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Abstract 

Electrophoretic Deposition (EPD) performance strongly depends on the particles 

surface chemistry and the ability to manipulate surface-liquid interfaces. In this study an 

extensive investigation of YBCO suspension in dry acetone, acetone-water mixtures and 

acetone-iodine is reported. Chemical instability of YBCO particles determines their 

colloidal behaviour. Charging mechanism of particles has therefore had to be deeply 

investigated for complete dispersion understanding. In order to determine the conditions 

of the YBCO suspension stability, measurements of pH, conductivity, zeta-potential, 

settling tests, modelling of the particle networks and electrophoretic deposition were 

done. The influence of the water and iodine concentration, and their role as stabilizers 

was evaluated. Based on experimental results, pair particle potentials were calculated 

and then different charging mechanisms of YBCO surfaces in acetone were proposed. 
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1. Introduction 

 

Electrophoretic deposition (EPD) technique is a suitable method to produce a 

wide range of structures and materials [1, 2]. This coating process is based on the 

migration of charged particles in a colloidal suspension by the application of an electric 

field between two electrodes. Once at the electrode, particles coagulate and solvent 

evaporates. During EPD, electric field is the driven force promoting particle packing, so 

film density depends on the solvent evaporation but also on the electric field strength. 

Consequently, particles surface chemistry and properties of surface-liquid interfaces 

strongly affects to the homogeneity and reliability of films shaped by EPD 

YBa2Cu3O7-x (YBCO) is the current material of choice for second-generation 

superconducting wires. High-Tc superconductor research has been dealing with the 

properties of the final material, but today it is focus on the improvement of YBCO 

coated conductor fabrication [3-5]. In this sense EPD should be considered as a 

potential applicable technique, offering a real possibility of industrial scalability and 

reliability. In fact, EPD has been successfully considered for applications such as 

magnetic shielding in low frequencies [6-12]. However, much effort is still necessary to 

understand and control the complex colloidal behaviour and the surface reactions 

occurring when YBCO powders are dispersed in a liquid. Degradation of YBCO in 

water has been observed, mainly due to an incongruent dissolution of Ba
2+

. Later 

carbonation and/or hydroxylation of Ba
2+

 [13, 14] determine the surface charge 

behaviour of YBCO in aqueous suspensions [15-18]. 

Organic solvents have been therefore used for EPD of YBCO, i.e. acetone [10, 

12, 19-32], isobutylmethylketone [11], propanol and butanol [31, 32], acetone being the 

most used solvent. In acetone, a negative value of zeta potential for 0.01 g/l YBCO 

suspensions have been determined by Koura et al. [20], while more concentrated 

suspensions promote a positive surface charge, leading to cathodic deposition [12, 21-

35, 31, 32]. Other studies show that it is customary to use iodine (I2) as stabiliser in 

acetone [10, 12, 19, 20, 27-30]. Zeta-potentials of YBCO in acetone-I2 solutions are 

always positive, forming also cathodic deposits. 

Positive surfaces have been measured for other materials dispersed in I2 

solutions in acetone, i.e. SiO2 [19, 33], V2O5 [34], Wollastonite [35], Zirconia stabilised 

with Yttria (YSZ) [36, 37], B [38], TiO2 [39-41], LSCF, CGO [42] and LSGM [43, 44].  

Moreover, I2 has been also used as dispersing agent in other organic solvents, such as 

acetilacetone (AcAc) [45-48], isopropanol (IPA) [49-51] or a mixture of acetone (Ac) or 

acetilacetone and ethanol (EtOH) [37, 42, 52-55]. 

Charging mechanisms of oxide particles in I2 solutions in acetone have been 

proposed in the literature. The mechanism widely used considers the formation of 

iodoacetone in the presence of H2O (equation 1), suggesting that particle surfaces 

become positive as a consequence of the proton formation during the acetone iodination 

[19, 20, 56]. A similar mechanism was proposed in other organic solvents [45, 49-53]. 

