cannot be simulated by the general model (4.52) :
multiple scattering between surface elements, though this effect could be included in pg;

The third term is the contribution of the volume reflection (§4.3). The equation (4.51) has b
adapted for a rough interface, since the factor psurf(0) Is the part of incident light energy
reflected by the (rough) surface, for an angle of Incidence 0 : this factor involves the coherent retroreflection, since the random elevation of the rough surface is supposed to be normally
distributed. A more genera! surface term like (4.48) or (4.49) could possibly be used to

include this phenomenon;

incoherent intensities :
2n ihe reflection on muiti-layer materials, on diffraction gratings and, more generally, on all

n/2 non-random rough surfaces (for the same reason as above).

T2 42
co1) |, |RsPrRe Clop)  3g2 "
psurf(81) = ps(81) + 0isc 081 on costo,

sind2 dop

(4.54
; is niot sufficient to determine the parameters from only a few measurements. Several
nsticcessful attempts have been tried, for example through the measurement of the luminance
actor at 1=50° and 6=-40° to +40°. It would be theoretically possible to derive the five
arameters of the model from these nine measurements. However, some parts of the diffusion

The five parameters of the model (4.52) are :
- the refractive index "n" of the air/material interface, used to calculate the Fresnel reflectic
coefficients and ps(6);

- us, the magnitude of the coherent surface reflection contribution (eq. 4.53); dicatrix (for 1=70° or 80°) would not be accurately approximated, since the model would be
- asc, the magnitude of the incoherent term; tted to another part where the angular gradient is weaker.
- pd, the magnitude of the volume contribution;
harefore, the best solution to determine these parameters seems to be a least square

pproximation between the mathematical model and all the measurement results obtained in the

lane of incidence.

- g , the roughness parameter of the surface.

The following phenomena can be simulated by the general model (4.52) :

- eflection; - X L o
specular 1  simplification would be 1o fix the refractive index to a value of 1.5 or 1.55 (glass), as it is

uggested by some authors [8,64] . But this is not justified in a general sense, and the refractive
dex will be considered as a variable parameter in this work, even though this choice implies a
uch complex determination.

- scattering effects due to surface roughness;
two kinds of surface reflections, and angular transition zone between them, if the general
expression is kept for os ;

- shadowing effects;

- influence of the angle of incidence on the scattering indicatrix : the magnitude of the surfac ' o . .
he "least square” function to minimize is a non-linear expression of the parameters (see eq.

onent tends to increase at grazing incidence (as the Fresnel coefficients increase) and ST _ _
comp t grazing .52). This kind of optimization process raises two major problems

therefore, the volume component decreases (since psurf increases);
. influence of the wavelength on non-metallic and metallic materials. For non-metallic

i . . on the one hand, it requires the determination of initial values for the parameters [52]. The
materials, only pd depends on A (in usual conditions : og=0 or 1);

minimization process is then carried out until a Jocal minimum of the function has been found:
one can never be sure that the true (smallest) minimum has been reached;

on‘the other hand, we should impose some constraints on the parameters (for example : n>1),
which would imply a more complicated minimization procedure.

- for metals, pa=0 (no volume reflection), and the Fresnel reflection factor possibly depends 0
the wavelength;

- reflection on transparent materials : pg=0 ;

. reflexion on materials "without surface" (or very rough : see chapter2) : (og = age= 0) and
(psurt = 0) leads to Be = pd (Lambert).
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& second assumption Is justified by the discussion on the equation (4.53). A simplified
nsition between the characteristic values of as (0 and 1) Is accepted. This simplification
plies 2 constant value of os which will allow, for some materials, to reduce the deviations

Though it is always possible to apply this classical optimization technique, another method js
proposed here to evaluate the parameters. This more simple method will avoid the two problem

raised above, by first assuming that, in the model (4.52) :

tween the measurements and the model (4.52).
- the term (1- pgurf(62) ) does not depend on the angle 02, for fixed values of "n" and (g),
nce these assumptions have been adopted, the following expression can be written. It is valid in

and for 0°< 62<80°; o
e plane of incidence and for 91262 (see 4.38 and 4.52) :

- the factor ag , appearing in the coherent term, is constant and comprised between 0 and 1.

Be(61,62) - Be(01,0)
- (R Q(H’Plg—%l)‘:(e“ez’g) A 2("' %)F(e1,o,%))

asc D (91 02,0, %)

ABe(01,02)
Obviously, the first assumption is only a crude approximation, and it will be left in the following' °

It is justified by the relative uniformity of the factor (1- psurf(8) ), which has been computed i
table 4.4. It is shown that this assumption should be verified, after the determination of the

parameters : this is particularly the case if the optimum parameter (g) is less than 1, or for

high values of the parameters (as or asc).

2 2
with : R%(n, o) = 1Rs(t R0, o)l

T2

LA

o0, T) _ClO1)C(OO2) 1 40297 (0102
192+ 6] = cosey cosby  costo, R

Table 4.4 : Value of (1- psurf(e) ) calculated b! {4.54) with os=0 and tsc=1

angle @ (degrees) 0< 0<80° (4.55)
0 20 40 60 80 Deviation
(cl;) 05 this expreslon, the angle 02 is positive in the half-plane containing the specular direction and
gative in the other half-plane.
n=1.1 0.998 0.998 0.997 0.995 0.980
n=1.5 0.960 0.961 0.955 0.920 0.760 the specular direction (81 = 62), the expression (4.55) is not complete, since the coherent
n=2.0 0:.892 0.895 0.880 0.791 0.398 +38.% rm has been omitted. In fact, this direction will not be taken into account during the comparison
(; =2 tween calculated and measured luminance factors, because :
n=1.1 0.996 0.996 0.994 0.989 0.972
n=1.5 0.933 0.928 0.910 0.879 0.830 on the one hand, the calculated luminance factor can reach infinite values, and this of course
n=2.0 0.818 0.805 0.766 0.711 0.667 raises an important mathematical problem;
(_ 5 on the other hand, the measurement procedure described in chapter 3 is not accurate in the
i specular direction.
n=1.1 0.998 0.998 0.998 0.995 0.979 ~
n=1.5 0.975 0.975 0.972 0.962 0.929 The direction of incidence (62 = -81) will also be omitted, since the measurement of the
n=2.0 0.931 0.931 0.931 0.925 0.899 +1.7% luminance factor is here impossible (see chapter 3).

Let Bem(91,82) be the measured value of the luminance factor. The optimum value of the
parameter agc will minimize the following expression :
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the value of og is fixed between 0 and 1, and this Is repeated every 0.1 step;

the surface reflection factor psyri(8) is calculated every 10° by numerical integration, as it
is. described in (4.54);

E (BeM(eﬂ.O) + ase D (91i:92j»ny I—,) - BeM(91i»92j)T
A= Bom(01i.62))

i

81j = 10°, 20°, ..., 80° ( 81j # 0°)
0gj = -70°, -60° ..., -10°, +10°, ... , +70° (see footnoted)
02j # 101 (4.56)

the following devlation must be minimized, with respect to pq :

2
- Vij+pd Wij - Bem(01i,92))
A2 = Z ( BeM(81i,02)) )

The Interest of this first step, i.e. the minimization of (4.56), is to reduce the number of

parameters from five to three (asc, n, and g). Let D;,j =D (eﬂ,egj,n, %) . The optimum valuk

o ' T
of the parameter age is (for fixed "n" and ) : 81j = 0°, 10°, ....., 80°
0pj = -70°, -60°, ..... , +70°
Op) # + 81

with :
23 2 *
Vij = Olgg R (n ,

E : (Bam(011.02)) - Bem(011,0)) D
d ﬂezM(en.ezj)

Ogc = (4.57)

01i+62] T *
E DF(eﬂ,ezj.(;))

2
= BaM{011,02))
Iv

Wij = (1-psurf(61i))(1-psurf(®2j)) (4.58)

and this leads to the optimum value of pqg :

E : (Bom(01i02)) - Vij) Wi
N BezM(eﬁ,ezj)

pd=—— (4.59)

w2
1]

2
desd Po1(011,62))
I, ]

The minimum value of the deviation Aq{eq. 4.56), corresponding to a;c , must then be analysed a

a function of the two other parameters (n , I ). This will be done at some sampled value of

n and (ZI')- in the following intervals : 1.1 <n<2 and 2 < g < 25. The optimum values n* an
((I,) " are those which minimize A1 : this will be illustrated by an example later.

It remains to determine the parameters ag and pgd in the model (4.52). At this moment, the firsl
assumption concerning (1- psurf(62) ) is lefi, and this term is again dependent on 02 and ds. The

minimization process is the following : he optimum value of as is the one which minimizes the deviation A for pq = @ -

8 Most samples of materials have been measured up to a viewing angle of 70°. If the term
(1- psurf{82) ) exhibits significant variations, this would not be in accordance with the first
assumption. Then, the viewing angle 82j could be limited to another value, less than 70° :

[(-)gjl < Bmax< 70°
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le of the d inatl f i |

¢ minimum value of Aq(eq. 4.56), corresponding to agc , has been calculated for several pairs

%), The results of this first study are shown in table 4.6 : they are expressed by the mean
This example will illustrate the principles which have been defined in the previous section

A
(§4.4.2). viation 100 Hﬁ (%), where njjis the total number of comparisons involved in (4.56). A

jmmum (7.32%) clearly appears at n=2.9 and T&= 6.5. A more detailed analysis would lead to

Sample of plywood
The measured luminance factors are shown in table 4.5. They are expressed in relative units, the
100% value being attributed to the measurement at 1=40° and 6=0°. The absolute value of the

o following oplimum values :

- n‘=2,9
luminance factor has been determined for this particular geometry (i=40°, 6=0°) by a -
simultaneous measurement of luminance and iliuminance (see §3.5.1) : the value of 0.391 has (E) = 6.60
been found. osc = 0.645

It can be observed in table 4.5 that the measurement is possible in the specular direction for this
sample, since the value of the luminance factor is not infinite. Therefore, the coherent surface
reflection term is expected to vanish (ag = 0). This is corroborated by the fact that no clear image

The optimum parameter n’ which has been determined by this process is the one
which minimizes the deviations between a mathematical model and measured
Juminance factors. It is not pretended here that this is the refractive index of the
plywood sample, though the theoretical developments leading to the model (4.52)
were based on this physical concept. The possible correspondence between this value
of the optimum parameter and the value of the refractive index (which could be
measured by other optical methods) will not be considered in this work. The same

of the source is visible on the material sample, even at grazing incidence (80°).

