Susceptibility profile to penicillin, erythromycin and clindamycin of clinical isolates of group B streptococci recently isolated in Belgium and detection of erythromycin resistance genes

P. Melin, C. Megali, MP. Hayette, P. De Mol

Medical microbiology, University hospital of Liege
Belgian reference laboratory for GBS
Background
Group B streptococci or *S. agalactiae*

- Since the 1970s, leading cause of life-threatening infections in newborns
 - Neonatal illness/death
 - Long-term disabilities

 Of major concern

- Maternal morbidity
 - Along pregnancy
 - Peripartum

- Serious diseases among elderly and adults with underlying diseases
 - Significant mortality
Prevention of Perinatal Group B Streptococcal Disease
Revised Guidelines from CDC
Prevention of perinatal GBS EOD

- Intrapartum antibiotics
 - Highly effective at preventing EOD in women at risk of transmitting GBS to their newborns (≥ 4 h)

INTRAPARTUM ANTIMICROBIAL PROPHYLAXIS

Main goal:
- To prevent 70 to 80% of GBS EO cases

Secondary:
- To reduce peripartum maternal morbidity
From P. De Mol
Concerns

- Increase of resistance to erythromycin and clindamycin
- Susceptibility to penicillin
 - Very few R isolates recently characterized in Japan
Objectives

Among GBS recently isolated in Belgium
- From adults with severe infections
- From early or late onset neonatal diseases

- To monitor penicillin susceptibility
- To determine rates of erythromycin and clindamycin resistance
- To assess the distribution of macrolide resistance phenotypes
- To identify genes coding for resistance to erythromycin
Methods: Isolates

- **Clinical isolates**
 - Sent to the Belgian reference laboratory for GBS from January 2005 and June 2006
 - From blood, CSF or any deep normally sterile site
 - 178 isolates
 - 22 from neonatal EOD
 - 10 from neonatal LOD
 - 146 from adult invasive disease
 - Serotypes
 - Ia (17%); Ib (6%); II (10%); III (33%); IV (6%); V (21%); others (7%)

- **Reference strains**
 - Positive either for *erm*B, *erm*TR or *mef*A genes
 - Negative for these 3 genes
Methods: Susceptibility testing

- **Disk diffusion**
 - For all isolates
 - Erythromycin (15 µg) and clindamycin (2 µg) disks
 - 18 mm apart

- **Etest**
 - Benzylpenicilline strips
 - For all isolates
 - Erythromycin and clindamycin strips
 - For all erythromycin resistant isolates

- **Macrolide resistant phenotypes - Dtest**
 - MLS_B phenotypes
 - Inducible Resistance
 - Constitutive Resistance
 - M Phenotype
Interpretation criteria *(MH with blood)*
(CLSI 2006)

<table>
<thead>
<tr>
<th>Zone Diameter (mm)</th>
<th>MIC (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>I</td>
</tr>
<tr>
<td>Penicillin</td>
<td>≥ 24</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>≥ 21</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>≥ 19</td>
</tr>
</tbody>
</table>
Methods: Detection of R genes

- DNA extraction
 - QIAmp DNA Mini Kit (Qiagen)
- PCR amplification with specific primers and protocols
 - Detection of *ermB*, *ermTR* and *mefA* genes
- Characterisation of PCR products
 - Separation by electrophoresis
 - 2% Agarose gel + ethidium bromide staining
 - Visualization under UV light

<table>
<thead>
<tr>
<th>Targets</th>
<th>PCR Product sizes (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ermB</td>
<td>640</td>
</tr>
<tr>
<td>ermTR</td>
<td>530</td>
</tr>
<tr>
<td>mefA</td>
<td>348</td>
</tr>
</tbody>
</table>
Results

Antimicrobial susceptibility profile of 178 GBS clinical isolates

<table>
<thead>
<tr>
<th>% of Resistance</th>
<th>MIC$_{90}$ (mg/L)</th>
<th>MIC Range (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin*</td>
<td>0</td>
<td>0.094</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Clindamycin</td>
<td>19 (25**)</td>
<td></td>
</tr>
</tbody>
</table>

* : same interpretation for ampicillin and cefazolin
**: iMLS resistant phenotype included
Results
Erythromycin and clindamycin resistance
Evolution among Belgian GBS isolates

% of R

Erythromycin
Clindamycin

0 5 10 15 20 25 30 35

Results

Erythromycin resistance among Belgian clinical GBS isolates

% of Resistance

Neonatal infection Adult infection Ia Ib II III IV V Others

2001-03 2005-06

pm-chulg - 16.11.07
Results

MLS Resistance phenotypes

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>%</th>
<th>Ery MIC<sub>50</sub> / MIC<sub>90</sub> (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLS Constitutive</td>
<td>45</td>
<td>>256 / >256</td>
</tr>
<tr>
<td>Inducible</td>
<td>34</td>
<td>4 / >256</td>
</tr>
<tr>
<td>M</td>
<td>21</td>
<td>4 / 12</td>
</tr>
</tbody>
</table>

Dtest

- cMLS
 - Erythro R & Clinda R
- iMLS
 - Erythro R & Clinda S/I/R with Dtest +
- M
 - Erythro R & Clinda S with Dtest -
Results

Distribution of macrolide R genes

<table>
<thead>
<tr>
<th>Resistance phenotype</th>
<th>Resistance genotype</th>
<th>Number of isolates (% per phenotype)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLS constitutive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(26 isolates)</td>
<td>ermB</td>
<td>19 (73)</td>
</tr>
<tr>
<td></td>
<td>ermTR</td>
<td>2 (8)</td>
</tr>
<tr>
<td></td>
<td>ermB & ermTR</td>
<td>5 (19)</td>
</tr>
<tr>
<td>MLS inducible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(20 isolates)</td>
<td>ermB</td>
<td>1 (5)</td>
</tr>
<tr>
<td></td>
<td>ermTR</td>
<td>16 (80)</td>
</tr>
<tr>
<td></td>
<td>ermB & ermTR</td>
<td>1 (5)</td>
</tr>
<tr>
<td></td>
<td>ermTR & mefA</td>
<td>1 (5)</td>
</tr>
<tr>
<td></td>
<td>unknown</td>
<td>1 (5)</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12 isolates)</td>
<td>ermTR</td>
<td>3 (25)</td>
</tr>
<tr>
<td></td>
<td>mefA</td>
<td>8 (67)</td>
</tr>
<tr>
<td></td>
<td>ermB & ermTR</td>
<td>1 (8)</td>
</tr>
</tbody>
</table>
Conclusion

- All GBS isolates fully susceptible to penicillin
- Increase of resistance to macrolides: a relevant problem.
 - Level: similar to rates observed in France, a neighbour country.
 - No more difference among isolates from either adults or neonates.
 - Most of macrolide R isolates had a MLS phenotype.
 - Detection of MLS-IR is important
 - simple and reliable double-disk diffusion test strongly recommended.
- Neither macrolides nor lincosamides should no longer be used without susceptibility testing.
C. Megali
MP. Hayette
P. De Mol

Technical staff of the medical microbiology laboratory of the University hospital of Liège

Laboratories of the Belgian surveillance network