 
(CH3)2CO + I2  CH3C(OH)CH2  CH3COCH2I + I

-
 + H

+ (1) 

 

Table 1 summarises the main results for EPD studies using I2 as dispersing 

agent. Collected data are related to the characterization of particles and suspensions, 

attending to optimal conditions to obtain deposits by EPD. Most of them are devoted to 

YSZ and YBCO particles with different size and surface area. The main suspension 

parameters measured are pH, conductivity and zeta potential. In most of these studies 

concentrated suspensions (10 g/l) have been prepared to shape films by EPD. 
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Results summarised in table 1 show that liquid medium acidulates with I2 

concentration (from 0 to 1 g/l). Acidification of organic medium by  I2 addition was 

expected due to the I2 acidic character [57]. Lee et al. [50] and Chen et al. [52] 

measured a decrease of the operational pH (7-2) with the I2 addition (until 1 g/l) in YSZ 

suspensions prepared in isopropanol and acetone-ethanol, respectively. However, Koura 

et al. [20] measured a slight variation of the proton concentration in acetone when 

adding I2 until 8 g/l in YBCO suspensions. Moreover, suspensions conductivities 

measured were extremely different in ketones and alcoholic media for similar solid 

loadings, corresponding to differences among solvent dielectric constants [58]. 

Conductivities of YSZ suspension in alcohols range from 1 to 12-14 mS/cm as a 

function of I2 addition (0-1 g/l), while maintain below 0.2 mS/cm for reported YBCO 

suspensions in acetone. 

Otherwise, zeta potential of YSZ/isopropanol and YBCO/acetone behaves 

similarly with I2 addition. In all cases, zeta potential sharply increases resulting in 

positively charged particles with a small addition of I2. Generally, a maximum zeta 

potential was achieved at I2 concentrations ranging 0.2-0.6 g/l, being independent of 

larger additions. Suddenly, a maximum of zeta potential results in the obtention of 

heavier and homogeneous films by EPD. Higher zeta potential values were measured in 

ketones, but optimal amount of I2 depends on the particle characteristics (size and 

specific surface area) [50, 52]. 

The aim of this work is to analyse in depth the mechanism of surface charging of 

YBCO in acetone, and key parameters to control the suspension stability and the 

subsequent processing. Two main sections are developed in view to understand the 

charging mechanism. Firstly the influence of water in acetone suspensions has been 

determined. Later, the effect of iodine as stabilizer in acetone has been analysed. Based 

on the results, a new approach to explain the role of water and I2 in the charging 

mechanism of YBCO powders in acetone has been proposed. 

 

2. Materials and Methods 

 

As starting material a commercial YBa2Cu3O7-x (99.9% purity) powder from 

Alfa-Aesar (Germany) was used. A particle size around 4 µm, a specific surface of 1.4 

m²/g and a density of 5.91 g/cm³ are the main characteristic of this powder. Particle size 

distribution was determined by laser diffraction particle size analysis (Mastersizer S, 

Malvern, UK), surface area by single point N2 adsorption (BET Monosorb, 

Quantachrome, USA), and density by He-multipicnometry (Quantachrome, USA). No 

pre-treatments were made on the powder for suspension preparation. Two grades of 

acetone were used: technical grade (estimated H2O content of 2.5 vol.%) and grade 

HPLC (H2O< 0.01 vol.%). Deionised H2O and I2 (ref. A12278, Alfa-Aesar, Germany) 

were added to dry acetone as stabilizers.  

Acetone solutions of I2 up to 1 g/l were considered as suspension medium. UV-

Visible adsorption (Perkin-Elmer, UV-Vis. spectrometer, Lambda 14P, UK) 

measurements were done to follow I2 dissolution in acetone. A standard glass electrode 

was used to measure pH and conductivity (0.1 cm
-1

 conductimetry electrode). Although 

the operational pH concept should be used to study acid-base reactions in non-aqueous 

systems [59], in this work, pH was measured using a pH-meter calibrated for aqueous 

media to allow comparison of our own results. The “operational pH” measured using a 

pH meter calibrated for aqueous solvents differs from the real paH in a non-aqueous 

solvent (equation 2 at 25°C):  
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05916.0

j
E

papH H  (2) 

where paH (=-log aH) is the negative logarithm of the proton activity in a non-aqueous 

solvent, ΔEj is the residual junction potential encountered in the standardization and 

testing step of a standard pH meter. 