Table 4.5 : Lumi factor of le of ol ) 5 L anles of incid
("inc" in degrees) and several viewing angles ("obs" in degrees),

The value 100% corresponds to Bv=0.391. remark can be done for the parameter % which also derives from a physical concept.

obs/inc o 10 20 30 40 50 60 70 80

~70.0 98.1 93.1 90.1 90.3 92.7 97.2 106.0%****xx 138.1 Table 4.6 : Mean deviations A1 {defined in the text), calculated for several values of the
60,0 ©99.6 92.6 88.7 90.0 91.1 94.7s%mwwxx 106,0 117.7 . T . ..
Tc0.0 98.9 92.3 89.7 89.2 90.9%%xxxxx 94,7 97.2 107.1 parameters "n" and  ; (“tsig"), and for the sample of plywood.
21000 100.0  95.1 90.4  90.dx*skkxx 90,9 9.1 92,7 132.7
3000 105.4 97.0  93.9%#+xxxx 90,4 89.2  90.0  90.3 9 , . . ' ' '
_28.8 L0 Seesurin 930 0.4 89.7 887 S0.1  96.3 n/tsig 50 1.50 2.50 3.50 4.50 5.50 6.50 7.50 8.50 9.50
-10.0 128.3%x%xx#* 105.3  97.0 95.1 92,3 92.6 93.1  96.3 1,500 28.68 28.70 24.51 18.07 14.80 14.12 14.61 15.49 16.44 17.34
LOkxwkkar 128,3 112.4 1054 100.0  98.9  99.6  98.1 100.7 1.700 28.69 28.70 26.08 18.66 13.64 11.90 12,05 12.96 14.06 15.13
10.0 122.3 136.1 127.0 116.1 111.3 109.9 108.2 106.5 114.3 1.900 58.69 28.70 27.06 19.43 13.17 10.42 10.14 11.04 12.26 13.48
20,0 107.4 122.3 137.6 133.9 127.8 124.4 123.1 125.0 131.3 2.100 28.69 28.70 27.66 20.16 13.12 9.53 8.83 9.69 11,01 12.35
30.0 100.7 109.8 128.8 151.4 150.2 146.1 149.3 149.0 150.0 2.300 28.70 28.70 28.02 20.79 13.27 9.09 8.01 8.82 10.21 11.64
40,0 94.4 104.7 120.8 144.6 173.5 179.8 180.7 181.0 286.° 2.500 5870 28.70 28.25 21.30 13.51 8.92 7.56 8.32 9.75 11,22
50.0 92.7 102.4 118.0 139.8 171.9 218.7 224.8 233.1 245. 2.700 28.70 28.70 28.39 21.71 13.77 8.93 7.36 8.06 9.51 11.01
60.0 91.8 101.5 117.0 137.0 171.2 220.9 305.0 332.9 375. 2.900 5870 28.70 28.48 22.04 14.01 9.01 7.32 7.97 9.42 10.93
70.0  91.0 100.7 113.7 136.4 169.6 219.6 321.3 569.9 744.9 3.100 28.70 28.70 28.54 22.31 14.24 9.14 7.36 7.97 9.41 10.92
3.300 2870 28.70 28.58 22.52 14.44 9.28 7.44 8.02 9.45 10.95

The first step of the optimization process consists in the derivation of the parameters a;c , n* and

(I) ‘. This is performed by a calculation program called "fctref", which has been conceived for .
g e second step of the optimization process consists in the derivation of the remaining parameters

(pg and o ), through equation (4.59). The value of pg = 0.400 is obtained for ag= 0. The

ble 4.7 shows the optimum values of Ax(4.58), for as comprised between 0 and 1. It is indeed

abserved that the value ag= 0 corresponds to the minimum deviation between the model and the

this application.
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measurements. So, the optimization process and the visual observation come to the same e influence of the surface reflection contribution is clearly observed, even at an angle of

conclusion, that the coherent surface reflection term must vanish for this sample. fcidence of 20°, with a maximum luminance factor of 0.53. Obviously, this influence is more

igniﬁcant at 80°. This is due to the factor and to the Fresnel reflection factor which, for

cos62

Table 4.7 ; Mean deviations A» (defined In the text), calculated for several values of the

2.9, rises from A 2_0.238 at an incidence of 20° to A 2-0.433 at 80°.
parameter os,..and for the sample of plywood,

as |0 0.1 |0.2 {0.3|0.4 |05 Jo.6 0708|0911 Luminance factor incldence 20° (imodel ¢ measur.)
p; 0.40 |0.42 | 0.45 | 0.47} 0.50 {0.54 | 0.57 | 0.61} 0.65| 0.70 | 0.75 08
Mean Ao (%) [7.91 |8.30 | 8.74 | 9.21] 9.73 }10.3]10.9] 11.6] 12.4] 13.2 | 14,0 0,7
0,6
0,5
, 0,4
It can be verified that the factor (1-psyrf(6)) is approximately constant (+0.2%) for |8] < 70° 0,3
The direct comparison between the model and the measurements is illustrated in table 4.8, and in 0,2
figure 4.20. The results obtained by the model (4.52) are fairly good. Indeed, the relative 0,1

deviation is less than 20%, except in three geometrical configurations (i=80°, 6= -70°, -60° 0,0 . , . . . . . .

-90 -70 -50 -30 -10 10 30 50 70 90O
viewing angle (degrees)

and +20°). The mean deviation is about 5%.

Luminance factor Incidence 80° (r model ¢ measur.)
3
obs/inc
-70.0 5.5 1.5 1.7 1.5 1.2 5.6 13.3 .0 . 2
-60.0 4.4 .2 3.4 1.9 .7 3.0 .0 13.3 .
-50.0 1.0 2.3 2.8 2.8 .8 .0 3.0 5.6 .
-40.0 6.8 3.6 4.0 1.9 .0 .8 7 1.2 9.2
-30.0 9.1 8.5 4,4 .0 1.9 2.8 1.9 1.5 5.8
-20.0 9.3 7.8 .0 4.4 4.0 2.8 3.4 1.7 5.2 1
-10.0 .1 .0 7.8 8.5 3.6 2.3 .2 1.5 5.2
.0 NY 1 9.3 9.1 6.8 1.0 4.4 5.5 9.2
10.0 5.0 3.3 3.0 8.5 6.5 .1 5.4 9.6 18.5
20.0 14.4 6.9 1.5 1.7 3.6 .7 5.5 14,0 23.7
30.0 14.2 14.8 5.7 5.3 2.5 1.1 7.2 12.8 19.7 Y v ? " ’ v
40.0 13,1 13.2 9.6 1.2 8.9 7.7 6.5 7.0 11,2 -0 -70 -50 -30 -10 10 30 50 70 90
50.0 7.7 7.5 6.2 3.4 3.5 14.4 7.9 2.5 2.6 viewing angle (degrees)
60.0 3.7 .8 .6 1.1 1.3 6.2 16.8 5.3 9.7
70.0 1.9 4.0 5.4 4.7 .8 3.5 1.9 19.9 2.1
Ecart moyen : 6.00 % . . .
Ecart moien (sans speculaire) : 5.77 % Figure 4.20 : Sample of plywood : comparison between the measured luminance factors
Ecart maximum : 33.72 %

and the model (4.52).
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This sheet of paper has been fixed on a sample of agglomerated wood. All the measurement resung

i ~ Incldence 20° {@model & measur.)
are given in appendix 3.2. It must be observed that the coherent surface reflection term is again

Luminance factor

1,1

unsignificant for this sample (no image of the source). 10 | : E
0,9
The program "fctref" gives the following optimum parameters : 0,8
0,7
N 0,6
n=1,87 05
(}, - 6.22 04
* 0,3
Oggc = 1.468 0,2
pd= 0.950 0,1

ag =0 0,0 ’ . ) ) ’ ’ ’

.90 -70 -50 -30 -10 10 30 50 70 90
viewing angle (degrees)

It can be verified that the factor (1-psyri(8)) is approximately constant (£2.0%) for {0} < 70°
The direct comparison between the model and the measurements is illustrated in table 4.9, and in
figure 4.21. The correspondence is even better than for the plywood sample : the mean deviation s

f S incid 80° (Umodel ¢ measur,)
less than 3% and the maximum deviation is only 21% (i=70° and 6=70°). This is considered as a ncidence (

A

Luminance factor

. , 5
very good result, more especially as the measured specular values are taken into account, though ,
they are not involved in the optimization process. If they are excluded from the comparison, the 4
maximum deviation is only 14% ! /
3
aple 4.9 Reviation %) be gan 11e mea i8] MAance 1aclo ald i mnoae -
gescrived oy {ne optimum values of the paramete (Y nite sneet of pape ne angles of in 2
1
obs/inc 0 10 20 30 40 50 60 70 80
R R B B B R T I & 0 70 S0 @0 o 1o 20 50 70 90
-50.0 4 .2 1.9 7 4 .0 7 1.1 6.3 viewing angle (degrees)
-40.0 2.3 .4 .2 1.0 .0 .4 .7 .4 3.8
-30.0 1.1 .2 .9 .0 1.0 .7 .4 1.5 4.7
-20.0 1.8 1.2 -0 -9 2 1.9 -6 -2 -4 ; : Whi lomerated wood : comparison between measured
-10.0 11 0 1.9 5 T 2 1.2 9 1.4 Figure 4.21 : White sheet of paper on agg P
.0 .0 1.1 1.8 1.1 2.3 .4 1.1 .3 2.7 luminance factors and the model (4.52).
10.0 .9 .6 .7 4.0 2.2 .2 .8 L1 11,7
20.0 2.7 .2 7 1.1 2,1 2.8 2.7 6.9 10.6
30.0 2.6 5.8 1.1 1.1 1.9 3.0 1.6 4.1 8.9
40.0 4.9 3.7 3.0 2.3 2.5 4.4 1.0 .5 1.3
50.0 2.7 2,2 4.6 3.5 3.5 9.6 5.3 2.1 8.3 Opaline glass sample
60.0 2.1 3.3 3.1 .5 .4 5.1 13.5 5.1 12.4 : P 1
70.0 4.7 2.2 .1 1.3 2.9 4.5 3.8 20.8 11.3 _ This sample has already been analysed (see table 4.2), since it has been used to derive the model
_for volume reflection.
Ecart moyen : 2.64 %
Ecart moyen (sans speculaire) : 2.39 %

FEcart maximum : 20.81 %
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The image of the source clearly appears in the specular direction. In this direction, the
measurement cannot be performed, since the luminance of the sample is too high. The

measurement is also very sensitive to any variation of the angles T and 6. These observations
confirm the existence of the coherent surface reflection term : ag # 0.

was the case for the opaline glass sample, there is no minimum value of A1, which would be

. ; . T\ o .
sossary lo derive optimum values for n and (E) . The refractive index of most plastic

arials can be estimated at 1.5, and this value is attributed to n*. So, the optimum values of the

However, the incoherent term is unsignificant, since the surface is plane. Indeed, the resuits rameters are :

given in table 4.2 don't show any significant increase of the luminance factor around the speculs .

direction. n =1.60
(3)-

Therefore, the introduction of the parameter g in the model (4.52) is very important. Not tg '0

attribute an accurate value of the luminance factor in the specular direction : in fact, this value e ind

of little interest, since neither the measurement, nor the model, are significant in this direction. de 01.598

; s =

However, the influence of og on the factor (1-psurf(9)) is important, since it represents the
decreasing of the luminance factor when T and/or |6| approach 80°. If there were no coherent tem{:
(with ), the model would reduce to the Lambert law for 6+ and, obviously, it would not be
sufficiently accurate : see fig. 4.17.

hese values are in agreement with the visual and experimental observations, since the surfacp
rellection has a weak incoherent contribution (asc # 0) and a significant coherent term (os 1).

- \ be verified th - 8)) i i 9 °
Finding the optimum value of the parameters with the program "“fctref" is here particularly o ' that the factor {{-poun(0)) I8 approximately constant (<123} for (6] < 70

- . , . . he mean-deviation between the model and the measurements is 6.2% (excluding the specular
difficult. Indeed, there is no optimum value for n and (g) , since all pairs (n, I) lead to: the : ’ i

) rection) : see table 4.10 and figure 4.22.
same minimum deviation Aq(eq. 4.56), for agc = 0. Therefore, a realistic value has to be chosen,
such as, for example, the refractive index of glass n*=1 .52. This value cannot be undefined, since
it will influence the factor (1-psurf(8)). The optimum parameters are :

n=1.52
T *
()= undefined obs/inc 0 10 20 30 40 50 60 70 80
e = 0 -70.0 6.1 .2 5.6 10.0 1.2 1.8 10.3 00 17.2
se -60.0 2.1 5.5 7.5 2.1 7 5.4 .0 10.3 7.7
pd= 0.472 -50.0 4,7 6.4 2.6 .2 3.9 .0 5.4 1.8 10.5
* -40.0 5.3 2.8 1.2 1.6 .0 3.9 .7 1.2 11.9
os =1 -30.0 1.9 1.4 .8 .0 1.6 .2 2.1 10.0 4.3
-20.0 2.4 1.9 .0 .8 1.2 2,6 7.5 5.6 6.4
it b fied that th -10.0 9.4 .0 1.9 1.4 2.8 6.4 5.5 .2 11.5
can be verified t at the factor (1'psurf(9)) is approximatel constant (+119 & .0 .0 9.4 2.4 1.9 5.3 4.7 2.1 6.1 7.7
e soviat PP y (x11%) for 6] < 70° 10.0 14.6 .0 6.3 2.6 3.4 1.6 5.1 5.4 24.5
mean deviation between the model and the measurements is 2.8% (excluding the specular 20.0 4.5 15.2 .0 5.8 1.7 1.1 2.4 10,0 12.0
direction) and the maximum deviation is 15% (at 1=80° and 6=60°). 28‘8 3'2 2'2 12'? 17'2 6'3 7‘8 g'% 3'2 g'g
50.0 3.0 1.6 1.3 7.0 29.2 .0 12.7 2.3 15.8
White opaline plastic sample 60.0 1.8 1.3 .3 3.0 11.2 35.6 .0 28.8 4.4
70.0 1.7 1.3 .8 1.7 5.0 13.2 48.0 .0 14.7
From the visual observation of the illuminated sample, a significant coherent surface reflection
term can also be expected. Furthermore, the measurements have detected a weak, but significant Ecart moyen :  6.18 %
' ! Ecart moyen (sans speculaire) : 6.18 %

incoherent term (see appendix 3.2 and figure 4.22 at 80°). Ecart maximum : 48.01 %
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¢ main conclusion that can be drawn from this example is that it is difficult to attribute a value
the parameter n , for the samples with a plane surface. The same behaviour has been observed

It is quite difficult here (for the optimization process) to accurately modelize the incoherent
surface reflection contribution : indeed, the maximum deviation (48% at 1=60° and 6=70°) and
more generally, the greatest deviations between the measurements and the model, can be found
around the specular direction. The deviations observed at (1=80°) are probably due to
measurements errors, since the oscillations of the measured luminance factor (fig. 4.22) do ney

¢ a wall tils sample. A local minimum of A4(4.56) was found in the vicinity of ( — = 0.04),
hich i6 not a realistic value since the surface Is plane. Furthermore, this minimum was not very

seem to have any other physical meaning. arp. By fixing n'=1.5, a satisfying solution was derived, with a;(;:o and (g) undefined

ean deviation of 3.2% and maximum deviation of 23% ).

Luminance facior incidence 28° (mmodal ¢ maagur.)
8,7 . ;
\ Keramics sample (used as wall pavement in a tunnel)
8,6 - 1 ! h THie measured luminance factors have been illustrated in §3.5.2 (fig. 3.22). They are also given
8,5 V < the appendix 3.2.
8,4 ; N
This is a first example for which the optimum value of the parameter o5 is comprised between 0
0.3 and 1. The visual inspection of the illuminated sample is already not convincing, concerning the
8,2 sxistence of an image of the source : in fact, the image which is detected is rather fuzzy. Moreover,
8,1 the measured luminance factor in the specular direction has a high, but finite value : the
8,0 . . . . . . . . measurement is still possible.
-98 -78 -58 -38 -i18 18 3@ 58 78 98
viewing angle (degreas) It is surpnsmg that this uncertainty is also found in the evaluation of the optimum value of the
parameter o s. In the case of the keramics sample, this value is a s = 0.4.
Luminance factor incidence 28° (w model ¢ measur.) The results of the model are again very good : the mean deviation between the model and the
1.0 I measurements is only 2.5% (excluding the specular values) and the maximum deviation is 16%
8'2 ] (i=80°, 6=0°) : see figure 4.23.
0:7 / >
0,6 //
0,5
0,4 ¢
0,3 :
0,2
0,1
0,0

-0 -70 -50 -30 -10 10 30 50 70 90
viewing angle (degreas)

Figure 4.22 : White opaline plastic sample : comparison between the measured luminance factors
and the model (4.52).
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cidence increases. Of course, at grazing incidence, the luminance faclor also increases at the
ive viewing angles.

Luminance factor Incidence 20° @ model ¢ measur.)
12 ' . significant retroreflection effect can then be observed at grazing incidence. This phenomenon,
1,0 nich has bsen detected by the measurement of the luminance factor, can also be detected by visual
] {nspection of the illuminated sample. If it is assumed that luminance is correlated with perceptual
08 J prightness, then a significant decrease of the luminance can be cbserved from 6=-80° to 6=0°, and
0,6 also from 6=80° to 6=0°.
0,4
< Luminance factor incldence 20° {Imodel é measur.)
0,2 0,5
0,0 v v v v v v . v v 4
-g0 -70 -50 -30 -10 10 30 50 70 90 0,
viewing angle (degrees)
0,3 A
Luminance factor incldence 80° {}model ¢ measur.) 0,2
1,0 i
) } 01
0,8
J 0,0 v v . . v v v v .
06 -90 -70 -50 -30 -10 10 30 50 70 90
' viewing angle (degrees)
0,4
0.2 Luminance factor incldence 80° (imeodel ¢ measur.)
" 1,0
0,0 +— - - " 0.9
-90 -70 -50 -30 -10 10 30 50 70 90 08
viewing angle (degrees) 0,7
0,6
0,5
Figure 4.23 : Keramics sample : comparison between the measured luminance factors 0,4
and the model (4.52). 0,3
0,2
The same behaviour has been observed for a laminated wood panel : a s=0.2. 0,1
0,0 ” . v v v v v y 7

-90 -70 -50 -30 -10 10 30 50 70 90

Concrete block viewing angle (degrees)
This sample has an original behaviour : it is illustrated in figure 4.24. The luminance factor of

the concrete block is approximately constant for all viewing angles, except at the i i ;
PP y 9 ang P Regallve grazing Figure 4.24 : Concrete block : comparison between the measured luminance factors

ngl her ignificantly increases. Thi havi
angles where it signi y is behaviour is more accentuated, as the angle of and the model (4.52).
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~ p%. The greatest deviations are observed around the specular direction and/or at grazing
It is interesting to examine if the model (4.52) can take this particular behaviour into account idence
. ci .

. T. .
The optimum value of the parameter 5 s less than 2.83, which means that the surface reflectio he following problems have been detected :

contribution has two maxima outside the specular zone (see fig. 4.5) : this is well in accordance
with the measured values (figure 4.24). The optimum values of the parameters are:

it is difficult to evaluate n for the samples with a plane surface;
a clear understanding of the physical phenomena should allow the elimination of unrealistic
solutions, such as -;E = 0.04 for a smooth wall pavement.

n=1.26
I «
(G) = 0.75
asc = 2.079 44,4, Comparison with other mathematical models
pd= 0.283
a; =0 it is proposed here to compare the mathematical model (4.52) with the results of other models

which are more simple in their mathematical expression, to examinate If the relative complexity

The table 4.11 and the figure 4.24 again illustrate the satisfying performance of the model. of the equation (4.52) and the five parameters are necessary.

Four other models will be used in this test? :

the Lambert law : By(81,02) = pg , which has been chosen because it is very simple, and still

widely used in lighting applications.
obs/inc 0 10 20 30 40 50 60 70 80

the Beckmann+Lambert model :

01+02 2
R 2(;1 ’——D B
o2 - tg<ca
1 e 4g2 "

c0s0q CoSO2  costa Pd

3%
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-60.
-50.
-40,
-30.
-20.
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60.
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This is a more simple expression than (4.52) with only three parameters : asg, -GL and pg.

The refractive index has been fixed at a value close to the index of an alr/glass interface
(n=1.55). Shadowing effects are not taken into account, and the volume reflection
contribution is constant.
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Ecart moyen : 5.08 %
Ecart moyen (sans speculaire) : 5.04 %
Ecart maximum : 25.27 %

Conclusion of the examples
The general model for light reflection expressed by the equation (4.52) can approach the real

behaviour of materials with a fairly good accuracy. The mean deviation between the measured
luminance factors and the model is often less than 5%. The deviations are also usually less than

9 The expressions proposed here are valid in the plane of incidence, and the viewing angle 62
can have negative or positive values.



4.60 ‘
- the Uetani+Matsuura model :

4.61

Figure 4.25 : Comparison of the deviations (%) oblained with five models for light reflection,
o2 ween computed and measured luminance factors in the plane of incidence. The test-samples are
0 . ;
R 2(":1 1; % ) e~ 202 numbered as follows : (1) plywood , (2) white sheet of paper, (3) opaline glass,

Pv(61,02) = asc €0S61 CosO cosq, + Pd (4.61) k (4) opaline plastic sample, (5) wall tile, (6) laminated wood panel, (7) white wall keramics,

(8) concrete block.

The symbols are the same as in (4.60). This model is proposed in reference [64], with 5

gaussian distribution of the specularly orlented facets (see also equation 4.49), Three Mean deviation (%) B eq (452
parameters are here necessary : asc, of and pg. The refractive index has the value n =1 55 20 3"?‘”:3”:; L
: 7 Uetani +
~ Horl +L
- the Hori+Lambert model : ] Lambert

Hzgn, 912

Bv(01,02) = asc oopirocas (1= sin X)® + pg 10 4

A RN A RN

AR UCVRARAR LUK

_90° < 7
X = 162:01] ggo - It 62> 01 (4.62) 7
7
The surface reflection component is an experimental model described in reference [47], This 1 2 3
is also a model with three parameters asc, pd and the "specularity factor" «. It must be noted Samples
that the original model contains a factor (81), appearing in equation (4.1). This factor has
not been developed in the original paper. So, in order to compare this model with the others,
the following assumption has been made : the surf flection t hall h h B ea (452
g p : urface reflection term shall have the same Maximum devlation (%) Beckmann + L
expression as the models (4.60) and (4.61) in the specular direction (82=81). This explaing 100 E]  Uetani + M
. , 2 - - ; ;
the introduction of the factor A (n, 91) in (4.62). The refractive index has also the - Hor] * L
- - - [0 vLambert
value n =1.55. 8o 1l
60 4—H P
. . = e 2 |
These expressions have been tested on eight samples of materials, ranging from opaline glass to J 49 iy g |
concrete. The parameters of each model have been determined by a least square fit with the 40 - . ég? .—2 g : it 7 H
; ) i e Z 25 b et
measured luminance factors in the plane of incidence. The minimization procedure has always been k Z ‘égf = é Cudl —tH
; . . . . : bt Z ek . ;
illustrated in the previous section, for the model (4.52) . For the other models, the procedure:is 20 - é Eég l?g & ; i
) ' % % : § , )
more simple since there are only three parameters {one for the Lambert law) and since the ; §§§ B ég N g
dependence is linear for two of them (agc and pq). 0+ . " A' " T
p ( SC Pd) 1 2 3 4 5 6 7 8
Samples

For all models and all materials, the mean and maximum deviations (%) between the model and the
measured luminance factors have been recorded, excluding the specular direction. The results of :
the test are summarized in figure 4.25. it can be observed that the best model is the five
parameters expression (4.52). This comparison will help us to evaluate the benefit that can be
obtained with this model.

The model (4.52) is much more accurate than the Lambert law, for which the mean deviation is
comprised between 10 and 20% , instead of less than 5% for the general model. This discrepancy
is even more accentuated if the maximum deviations are considered. The experimental surface
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model.of Hori is not well suited for the materials tested, since th iati iy
‘ ed, since the deviations are nearly as high 4 pendix 4.1. Solution of the integral (4.14)
with the Lambert law. . P
— ) llowing integral must be solved10 : /
A significant benefit can also be obtained if we compare (4.52) with the two remaining models ° ° ’
{4.60 and 4.61). But this benefit strongly depends on the type of material. For slightly rough L7
surfaces (samples number 3, 4 and § in figure 4.25), both models give the same results as the 1w=1 e] Ve (W-:) ds (4.A1)
Lambert law, and the benefit is important. However, their performance increases with the
magnitude of the incoherent surface reflection term.
. -3

As could be expected, it is for the very rough surfaces (like sample number 8) that the r' =[xy &xy ]
performances of all models are quite similar. It is also for this particular sample that both modafs
{4.60) and(4.61) can be distinguished, probably because the Uetani and Matsuura model cannot :: - a_r)' a_r)' N
represent the effect observed at grazing negative viewing angles. ‘ N =3¢ X oy and J= N N.N

dS = J dx dy

N
= N o6 a8 1
n=y = Uyaxdayry ! (4.A2)
Introducing (4.A2) in (4.A1) leads to :
+X  +Y
Jvx+vyy+v,8(x,y)) 9 )
i =)I(dx \f( e X y z [.wxi.wy aiy+wzldy (4.A3)

The first term of the integrand is developed as :

i i o -
Jv.r'Qé 1 Li(‘v‘r') jv.or'
e Ix =vz[j Ix\E - Vy e (4.A4)

A similar expression is obtained for the y-derivative of & . Introducing (4.A4) in (4.A3) leads to :

Y X

- X v oo oo X i v
w. jv .r' Wy J jv ' Wy J jv .r'
= d - -
)J'( x\f(e & -y, [e ]-X & -y, [e ]-Y dx

(4.A5)

10 These mathematical developments can be found in Beckmann [38].
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The equation (4.14) is derived, if it is corftdered that the dot product —\;.7=0. The same e definit ‘ —‘; da ) . ions (4.7) and (4.16), the followi
calculation can be performed, replacing w by v, which gives : plying the :tlr:o c;ns of Pand Q , given in equati 7) {4.16), the following
essions are obtaine
o
jv.r - - - =
[ ] e (v.n)ds = Pq = P.q = cotgdi Pn
Y X -~
2> >0 == = =
V.V ;(d J,Y jv -l'd Vx jv .r'a X vy 17_?. Y Qq Q.q cotgd; Qn
vz X.Ye V' vz v [e ]-Xdy T vy [e ].y dx
- ..X — . * * bd Ed
Psx Qs = (|Rs|2 PpQn’ - IRpl? Pn Qp ) ( q +cotgdin )
(4.A6)
—>
T cotghin = —2— (4.A10)
+cotgdin = e .
Appendix 4.2, Calculation of the cross product (4.18) ) & k sin3y
The following cross product has to be solved :
Byt - - - - - o 3}?2
Psx Qs =(Rs Pop + Rp (Phnn - Pq q)) x(Rprp + Rg (Qn : - Qq :)) Pn=P.n = 2k cosd|
(4.A7)
A+cos@q sinbg cos¢ + A" sindp sing + At singy cosop
The definiti = ~ ; : 2 cosdj
e definitions of Psand Qg are given in equations (4.8) and (4.16) respectively. Developing
(4.A7) leads to : o5 5
- = Q.ko
> o, 2 . N Qo = Q.0 2k cosdj ~
Psx Qs = (|Rs| PpQn" - [Rpl2 Py Qp ) q + .
A-cos0q sinf2 cos¢ - At sin6p sing + A~ sin®q1 cosb2
# a7 » . 2 cosdj
L ('RSIZ PP Qq - 'Rplz Pq Qp ) n + RpRs (Pq Qn - Pn Qq');
— - - - -
(4.A8) p _3—’_ (ki x P). ko _Qkz ~Qnq
_ IR p=PP = " 2qinas; ~ ksin23 T singi
The unit vectors g, n and p must be expressed for the specularly oriented facets. The vector . is
- - o : .
a -v =Ko- i . - -5 o - -
parallel to -v =kp-kq (figure 4.4) : a a_, (ki x_ Q). kp _ Pko P (4AT1)
p = WP = "2 gin2s = k sin28; ~ sind ‘
- o
o oo Kkaki > Kpxkq
2 k cosdj P =2 sin2s;
-
2 - mar . kerks ke -
T 2ksing T ksing * colgdi n (4.A9)
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Finally :

—

2

|Rs|2+|Rpl? . |Rp|2-|Rs| ((b2-32) cos2y + 2ab sin2w)
_)Q

!;;x Qs =A2R 2(91,92,4» 5,} avec A2 = [A+]2 4 |A"|2

R %(01,62.0) = 2 2 sin2235;
(4.A14)

2 0
AR (01.02,9) = first term Is the mean value of this éxpression, whereas the second term fluctuates with y

i ; ; ; nd a zero mean value.
|Rs|2 [A“cos81 sinfa cosy - A+ sinf2 sing + A- snne1w

sin223;

equation (4.A12) can be expressed in the plane of incidence :

|[Rpl@ |A*+cosey sin62 cosy + A- sinfo sing + A+ sin91M
sin228;

- 2 IA+2
2 [Rs|2 |A"}2 + |Rp|2 |At] sin2(61 + 62)
A2 R “(01.02) = sin223;

in228; = 1-cos2(0y + 02) = sin2(81 + 62) (4.A15)
sin22§; sin228; = 1 - cos?(8q + 02)

i

kikz |2
1 - cos228; = 1(—1(2—2]

this expression, 6z is positive for ¢=0 (forward scattering) and negative for ¢=x (backward
1 - (cos81 cosbp - singq sindp cose)2 (4.A12)

I

cattering). Finally, we have :

|A- Rs(3i)|2 + |A* Rp(8))[?

The expression (4.A12) can be written as : R 2(91 0) = 2
2 [Rs|2 [Rp|?
2 = - +12 + -12
A2 RT01020) =G 2py, 1A - bAY * Sin2gg; AT + BAI 5 - ’91+92| (4.A16)
- 2
a = C0os81 sinB2 coso + sinBy cosey
b = sinép sing (4.A13)

ppendix 4.3. Solution of the integral (4.24)

For natural polarization, the relative proportion between A- and A+ randomiy fluctuates (see 1
chapter 2.1.1). Therefore, the reflected intensity, which Is proportional to R 2 (eq. 4.34), also he following integral must be solved!< :

fluctuates around an average value. It is this vaiue which is representative of the reflected X Y X VY J(vy (X-X")+Vy (Y-y")
X y

intensity, for a naturally polarized wave. I2 = Jdx fdy fdx' [dy' e Xp(Vz,-Vz)

-X -Y -X -Y
We introduce the angle of polarization v , between the fluctuating direction of vibration (or the jva(&-EY (4.A17)
direction of the electric vector) and the direction perpendicular to the plane of incidence, in order Xp{Vz,-vz) = <@ > :

to calculate the mean intensity. It follows that : A= A cosy and A*= A siny. The complex amplitude
"A" of the electric field is not time-dependent. However, the phase y randomly fluctuates between
0 and 2r, with a constant probability density function.

First, the cartesian coordinates are transformed into polar coordinates : (x-x') = cosw and
{y-y) = < sino. The equatlons (4.24) and (4.25) have indicated that the function x, only

depends on the coordinate . Therefore :
Replacing A~ and A+ by their value in (4.A13) leads tol! :

12 thematical developments can be found in Beckmann [38].
11 Considering also that sin225; = a2 + b2 : see (4.A12) and (4.A13). These ma p
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X Y 21 p(x.y.e) jr(vy COSO+V, sinaw) the expressions (4.22) and (4.24) are now applied to the case of a normal (gaussian) rough
lz=fdx' \J{d)" fdo [ e Xp(Vz,-vzi1) T dt (4.A18)
-X - 0 1]

The elevations & and &' are independent random variables if the points (x,y) and (x'y'") are xglt) = e e 1)
sufficiently far from one another. Therefore, the fonction %, becomes independent of < :
12
jvz8  -ivgE 2 - oT2
Xp(Vz,Vz) = <&~ > <e > = [(va)l (4.A19) Clz)= e (4.A24)

_The exponential factor can be written as :

)

The integral Iz can now be separated into two terms. The first one is : o m 72
o?V;%C LI
e = [ e T
L} L m
X Y 2 p(xiye) ft(vy cosw+vy sine) m=0
3= Jdx' [dy' [da | e xglt) T dt
X .Y o 0 g =vz2 a2 (4.A25)
xglt) = Xo(Vz,-Vz,1T) - |x(vz)|2 (4.A20) k Introducing (4.A25) in (4.A24) and (4.A23) leads 1o :
and the second one is :
- e mz?
- g™t T2
XY XYy ek vy (yy) » I3 = 2nS o9 oy ofJo(t Vxy ) T e dt (4.A28)
ig= Jdx Jdy fdx' fdy' e lx{vz)| m=1
-X Y X -Y
2., T2
2 2 Vixy 1%
= inc2 ina2 2 .
= [x(v2)l” (4XY)" sinc(vxX) since(vyY) (4.A21) The integral in (4.A26) can be found in reference [12], and gives : 5 — e 4m  \which
The integrand of (4.A20) is only significant in the vicinity of t=0. Therefore, the upper bound of findlly feads 1o : .
integration p(x',y',®) can be extended to infinity, if the dimensions (X,Y) of the surface are muc o _V2x T2
greater than the correlation length T : I3 = nST2 9 anm e 4m (4.A27)

en jr(vy cosa+v, sinw)

lg=4XY | xy(t)rde | e do (4.A22)
0 0

The equation (4.26) is derived, simply by adding i3 (4.A27) to I4 (4.A21).

The solution of the integral in @ can be found in reference [12], and gives : 2nJo(t Yvx2+vy? )
with Jg being the Bessel function of order zero. Using the notations S=4XY and
vxy=\/ v,(2+vy2 , the following expression is obtained :

oa

I3 =218 [ Jo(t vxy ) x4(t) © dt (4.A23)
0




5.1

hapter 5 : Application of the general model for light reflection
' to the radiosity technique used in Lighting Science

. Computerized lighting simulations : a short review

The use of the computer as a calculation tool in lighting applications started with a crude
reproduction of the simple tabulated methods [97], such as the "Zonal-Cavity Method"

57,90,91], or the "BZ Method" used in Belgium [103]. Appropriate' methods will appear only at
¢ beginning of the 70's.

one of these methods is the finite-element methed, or radiosity method. Each surface of the

iluminated scene is divided into several smaller surfaces called the “finite elements”, upon which

some assumptions are made. For example, the illuminance or the luminance is supposed to be
constant on each finite element.

The direct contributions of the light sources are first calculated on each element of surface. Then,
the mutual exchange coefficients corresponding to each pair of surface elements are calculated, and
{his finally leads to the determination of their total illuminance (direct + reflections). The size of

the finite elements must be carefully chosen : the assumptions are only valid if they are small
enough, but the computing time is also higher !

In particular, the radiosity technique described by Di Laura and Mistrick [82,83,99,100]
introduces an original method for calculating the direct contribution of the light sources, in
developing their spatial intensity distributions as series of Fourier-Hermite polynomials.

The first applications were performed with emply rooms. However, their shape could already be
rather complex. Afterwards, the illuminated spaces were modelized with their furniture, which
were described as additional polygonal surfaces [76,84,116] or volumes [70,71,75]. Taking into
account the furniture and complex geomeiries has led to hybrid methods where the radiosily and
light rays techniques were combined. The light rays were used to evaluate the influence of the

obstructions on the direct illuminance of any element of surface, or on the mutual light exchange
between two finite elements {70,75].

Other methods are the light rays methods, also called Monte-Carlo methods. The first attempts to
implement these techniques were made between 1985 and 1990 [80,88,94,110,114]. The
_principle is the following : each fight source emits a great number of light rays (also called
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"particles” by some authors), each of them carrying a part of the luminous flux of the source, Ty modelization of light reflection is always lambertian and that no significant progress has been done

number of rays per solid angle can be constant {94] or not (110]. In the first case, the luminous
flux carried by each ray is proportional to the intensity emitted by the source in this direction,

whereas, in the second case, this flux is constant for each ray and the number of rays per solid herefore, it is hoped that the general model for light reflection (4.52) proposed in the preceding

hapter will give new inspiration to lighting engineers, in order to develop new calculation
echniques taking into account non-diffuse reflections.

angle is proportional to the intenéity[

Each time the light ray reaches a surface in the room, it generates only one reflected or
transmitted ray. The new direction attributed to this ray is determined from the scattering
indicatrix of this surface, and the flux carried by the ray is attenuated by the absorption at the

n principle, ray-tracing methods can be easily adapted to account for general light reflection,
_onice they can rely on a sufficiently accurate model. It must be noted that some programs have

point of impact. Each time the light ray reaches a receiving surface or volume, is the contribution. already been developed with imaginary scattering indicatrices.

to the illuminance recorded.
It is proposed here to adapt the radiosity technique, in order to include the general model for light

_reflection (4.52). The practical influence of this adaptation on the calculated results and on the

The emission of a great number of randomly chosen light rays is statistically equivalent to a ‘
_computing time will be analysed.

deterministic method [110]. Of course, increasing the number of rays improves the statistical
accuracy of the results, but the computing time is also increased.
Image synthesis [72,73,74,76,81,95,98,109, 114] is an original method of displaying lighting 5.2, Adapiation of the radiosity method : the theoretical aspect
calculation results : the 3D view of the simulated space Is computed, with screen luminances at the
monitor directly related to the calculated luminances in the real situation. The following problems 5.2.1, Assumptions
have to be solved in this respect :

- the luminances must be determined in a great number of points in the space, in order to create Given the location and. light intensity distribution of all sources, the distribution of illuminances

an image with sufficient resolution; on all surfaces in the room must be calculated, with the following assumptions :

- a satisfying correspondence between screen luminances and calculated luminances must be
established [98,109]. the room may be of any shape, but it must be described by plane surfaces and plane

obstructions. Each surface is divided into smaller surfaces calied the fagets;

The image synthesis is generally operated once the distribution of luminances in the lighted scene
has been fully determined, either by the radiosity or the light rays techniques. The observer is the light sources are punctual, and their light flux is supposed to be stable enough. Line and

fixed in the scene and the image is then constructed, pixel by pixel, each pixel representing an area sources must be divided into several equivalent point sources;

element of surface of the real space.
the luminance factor is supposed to be constant on a facet, and it generally depends on the
This procedure can of course be very time consuming (several hours are needed for only one incidence and viewing directions;
image). Powerful computers are required for fast image generations or for more detailed
descriptions of the real space [68,107,115]. the illuminance due to interreflections is supposed to be constant on a facet : this
approximation is verified if the size of the facets is small enough. Anyway, this
approximation is better than the usual assumption of constant direct or total illuminance on a
Geometrical models are more and more sophisticated, More and more research works are dedicated facet [82];
10 a better calculation of direct illuminances. The presentation of the calculated illuminances and

luminances are also more and more attraclive. So, in this context, it is surprising that the
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- the incidence of the interreflections on a facet is assumed to be uniformly diffuse : the

opportunity of this assumption will be discussed later.

Consider the element of surface! dS;, which befongs to the facet number "i". The illuminance due 5

interreflections is written as :

N
Er(dS) = 3 2 : J [ @ BIL.dS14S) Eqr{dSiol)) COLISISK) S+ -
Sk

Figure 5.1 : Flux exchange between the elements of surface dS; and dSy . Definition of the angles ik
_)
(between the normal to dS; and the vector rix ) and 6x; (between the normal to dSk and the
-
vector -rix ). The distance between the elements is noted rix.

izk=1 .
The second term of the expression (5.1) is the contribution of higher order reflections (>1). It is
N also the contribution of the indirect illuminances Ejr(dSk). Now, the opportunity of the last
1 _“ B(diffus,dSk,dS)) Eir(dSk) CC(dSi,dSk) dSk (5.1) assumption of (§ 5.2.1) clearly appears : without this assumption would the second term of (6.1)
T Sk . be replaced by an infinite sum of terms, each of them corresponding the contribution of
izk=1 _reflections of a given order (from the second order to infinity).

_ This problem does not arise if all surfaces in the room are supposed to be diffuse. Indeed, the
classical Lambert law imposes that the luminance factor of dSk is equal to the reflection

The first term of this expression is the contribution of the first-order reflections : Egir(dSi;L) Is
the direct iluminance (Eclairement, in french) of the element dSk, due to the lamp "L", and
B(L,dSk,dS)) is the luminance factor2 of dSk, for an incidence defined by the point source "L" and
the viewing direction defined by the location of dS;.

factor (pk) of the facet number "k", whatever the incidence of light may be. The equation (5.1) is
then greatly simplified. Therefore, the introduction of a general (non-lambertian) reflection

implies :
(2) indicates that the contributions of all lamps "L" must be added. “N" is the total number of . on the one hand, more complex equations, mainly for the contributions of the first-order
L reflections;
facets. on the other hand, an assumption on the incidence of the interreflections.

The geometrical factor CC(dS;,dS) is defined by (see fig. 5.1) : This assumption is discussed in an appendix to this thesis. It is shown that it can be verified in

usual lighted scenes, where the proportion of "glossy surfaces"3 is limited. Of course, the

COSOj COSBj
CC(dS;,dSk) = —‘—'Lk‘é—& (5.2) distribution of wall luminances which creates the indirect illuminance of dSk is not uniform.

ik However, it does not exhibit excessive variations.
For. example, the assumption would not be verified in the extreme case of only one luminous wall
1 The element of surface must be distinguished from the facel : the first one is infinitely element on a black surround. The case of several discrete luminous wall elements on a black

small, whereas the second one has finite dimensions.

2 |n this chapter, the confusion of the luminance factor with an angle B is no more possible.
So, the subscript "v" which was added to this symbol is no more reproduced here. The
following developments which are established for the luminance factor, would be the same for
the radiance factor, if the assumptions were identical.

surround is also not propitious 1o the assumption. This situation could happen in the metallic

3 What is called a "glossy surface” is a surface which exhibits a significant coherent specular
reflection.
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reflector of a luminaire4 : the luminous wall elements would correspond to the locations of the
image sources. However, in this particular case, the great number.of image sources and their
geometrical extents could attenuate the discrepancy between the assumption and the real

the geometrical function CC(dS;,dSk) depends on the obstructions in the lighted scene;
B(diffus,dSk,dS)) is not constant for non-lambertian diffusers. If 82=0y; is the angle between
_)

distribution of luminances. the vector -rix and the normal to the facet number k", the model (4.52) gives :

In the equation (5.1), the indirect illuminance Ejr is supposed to be constant on any facet. We
assume that this constant value can be expressed by the mean illuminance of the facet (Ej,j) :

B(diffus,02) = p(62) = psurf(82) + pd ( 1-psurt(d) ) ( 1-psuri(02) )

2
N 2
Eirl = é—l g” Ei(dS) dSi = Eiri + 'El‘»_u Y Eirk Hik ,fori=tto N (5.3) psurf(d) = 2 jpsurf(ez) cos62 sinb2 do2 (5.6)
! k=1 0
with In this expression, p(62) is the reflection factor under an angle of incidence 62, psurf(62) is
the contribution of the surface reflection to the reflection factor (4.54), and psuyrs(d) is the
N surface reflection factor under diffuse incidence.
Eqri = ;1S—| Jj dsi ” (2 B(L,dS,dS)) Edir(dSk,L)) CC(dS;,dSk) dSk . |
i ¢ L Figure 5.2 illustrates the dependence of the luminance factor (ﬂ(diffus,ez) = p(eg)) on the
izk=1 k angle 02, for three materials analysed in the preceding chapter : the tunnel wall keramics, the
concrete block and the opaline glass.
Hik = ;- g“ ds; J-j B(diffus,dSk,dS;) CC(dS;,dSk) dSk (5.4)
i Sk The reflection factor is approximately constant up 1o 60°, since it mainly depends on the volume

_reflection contribution. Above 60°, the surface reflection significantly increases : this is

Eqrj Is the mean iluminance of the facet number "I' due to first-order reflections. Hix is the particularly the case when the coherent specular term is important, such as for the opaline glass.

mutual exchange coefficient between the facets Sjand Sk , if the factor B(diffus,dSk,dS;) is omitted ‘

(see the definition of the LLV. 845-00-71). In:the following, the luminance factor will keep its general expression B(diffus,dS,dS)).

The equations (5.3) can be expressed as a matrix equation. if5 Eyp is the column-matrix
(dimensions ; Nx1) of the indirect illuminances, Eqr the column-matrix of the mean
iluminances due to first-order refiections and G , a matrix NxN :

Hik

Eir= G Eqr  withGi=1and Gik=-Tg ik (5.5)

In the matrix equation (5.5), the unknown is the column-matrix Ejp . The elements of the matrix
E4r must be determined by numerical Integration, because the product (B Edir) has no simple

analytical expression. The same remark can be made for Hi , because :

4 private communication with Mark Jongewaard (Lighting Technologies)
5 Symbols in bold characters represent matrices.
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Raflection factor

-& Keramics

-0~ Concrete block
- A
8,8 P e D_% Opaline glass

E(dS) = 2 Eqgir(dS,L) + Ej(dS) (5.7)
L

Eir(dS) is calculated through the equation (5.1) : in this expression, Ej/(dSk) must be

replaced by Ej i , the mean indirect illuminance of the facet number "k", which has been

calculated during the preceding step;

8,4
»// Once the location of the observer's eye has been fixed in the scene (at point V), the luminance
0.2 distribution can be calculated as follows :
L,dS,V) Egi(dS,L diffus,dS,V) Ej(dS
a0 LidS) - ZB( ) EaidS.L)  pdiftus,dS.V) Ey(ds) (5.8)
8 28 48 68 ae L

incidence angie (degrees)

It is also assumed in this expression that the incidence of the indirect illuminance Ej/(dS) is

uniformly diffuse.
Figure 5.2 : Reflection factors of three materials, as functions of the angle of incidence 63

(degrees). This factor is identical to the luminance factor p(diffus,02), by the Helmholiz

principle of reciprocity. 5.3. Transformation of the finite-element (radiosity) method : the LUXCALC

__program
5.2.3 Calculafl { illumi { lumi - princiol ;
The main steps of the algorithm are the following :

_ Aprogram named LUXCALC has been conceived on the basis of the preceding algorithm. It is

written in Fortran. The present version 2.0 has been developed on a personal computer.
1) Data : room and obstructions geometry, sources locations and photometry, luminance factors

of all surfaces in the lighted scene; _ Our intention is not to develop a commercial, user-friendly software, but rather a computer tool

_ Which will enable to implement and analyse a new original method to calculate interreflections. It
must also be noted that no software presently available could be adapted to perform this task, and
that the conception of a new software was necessary.

2) Each surface Is divided into several faceis : "N" is the total number of facets;

3) Calculate , by numerical integration, the quantities Eqy,j (i=1,N) and Hi (i=1,N and
k=1,N, izk); The main options of LUXCALC are described hereafter. First of all are listed the data describing the
room geometry and the lighting installation.
4) Compute the solution of the matrix equation (5.5} , which gives the indirect illuminance on
each facet; The walls and the obstructions are rectangular surfaces. Each surface is described by
(see figure 5.3) :
5) Calculate the illuminance E, on each element of surface dS which has been specified as a

detector :
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-
- its number; v
-~ - ) )

- the local axis h and v, defined by their vector-coordinates in the main cartesian system A

g BEEE
- the coordinates of its centre (P¢), in the same XYZ system; - - -:- - -:-P- S _h,

- - c =

- its dimensions along h and v, in metres; f-dedoctods ShEs
. its reflection factor, or its luminance factor described by the five parameters of the model e

(4.52);

- adigit to indicate if the surface is recto (only the positive side, facing the normal vector

- - .
hxv,is considered), verso (negative side) or recto/verso.

Figure 5.4 : This surface is divided into 18 facets : np=6 and.ny=3.

Each point source is described by the following data :
its number;
the coordinates XYZ of its location (Pg);

- - .
All surfaces with the same local axis h and v are grouped in the same plane, in order to reduce

the computing time during the obstructions analysis. .
its luminous flux, in lumens;
N its intensity distribution, in candelas/1000 Im;
v

A

(@ (b)

- -
the vectors axe and nadir, which define the local system attached to the intensity distribution
curves : their coordinates are given in the main system XYZ.

LUXCALGC presently supports two local systems :
7 - the classical system (C,y) : see figure 5.5. "C" is the angle between the vertical plane
containing the direction of light emission considered, and the vertical plane perpendicular to

 \
|

.._)
the vector axe (C=0);

. the system of C.|.E. publication 30.2 [14].
Figure 5.3 :

(a) Parameters describing any rectangular surface. ‘ ' ‘
(b) Al these seven suriaces belong to the same plane Finally, LUXCALC supports two models for light reflection :

' - the classical Lambert iaw with only one parameter, which is the reflection factor of the
surface; '

Each is then divided into facets. The size of the facets can be estimated if it is considered
ach surface is - our general model described by the equations (4.52) and (4.53), with five parameters.

that the assumptions of §5.2.1 must be verified on each facet. In the present version of LUXCALC,

- -
it is the user himself who specifies the number of facets along h (nh) and v (nv) : see fig. 5.4. _ These data are written in an ASCI! file.

The receiving surface is a particular surface which is transparent for the light flux exchanges
between facets. A mesh of points is defined on this surface to indicate the detectors on which the
direct and indirect ililuminances will be calculated.

- -
6 h xv is the cross product of two vectors,
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e
1 P axe mentioned. The modelization errors can only be estimated by a comparison of the calculated
'/ n (_‘_’f _}, » _él,»;(e’ s results with corresponding measurements in the real situation.
9
4] C
I4 z the_discretization errors
¥ inherent in the finite-element method, these errors decrease with the size of the facets. They
n_a-cm are related to the assumptions of constant indirect illuminance and constant luminance factor
v on each facet, which of course are verified when the facet becomes very small.
X
_Y, (a) (b) approximation errors
nadir Some errors are deliberately generated during the calculation process to improve convergence
Figure 5.5 : of the algorithm. Some of them will be introduced during steps 3) and 4) of the algorithm

(a) The intensity distribution of the luminaire is described in the system (C,y), for several described in §5.2.3.

angles y = 0° lo 180°, by 10° steps, and for the angles C=0°, 90°, 180°, 270°.
Pg is the luminous centre of the luminaire. ‘ in most cases, the user of any lighting computer program is hardly aware of the magnitude of these

errors. In this work, we have deliberatly designed the accuracy as a fundamental parameter, and

the user will be allowed to specify a maximum bound to the approximation errors.

(b) Geometrical parameters describing any point source.

it is noted thal this option will generally lead to time-consuming calculations. However, it must be

5.3.2, Accuracy of the caiculated results
recalled that the "user-friendliness" is not one of our major objectives.
Once the assumptions of §5.2.1 have been fixed, the distribution of illuminances and luminances
can be calculated in the space. The solution of the equations described in §5.2.2 is unique. ;
The calculations performed by any lighting computer program (based on the radiosity or the ray-
tracing method) must lead to the determination of this unique solution. However, the exact
analytical solution cannot be calculated in most situations. The computer programs are then forced
to introduce other assumptions, which allow them to find an approximation of this solution.

Sometimes, very crude and Inaccurate approximations are adopted in order to reduce the

The calculation of Eqr,i and Hik (eqg. 5.4) requires the solution of quadruple integrals. These
integrals will be solved by the simple "rectangle rule” [78). In this method, the truncature
errors result from the approximation of the Integral by a sum : their magnitude is proportional to
h2, if "h" is the integration step [78].

computing time.
It is always possible to translate the integration intervals of Eqrj and Hix to the interval [-1,1],

The following errors in the lighting calculations can be distinguished : since all surfaces are rectangular. So, the general expression is :
the modelization errors
due to the assumptions adopted to simplify the real situation. Among them are the assumption of
point sources, the assumptions about the light propagation and light reflection, and the
assumptions in the geometrical description of the lighted scene. in the case of non-lambertian
diffusers, the assumption about the diffuse incidence of the indirect illuminance must aiso be
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1 1 ] 1 B Sk
Idx1 .[dx2 J dxa If(X1,X2,X3,X4) dxg = S, o < o itération 1 : F
-1 -1 -1 -1 i
x§ xf xf xf
M T X X I f(x1,x2,x3,X4) +o(h2) -
X1=X{ X2=X| X3=Xj X4=X] 5 itération 2 : F
Xj = -1+h/2, xf = 1-h/2 (5.9)
e o @ o ©® o o o Sk
f . s . . . . S @ 6 o o H o 6 ® @ itérati 3:F
The truncature error is divided by four, if the integration step is divided by two, and if this step i e00e ®soe lieration 5 ©
® @ O 9 L] 2 © @

is small enough. This leads to the Richardson extrapolation {78] : in this iterative algorithm, the
expression (5.9) is calculated with several steps *h" , which are halved at each iteration. The
value of the integral calculated at iteration number "i* (Fj) is then corrected, taking into accoun
the preceding values ( Fi, ..., Fj-1), in such a way that the convergence to the exact value is

-y

Figure 5.6 : Principles of the iterative calculation of the quadruple integrals in Eq,; and Hi .
accelerated. The iteration is stopped when the difference between two successive values

(Fi- Fi.1) falls below a given threshold. The algorithm described in figure 5.7 indicates that the solution of the integrals in Eyyj and Hix

is carried out in two steps :

In our algorithm, this threshold precisely corresponds to the maximum error specified by the . the first step is the calculation of the quadruple integral by Richardson extrapolation, which
user. is efficient when the function f() is not varying too much in the expression (5.9). This is the
case when the distance between the facets Sj and Sy is much greater than their dimensions;
Figure 5.6 illustrates the calculation of Eqrj and Hi . if the convergence of the first step is too low, a second step is carried out. It consists in the
solution of two double integrals, with a Richardson extrapolation for both of them.

The main drawback of this procedure is that it requires a great number of evaluations of the
function f(). For example, 256 evaluations are needed at the third iteration and 4096 at the

fourth iteration. Therefore, the computing time can be excessive if the accuracy specified by the Next facet : k=k+1

Lo

user is too important.

To overcome this, the integration can be performed as two double integrals, instead of one
quadruple integral. This procedure is faster as early as the third or the fourth iteration. This Is
illustrated in figure 5.6 : in the original method, the next iteration creates four times more
elements dSk , for each dS;. This multiplication is often not necessary for all dS;, except for some
of them (for example those which are closer to the surface Sk). The calculation of two double
integrals can take this particular problem into account, by attributing at each surface element dS

First step:
solution of the = fLecowa J
quadruple integral

Y

Second step :
solution of two
double integrals

the required number of elements dSy .

Figure 5.7 : Calculation algorithm of E1rk , the mean indirect llluminance of Sy due to first-
order reflections on Sj, and Hy; , the mutual exchange coefficient including B(diffus,dS;,dSk).



Figure 5.7 (bis) : Calculation algorithm of E1rk and Hg; : first step. Figure 5.7 (ter) : Calculation algorithm of E1rk and Hy; : second step.
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Notes :

- The number of iterations is limited to 10 within the Richardson extrapolations (49 points per
facet I). This has been considered as sufficient in most situtations tested.

- The expression (5.9) is not valid if the integrand is discontinuous. Therefore, the Richardson
extrapolation can theoretically not be applied, if the visibility between the facets Sjand Sy is
partially obscured by the obstructions in the room. The following option has then been
adopted: the Richardson extrapolation is carried out on the result without obstruction. After
convergence, the result (Eyri or Hix) is proportionally corrected by the contribution of the
obstructions detected between Sj and Sk .

The following example illustrates the interest of the procedure which has been developed to
calculate the mutual exchange coefficients” Hik. These coefficients are calculated in a simple

rectangular enclosure, for which an analytical solution of the integrals (5.4) can be performed
(figure 5.8).
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Figure 5.8 : Test room. The facets are numbered from 1 to 16 .
The dimensions are : 10m along X, 20m along Y and 4m along Z.

7 in this example, Hik is really the mutual exchange coefficient, since the luminance factor is
equal to 1.

Exact analytical solution Version 1 Version 2 Version 3
Hi5 = 17.8 18.0 17.9 17.9
Hie = 6.65 6.72 6.68 6.72
Hi7 = 298 2.97 2.97 2.97
Hig = 1.46 1.45 1.47 1.43
Hig = 109 12.0 11.0 11.0
Hi,10 = 1.01 1.04 1.00 1.00
Hi11 = 1.87 1.88 1.88 1.87
Hi2 = .567 .570 570 .570
Hi,13 = 5.22 5.54 5.16 5.35
Hi,14 = 1.18 1.23 1.22 1.21
Hi,15 = .208 .208 .208 .206
Hi, 16 = .165 .165 .163 .163
He11 = 3.82 3.85 3.85 3.82
Hg,12 = 1.59 1.58 1.58 1.59
Hg 13 = 4.23 4.33 4.17 4.39
Hg 14 = 1.09 1.09 1.08 1.08
Hg 15 = .201 .202 .202 .199
Hg 16 = .382 .382 .382 .382
Hia15 = .308 .308 .308 310
Hi3,16 = .275 .275 .275 275
Maximum deviation8 10 % (Hq,9) 4 % {H1,14) 4 % (Hg,13)
C.P.U. time (sec)? 288 74 47

9 On a Macintosh SE30.

8 Relative deviation from the analytical value. The element corresponding to this maximum
deviation is indicated between brackets. The maximum error gpecified by the user is 10%.
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The exact analytical solution of the integrals can be found in table 5.1, together with the solutions

of three algorithms :

The expressions (5.7) or (5.8) must now be calculated.
- version 1 : four simple integrals;

- version 2 : quadruple integral; _ The direct luminance of the element of surface dS, due 1o the point source L, is calculated

version 3 : combination of the solution of the quadruple integral (first step, during three

following the usual laws of photomelry. The luminous intensity (in candelas), emitted by the light
iterations) and the solution of two double integrals (algorithm described in figure 5.7).

source, is determined by linear interpolation between the data provided by the user at discrete

angular values (see §5.3.1).
The execution of the third algorithm is significantly faster than the others. In this example; the

maximum approximation error specified by the user is 10%. This upper bound is respected by
the program, if the results are compared with the analytical solutions. The accuracy obtained with
the algorithms is even much better than the minimum accuracy specified by the user. Indeed, only

four among the 20 values calculated by the third algorithm lead to errors greater than 2% (see
table 5.1). )

The indirect illuminances are calculated following expression (5.1), with Eir{dSk) = Ejrk . This

calculation requires the solution of double integrals, and the Richardson exirapolation is again
applied here.

Note

The assumptions made aboul the facets are not used to calculate the illuminances due to first-order

if an interior obstruction is introduced in the room (see figure 5.9), the performance of the third reflections : so, these illuminances are not affected by discretization errors.

algorithm is still more obvious : 3334 seconds C.P.U. for the version 1, 139 seconds for the
version 2, and 57 seconds for the version 3.

5.3.5.C . f LUXCALC wi \tical solu
Z

A

This test is described in an appendix to this work. The conclusions are summarized hereafter.

Two situations have been analysed. In the first situation, all surfaces of the iluminated space

obeyed the Lambert law of reflection. In the second one, the ceiling was characterized by a
Lae gl i juminance factor obeying equation (4.52). In both situations, the accuracy specified by the user
4 __,*" [ 10 has been respected by the program, except for three intermediate results.
o
/YV" 10
- ' In the first test, two intermediate results were calculted with an error of, respectively, 12% and
! 10 ! X 14% (instead of 10% maximum specified by the user). In the second test, only the indirect

illuminance of the detector due to high-order reflections (>1), and coming from the ceiling, has

) ) been estimated with an error greater than 10% (12%).
Figure 5.9 : Test room with one obstruction. The dimensions are indicated in metres.

it can then be concluded that the accuracy of the computation can be guaranteed. This conclusion
has been confirmed by several other tests not reported here (see also §5.3.3).

The maximum approximation error specified by the user is also 10% : it has also been verified. in

the example of figure 5.9, at least for the coefficients Hik for which an analytical solution could be
computed.
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ison of LUXCALG with in-s!

It has already be mentioned that this kind of comparison is difficult to analyse, since it
encompasses all sources of errors : approximation and discretization errors, of course, but alsg
the modelization errors. The comparison between calculated and measured results is only
significant, if a detailed error analysis is carried out at the same time. Otherwise, there are so ;
much factors influencing the results that a good agreement could eventually be obtained by chance.

Figure 5.10 : Geometry of the test room

Floor Y Ceiling

The interest of this particular test is of course to illustrate the good performance of LUXCALC, but

. . . 12
also to discuss about the problems raised during the "validation"10 of the program. 0

1,52

The proposed example is ‘an office with only some pieces of furniture (figure 5.10). This simple
configuration will allow us to approach the real situation with a reasonable accuracy and,
therefore, to minimize the modelization errors. The measurements have been underiaken in
collaboration with the members of the French "Institut National de Recherche et de Sécurité
(I.N.R.S.)" from Nancy (Service de Physiologie Environnementale!!) , during a common
research on the simulation techniques used in Lighting Science [105].

2,00

i !
Table 1.00 3,50 »4—— E e

5,00

The horizontal illuminances (workplane at 0.85m height) have been measured at several points
located on a mesh defined in figure 5.11, with a LMT illuminance-meter. The luminances have
been measured on the walls X=5m and Y=3.5m, on the centre of the ceiling, on the center of the
table and on one point of the floor (point "I" in figure 5.11). The Hagner luminance-meter has an

0,35 0,16
0,32

Black curtain v Black curtain (for artificial
lighting only) 3,42

w2 Radiator ”;l‘ 077

~ Radiator

aperture of t°,

The artificial lighting is provided by two luminaires equipped with fluorescent lamps. A black
curtain (shown in fig. 5.10) has been hung in front of the windows to prevent daylight entering
the room. The luminaires are of the type Mazda, Major 258GL. Both of them are equipped with fwo
tubular fluorescent lamps of 58W (5400 lumens). The relative luminous intensities (in candelas
per 1000 lumens) have been measured by the "Laboratoire Central des Industries Electriques
(L.C.L.LE.)" of Paris : they are shown in figure 5.12, in the vertical plane perpendicular to the

0,32

Wall in the plane x=0 Cross-section of the room

luminaire axis, and in the vertical plane containing this axis. Artificial lighting configuration

10 This term means the test of a computer simulation program which consists in comparing
its results with measurements of illuminances or luminances in a real situation.

11 The author wishes to thank S.Salsi and A.Barlier for their co-operation, and also for their
authorization to publish these results.
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Figure 5.11 : Location of the measurement points
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Figure 5.12 : Luminous intensity distribution curves of the luminaire Mazda Major 258GL; in
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The following data must be given to LUXCALC :

- geometrical data : coordinates of the six faces of the rectangular enclosure, the black curtain,
the radiator and the table (recto/verso surface). The door of the office has the same reflection
factor as the adjacent wall and, therefore, it has not been modelized as a separate surface;

- each luminaire has been modelized by three point sources, located in Y=1.205m, 1.715m and
2.225m, and 0.04m below the ceiling (i.e., approximately the height of the luminous centre
of the luminaire). Each point source emits a flux of 3600 lumens (10800 lumens for each
luminaire), distributed following the curves described in figure 5.12;

- the reflection of the surfaces is represented by the Lambert law, as no other data were
available. This assumption seems rather realistic here, except perhaps for the table. The
reflection factors have been measured in-situ, through the ratio between the luminance of the
wall viewed along its normal, and the luminance of a standard white diffuser. This ratio
approximates the factor B(diffus,0°) = p(0°). The results are :

carpet covering the walls : p=0.63
celling : p=0.80
floor : p=0.79
black curtain : p=0.04
radiator : p=0.49
table : p=0.09

The measurement results are compared with the corresponding calculated values in table 5.2. Two
configurations have been tested : first, with only the luminaire number 1 switched on and,
secondly, with both luminaires "on". The calculated values have been obtained with LUXCALC : the
maximum approximation error has been fixed at 10%. The computing times on a Macintosh SE30
are 11188 sec. for one luminaire "on" and 14759 sec. for both luminaires "on".

The first conclusion is that there exists a systematic deviation of about 10 to 20% between the
calculated and measured values. This deviation can be explained by (one of) the following reasons ;

- the luminous flux emitted by the lamps has been found in the technical description provided
by the manufacturer. However, the iamps were probably aged, and this value of the flux could
not be valid anymore;

- the linear interpolation in the luminous intensity data cannot be incriminated here, because
the curves in the CO and CS0 planes are very similar for this luminaire. However, it could be
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argued that these intensity curves have been measured at 26m distance, and that they are
applied here to calculate illuminances at only 2m55 from the luminaire {distance to
workplane). This could lead to a fundamental error, which could possibly be overcome with
the help of near-field photometry [66,89,101,111].

Yet, an attempt has been made to analyse this error, by correcting the luminous. intensity
distribution, as if it were measured at a distance of 2m55. To do this, it has been assumed that
the luminaire could be considered as a rectangular source with uniform luminance. We
obtained new calculated illuminances which were about 3% below their value indicated in
table 5.2 {105] : this cannot explain the total deviation observed in this table between
calculated and measured values;

) - Comparison between measured and calculated illuminances. The illuminances have been
| 1 LUMINAIRE 2 LUMINAIRES
Point calculated| measured | deviations calculated | measured | deviations
‘values values (%) values values (%)
A 327 266 23 419 356 18
B 437 371 18 542 477 14
C 338 294 15 432 391 10
D 357 287 24 506 431 17
E 498 415 20 683 580 18
F 371 319 16 524 471 11
G 290 231 26 538 454 19
H 383 322 19 713 605 18
1 300 254 18 5587 487 14
J 171 147 16 486 413 18
K 213 183 16 660 562 17
L 176 152 16 504 439 15
M 88 73 21 360 315 14
N 104 86 21 4886 434 12
o] 90 78 15 373 340 10
Average 276 232 19 519 450 15
Maximum 26 19
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- also, dividing the fuminaire into three point sources cannot explain the deviations observeq :

indeed, if the luminaires are discretized into 6 point sources, the calculated illuminances ars ‘

not significantly modified (less than 1%);

- the discrelization error has also been analysed : 83 facets (of about 1m2 each) have been used

to solve this problem. If their size is further reduced, the calculated values are no longer
modified. it must also be recalled that the approximation error is less than 10%;

- the illuminance-meter could have introduced a systematic error;

- the reflection factor under normal incidence could not correctly represent the reflection of
the surfaces.

The first and the last explanations are the more plausible. in particular, an attempt of direct
illuminance measurement under the luminaire number 1 has given 300 lux. The detector was
placed just below the fuminaire, at 2m55 : so, the intensity is | = Ed2 = 1951 cd. If it is
corrected to take into account the geometrical extent of the source (passing from 2m55 to 25m),
the intensity becomes 2068 cd. Now, the corresponding intensity given by the manufacturer for a
flux of 10800 lumens per luminaire is 2716 cd, i.e. a deviation of +31%.

This fast analysis shows that the systematic deviations observed can be explained by an error on
the flux data. As we were not able to measure exactly the flux emitted by our luminaires, it was
decided to compare the relative distributions of the llluminances on the workplane, in order to
eliminate the systematic errors. So, the lamp fluxes have been corrected in the calculations, in
such a way that the mean calculated and measured illuminances on the workplane were identical.

The results are shown in table 5.3 : the relative distribution of illuminances is now calculated
with a mean deviation of only 2% , and a maximum error of 6%. This is a very good result if,it is
compared with the approximation error specified by the user.

We had the opportunity to compare these results with four other softwares, during our common
research with the L.N.R.S. of Nancy. The conclusion was that LUXCALC gave the more accurate
relative illuminance distributions, i.e. the closest to the measured distributions. In particular,
the leadership of LUXCALC was the more significant at point M, N and O of the workplane
(fig.5.11), and for one luminaire switched on.

anie L \0MDa QN _pelween (e ca oG and Mme red IHUmINance 1X}) 1 ne room o
. o . s e .

figure 5.10. The flux of luminaire number 1 _has been r
- ’ i 1t . o

1 LUMINAIRE 2 LUMINAIRES

Point calculated| measured | deviations calculated | measured | deviations

values values (%) values values (%)
A 275 © 266 +3 357 356 +0
B 367 371 -1 461 477 -3
C 284 294 -3 368 391 -6
D 300 287 +5 434 431 + 1
E 419 415 +1 5§85 580 +1
F 312 319 -2 449 471 -5
G 244 231 + 6 487 454 +3
H 322 322 + 0 618 605 +2
| 252 254 -1 483 487 -1
J 144 147 -2 426 413 +3
K 179 183 -2 580 562 +3
L 148 152 -3 443 439 +1
M 74 73 +1 318 3156 +1
N 87 86 +1 430 434 -1
(0] 75 78 -4 330 340 -3
Average 232 232 2 450 450
Maximum

N.B. Average and maximum deviations are of course related to the absolute values

The table 5.4 gives the luminances calculated at several points in the room (the mesh is described
in fig. 5.11). The fluxes of the luminaires have been corrected as explained above. It can be
observed that there remains a systematic deviation of about 10% for the surface Y=3.5m, which
is more important that the mean deviation detected for the illuminances (about 2%). However, the
correspondence is salisfying, if it is considered that the luminances are direclly affected by the
modelization errors on the surfaces' reflection data.
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Note that this is also valid for the modelization of the room geometry, the sources, or the
obstructions : it is difficult to discuss about the comparison between calculated and measured

Surface Y = 3.5m Surface X = 5m
Peint calculated| measured | deviat. Point | calculated measured| deviat.

values values (%) values values (%)
Wi 44 40 10 V1 57 55 4
w2 59 56 5 V2 77 77 0
W3 63 59 7 V3 59 59 0
W4 62 60 3 V4 38 35 9
W5 55 53 4 V5 53 57 -7
Wé 28 23 22 Vvé 39 38 3
w7 42 37 14
ws 42 35 20 Average| 54 54
wo 46 42 10 Max.
W10 38 33 15

Ceiling 43 41
Average 48 44 11 Table 17 17
Maximum 22 Floor(Pt.l] 98 83 18
N.B. - Average and maximum deviations are of course related to the absolute values.

- The last three points are located at the centre of the ceiling, at the centre of the table, and at

point | of the floor.

This example again illustrates the necessity to accurately characterize the luminous refelection of
all materials in the lighted scene, not only to perform reliable simulations, but also to better
investigate the origin of modelization errors.

Considering the luminances calculated in table 5.4, the law of reflection could be modified, and the
influence of this modification on the calculated resuits could be analysed. This would allow to
accept or reject the assumption, which states that the deviations are mainly due to modelization
errors on the reflection properties.

results, if sufficiently reliable and realistic models are not available.

5.4. Application of the general model for light reflection In LUXCALC
5.4.1. Luminance factor calculation

The radiosity method described In this chapter can be applied for any expression of the luminance
factor : this factor could be derived, either from measurements (see chapter 3}, or from
mathematical modelization (see chapter 4).

This last option is developed here. This is not the most simple way of proceeding, but the advantage
is that the mathematical model can give the luminance factor for all angles of incidence (64) and

viewing (02.,¢).

Let us first recall the general model of reflection derived in the previous chapter :

2 2n 5(02 - 081) &
B(61.82,0) = os A @1 m— éinz2911) @
\ clo) o _Titgza
. 01 02) 1 " 402
+asec A (3in) cos0q C0s82  costo ¢
+ (1-psurf(81)) (1-psurf(62)) pd (5.10)

R Z(Sa,n) is the Fresnel reflection factor, which is calculated for the angle of incidence §;j and the
refractive index "n". The angles 5jand o are derived from the expressions (4.A12) and (4.29),
respectively. C(0) is a correction factor which has been introduced to take into account the
shadowing effects (4.47), and psurf(8) is the surface reflection factor given by (4.54). "8"

represents the Dirac pulse.

The five parameters of the model are :

- the magnitude of the coherent surface contribution, as;
- the magnitude of the incoherent surface reflection, asc;
- the magnitude of the volume reflection, pd;
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T
- the roughness parameter of the surface, (E): All these problems induce an increasing computing time, when non-lambertian surfaces are taken
into account : this will be analysed in the following. For example, the last problem mentioned

above would require the solution of a double integral ( psurf), each time the luminance factor must

o

- the refractive index, "n
The model appears in the following sections of the LUXCALC program : be evaluated.
- the calculation of first-order reflections, i.e. the first term of (5.1) or the illuminance Eqy

in equation (5.4). This calculation requires the evaluation of B(L,dSk,dSy); To overcome this difficulty, it must be noted that the reflection factor psyri only depends on one

variable (the angle of incidence). Therefore, this factor can be tabulated, in 51 discrete values

- the calculation of higher order reflections {second term of (5.1)), and of the mutual exchange
(i.e. for cosd = 0.02+, j=0,50). A linear interpolation on (cos8) will lead to the reflection

coefficients Hik in equation (5.4). This calculation requires the evaluation of

B(diffus,dS,dS;). factor of any angle 6. The same method has been adopted for the luminance factor B(diffus,8)= p(8)

: see eq.(5.6).

The evaluation of B(L,dSk,dS)) raised several specific problems :
the determination and memorization of the angles of incidence on the element dS, for each
light source L. Two angles (84sk,0dsk) must be calculated to characterize the direction of the

An important problem is also the calculation of the coherent surface reflection (for as=0). The

juminance factor has been separated in two contributions, in the first term of equation (5.1) :
- the coherent term (os); -

incident light ray (figure 5.13);
the contribution of the two others terms (represented by agc and pd).

The second contribution is calculated as explained in §5.3.3 for the lambertian reflection. The
first contribution is determined by creating first-order image sources, for each pair (real
source, specular facet). Each created image directly illuminates the receiving points, and these
contributions are registered if the emitted light rays cross the corresponding specular facet
(otherwise, the image source is an j i " one).

Incidence 0

This particular treatment of the coherent reflection is necessary, if we want to be sure to delect

this contribution. Otherwise, this detection would be uncertain, because of the Dirac pulse in
(5.10). The calculation of the mean illuminance due to first reflection Eqyj (5.4) is the following

Figure 5.13 : Two angles (8dsk,¢dsk) must be calculated, to characterize the direction of the (for the coherent term only):

incident light ray.

N
the determination of {wg viewing angles to characterize the direction of the reflected light ra Osk 2 '
) on ant ey Eiri = o 2 R (0ine.n) EainfLicdSi) A(Lc,6S) |85,
from dSk to dS;. They are also defined, as indicated in figure 5.13; ' L'
- a particular routine must be conceived to calculate the coherent (specular) surface reflection ke Si
I£K=

contribution when og#0;
another routine calculates the luminance factor, given the angular values provided by the (5.11)
main program, and the five parameters of the reflection model;

finally, the total surface reflection factor psyrf must be calculated.
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The quadruple integral in (5.4) becomes a double integral, which is solved by the Richardson
extrapolation algorithm described above. In this expression, Ly' is the image of source L with

. first of all, the calculations of the additional angles, and the procedure calls calculating the
luminance factors;
secondly, the luminance factor is not constant anymore, as it was for lambertian diffusers. Its
dependence on the angles of incidence and viewing is sometimes so sharp, that the accuracy
specified by the user is much more difficuit to reach by the computer program.

2
respect to the facet number "k", and R (8inc,n) is the Fresnel reflection factor of this facet; for
an angle of incidence 0jnc determined by the specular light ray on Sk (L—> Sk —dS;). The function
A(Ly',dSj) vanishes, if Ly’ is imagihary for dS;. Otherwise, it is equal to 1.

The calculation of B(diffus,dSk,dS;) does not raise specific problems, since this function has been
tabulated. Therefore, the calculation of the second term of (5.1) and the coefficients Hy (5.4} is Table 5.5 : Results of the program LUXCALC for the room illustrated in figure 5.10, and for

performed in the same way as for the lambertian surfaces.

Deviations (%) from the illuminances | Computing time (sec.)
calculated for a lambertian ceiling. on a Macintosh SE30
These consequences are illustrated by the following example. The illuminated room described in Reflection of ceiling average maximum
figure 5.10 has been modified as follows : Lambert 0 ) 882
the black curtain and the radiator have been included in the surface X=0;
- the luminaires are rotated by 180°, in order to directly illuminate the ceiling. They are oge=0.1 0.2 0.3 2924
suspended at 0.42m below the ceiling; T
) : ) (—) =1; age=2.0 3.5 4.1 2719
- the maximum approximation error is 20%. ¢
age=2.9 5.5 6.2 2737
The ceiling is first considered as a uniform diffusor (p=0.8). For the next simulations, it is
characterized by a general luminance factor described by (5.10), with the following parameters:: @s0=2.0 0.9 8 2930
T T
as=0, n=1.5, and (5) and asc are allowed to vary. The last parameter (pq) is adjusted, such that (E) =2; age=5.25 4.3 5.0 2868
the total reflection factor under normal incidence is fixed at 0.8, just like the lambertian ceiling.
So, all these ceilings will lead to the same results in the measurement procedure described in ase=10"" 0.0 0.0 2969
§5.3.86. oge=0.1 0.1 0.3 3003
(g) =5; 0gc=2.0 0.5 0.8 2982
The calculation results of LUXCALC are shown In table 5.5 : in particular, the deviations which are 10.0 a.a 4.4 3159
A oge=10. . .
presented concern the illuminances calculated on the workplane, more precisely on the mesh > 12.4 4.1 5.2 3311
described in figure 5.11. Fee=l® ' .
First analysis : the compuling times %s0=0-5 o2 o7 298
R T .
A significant increase of the computing time is observed; it can be attributed to the following (0) =10; asc=2.0 0.4 0.7 3007
reasons : Oge=10.0 3.5 9.5 3403
0ge=25.0 7.9 11.9 3037
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The first reason is illustrated by the execution with (:Gl'_) =5 and asc=1o'4. The value of the

luminance factor is approximately the same (within an accuracy of 10'4) as the reflection factor
of the lambertian ceiling. So, the increase of the computing time is here only due to the additionaj
calculations of angles and luminance factors.

The second reason is illustrated by the increase of the computing time with asc , for (g) =10.

When asc is small enough, the luminance factor is close to the lambertian case, and the computing

time is identical to the execution defined by (g) =5 and asc=10'4 . However, as agc increases,

the angular dependence of the luminance factor becomes sharper, since the roughness parameter

(g) indicates a very steep surface contribution. It is observed that the computing time is

increased by 30% between the situations (agc=0.5) and (oge=25).

The opposite behaviour is observed for (g) =1, Indeed, the modification of the surface reflection

and its angular dependence implies a better accuracy of the calculated resuits. As a consequence,
the computing time decreases when asc increases.

We must here introduce an additional comment to the conclusions drawn in a previous work [86] :
the influence of extra angles and luminance factors calculations on the computing time can be more
significant than the influence of the angular dependence of the luminance factor. In fact, this
significance depends on the model adopted to represent light reflection.

s { analysis : lculated illumi | lumi
The deviations presented in table 5.5 suggest that the influence of the general model for light
reflection on the illuminances of the working plane is rather weak : 10% maximum in the
previous example. This conclusion Is not surprising : indeed, the ceiling reflection does not exhibit
any directional effect, since the main propagation to the working plane is along the vertical
direction. Therefore, it is the reflection factor which is responsible for the flux exchanges, and
this factor has been fixed at a constant value (p=0.8).

Greater deviations would be obtained, if the surface reflection contribution was more important.
However, this contribution is limited by the physical constraint of a total reflection factor less
than 1, for all possible angles of incidence. This implies that a maximum value of ag¢ exists, for

each value of the parameter (g) : for example, for (g) = 10, this maximum value is
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asc = 25, which corresponds to a surface reflection factor pgyri(0°)=0.16, and a volume
reflection factor equal to (0.8-0.16=0.64).

The following calculation is an example of an asymmetrical situation, where the directional. effect
of the ceiling is significant. Consider once again the room of fig. 5.10, where only the luminaire
number 1 has been switched on. The illuminances are calculated at 12 points of the vertical
surface opposite to the luminaire (X=0). The reflection factor of the ceiling under normal
incidence has been fixed to 0.5, whatever the luminance factor distribution.

Deviations (%) from the illuminances

calculated for a lambertian celling.

Reflection of ceiling average maximum psurf{0°) pd
Lambert 0 0 0.000 0.500
Olgc=0.1 0.6 0.9 0.006 0.503
(g) =1, agc=2.9 21.8 30.0 0.174 0.614
I ' 4 0.352 0.500
po =2, 0gc=5.25 35.8 50. . .
ase=0.1 0.1 0.4 0.003 0.501
(g) =5; age=12.4 26.5 51.0 0.312 0.479
I H 40.0 0.160 0.567
P =10, (15(;:25.0 19.5 B . .

In this case, the deviations from the lambertian ceiling situation can reach 30 to 50% ! The
maximum deviations are observed in the upper part of the surface X=0, where the specular effect
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of the ceiling is the more important. In the lower part of the same surface, the deviations are-close
1o 15% , I.e. the same magnitude as for the working plane.

The deviations between the luminances are directly related to the deviations between the
iluminances presented in table 6.6, because the surface X=0 is uniformly diffusing.

About the luminances of the ceiling, it is obvious that the deviations from the lambertian case will
reach very significant values, even if the ceiling illuminances are quite identical. The reason-is
that the luminances are directly proportional to the luminance factor, and that the deviations
observed in chapter 4 between the general model (4.52) and the Lambert law can be directly
transposed here. Of course, the position of the observer has also a significant influence.

Conclusion

The conclusion of this study is that the introduction of a general luminance factor (eq. 4.52 or
5.10) in the radiosity method (particularly in LUXCALC) has a significant influence on the
results. The luminance distribution is obviously directly affected by the expression of the
luminance factor, and any more realistic model than the Lambert law will improve the accuracy. It
has also been shown in the previous example, that some jlluminances are modified by a factor of
30% to 50%. However, this improvement aiso implies a significant increase of the computing

time.

%

6.1

Chapter 6 : Conclusion

The first objective of this work was.to acquire a better understanding of the spatial-distribution. of
the reflected light, through: experimental observation and measurements. The study has-been
carried out by (and for) lighting scientits, involved in lighting simulations, which implies the
following :

- the measured quantity is a photometric one, i.e. the radiance (luminance) factor ;

- the study is not limited to usual materials, such as glass or perfectly conducting materials,
which have already been fully characterized by physical researches. We were instead
interested by other materials, such as concrete, wood, paper or keramics.

The measurements have brought additional information to the visual observation. For example,
they can accurately characterize the increase of the reflected intensity around the specular
direction, even for rough surfaces. They can also evaluate the influence of the angle of incidence of
light, or the colour modification of the material, when the surface reflection contribution
increases.

The measurements have also detected some phenomena which would be hardly seen at glance : for
example, the decrease of the volume contribution at grazing incidence, or the retroreflection of
the concrete block. These are significant effects, since their influence on the luminance factor is
greater than the magnitude of the measurement errors.

Finally, the measurements have been used to establish and test the mathematical model of the
luminance factor. On the one hand, they allowed the extension of theoretical results to take into
account more complex realities and, on the other hand, they have been used extensively to
determine the parameters of the model for several materials.

Therefore, this first experimental step was absolutely justified in our study, and it is intended to
continue the experiments. Other materials will be measured. Moreover, measurements ouside the
plane of incidence could be the source of new information, though we remain convinced-that the
most significant phenomena belong to this plane.

The continuation of the measurements will perhaps necessitate some transformations to the
existing apparatus. Not only the automatization would be required for the comfort of the operator,
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but also a better accuracy in the angular measurements : it has indeed been shown in chapter 3
that this improvement could significantly reduce the uncertainty on the luminance factor value,
namely in the specular direction.

it must be pointed out that the photometric technology is particularly active in this field and that
new more compact apparatus are now conceived. However, one of the advantages of our equipment
is the possibility to measure big samples. This is particularly interesting in exterior lighting,
when road surfaces' luminance factors have to be measured.

The second objective of this work was to develop a mathematical model for light reflection, which
could be applied in lighting simulations. The photometric quantity to be modelized is the fuminance
factor. Our first intention was to characterize only the mixed reflection. It has been shown in
chapter 4 that this objective has been extended, since the model can also take into account the
regular reflection, the metallic reflection, or again some particular behaviours such as the
retroreflection of concrete.

The development of the model has always been inspired by the idea that the mode! should be applied
1o the calculation of illuminances and luminances in a lighted scene. For example, this implied that
the mathematical expression of the model would not be too complex, and that the computing time
assoclated with its evaluation would be reasonable. It also implied that the number of parameters
describing a material should be limited.

The model (4.52) which has been proposed in this work seems o be a satisfying compromise
between all these requirements and an accurate modelization of the physical reality. The
comparison, between the model and measurements performed for several materials, has shown
that the mean deviations were often less than 5%. The number of parameters (five) is surely
responsible for this good accuracy. As could be expected, the model (4.52) is much better than the
Lambert law. But it is also significantly more accurate than the "three parameters models" (for
example the Uetani model), mainly for the slightly rough surfaces.

The combination of theoretical and experimental studies has led to a satisfying model (4.52). The

major drawback of this model, compared to the more simple ones, is the computing time. The

analysis performed in chapter 5 has indeed shown that the influence of the model was significant,

and the further improvements of the model will surely be assigned to the solution of this problem :

- either by the simplification of the mathematical expression of the model;

- or by the development of numerical methods to accelerate the calculation of the angles of
incidence and viewing, and the luminance factor.

6.3

Is such an additional complexity necessary ? An answer to this question can be found in chapter 5.
The influence of the general model for light reflection on calculations made by the finite element
method is significant, not only on luminances calculations, but also on some Hlluminances values.
Further investigations ‘will try 1o illustrate this influence by in-situ measurements, and to
demonstrate that the general model is significantly more accurate than the Lambert law. This has
always been established in the fourth chapter, for the luminances of several samples, and it can be
expected that this conclusion will always hold for luminances in a more complex situation.
However, it is for the illuminances that the conciusions of this projected study will be

interesting. It can be already stated that the experiments must be carefully prepared, in order to
detect the deviations which can be attributed to light interreflections.

The improvement afforded by the general model in the description of light reflection by materials
is sufficient to justify the development of such a model. The following fields can already be viewed
as possible applications of the expression (4.52) : beyond lighting simulations which have
already been thoroughly discussed in this work, these are the classification of materials with
respect to light reflection, or the development of new more simple models for which the
expression (4.52) would serve as a reference.

Finally, it is hoped that this work will contribute to a better knowledge in the field of light
reflection by materials.
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