Suspensions were dispersed applying ultrasonication (Hielscher UP400S probe, 

Germany) during 30 sec in a glass container. Suspensions were maintained stirring at 

room conditions and pH was measured during 40 min after sonication. To study the 

surface behaviour of YBCO powders, suspensions were prepared: i) in technical grade 

acetone, where different solid contents were considered ranging from 0.1-10 g/l, ii) in 

dry acetone, where different amounts of water was added to 0.1 g/l YBCO suspension, 

and iii) in 10 g/l YBCO suspensions in technical acetone considering I2 concentrations 

up to 0.5 g/l. 

Stability studies were performed in terms of pH, conductivity, zeta potential and 

settling measurements. Zeta potential was done by laser Doppler velocimetry (Zetasizer 

NanoZS, Malvern, UK). Values were calculated from mobility data considering the 

Smoluchowski approximation for relative large particles and short Debye lengths. 

Finally, YBCO coatings were shaped by EPD on nickel foils (Goodfellow, 99%) 

of 40 x 15 x 0.5 mm. EPD suspensions were prepared in different mixtures of dry 

acetone and water, and solutions of I2 in technical grade acetone. The counter electrode 

was also a nickel foil of similar dimensions, separated from the work electrode by a 

distance of 2 cm in the electrophoresis cell. EPD was done under potentiostatic 

conditions using a high voltage power source (DC Apelex PS9009TX, France). The 

voltage applied in all cases was 200V during times up to 180 seconds. Samples were 

dried at room conditions after EPD, and the mass of each deposit was characterized by 

gravimetry. 

 

3. Results and discussion 

 

3.1. Dispersions in water-acetone mixtures for EPD.  
It has been demonstrated elsewhere [18] that surface dissolution occurs when 

YBCO particles are suspended in water. Carbonation and Hydroxilation of solved ions 

affects to the concentration of potential determining ions (H
+
 and OH

+
), fixing the 

suspension stability. It is well known that those reactions may also occur in technical 

grade acetone at room conditions. Therefore, the surface behaviour of YBCO in acetone 

have to be also evaluated in terms of pH, conductivity and zeta potential, taking as 

variables the concentration of solids and water at the suspensions. 

In this study, suspensions were prepared using technical acetone (water content 

of 2.5 vol.%) at YBCO concentrations of 0.1, 1 and 10 g/l. The pH evolution was 

measured during this time, and plotted in figure 1. The pH of 0.1 and 1 g/l suspensions 

varies from 9.4 to 8.9, and from 9.3 to 9.0 in 40 min, respectively, while the pH of the 

10 g/l suspension changes from 9.5 to 8.6 in 20 min. An acidification tendency of the 

suspension media can be noted when solid concentration increases. Although 

suspensions are prepared in acetone both, the environmental humidity and the water 

content of technical grade acetone, promotes the slow carbonation of the Ba
2+

 leached 

from the YBCO particle surfaces [18]. The surrounding conditions of YBCO particles 

are a consequence of the powder dissolution and related reactions. Hence, low chemical 

stability of YBCO surfaces is also expected to determine dispersing conditions in 

acetone. 
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Figure 2 shows the variation of zeta potential with the amount of water added to 

0.1 g/l suspensions prepared in dry acetone (curve a), and with YBCO concentration at 

suspensions prepared in technical grade acetone, (curve b). 

In curve a, to avoid as much as possible YBCO dissolution, 0.1 g/l suspensions 

in dry acetone were considered. Then, different amounts of water (up to 12 vol.%) have 

been added to study their effect in the suspension stability. YBCO particles in dry 

acetone develop a strongly negative surface charge (-35 mV) as shown at curve a in 

figure 2. Strong negative surfaces (> 30 mV) maintain until water content of 3 vol.%. 

Zeta potential absolute values decrease with higher water additions, achieving zero at 7 

vol.%. YBCO particles maintain zero zeta potential, or even reverse their surface charge 

for water contents around 12 vol.%. In all cases, suspension conductivity maintains 

below the technical accuracy of the conductimeter (0.2 µS/cm). 

 Similarly in curve b, zeta potential strongly changes with solid content in 

suspensions prepared in technical grade acetone. In fact, negative surfaces (-38 mV) in 

0.1 g/l suspensions become positive at solid concentrations over 1.5 g/l. Nevertheless, a 

strong positive zeta potential (+30 mV) was measured for 10 g/l suspensions, whereas 

conductivity maintains always constant and below 0.2 µS/cm. 

It is important to note that comparable zeta potential values have been measured 

for similar suspensions prepared under different conditions. In curve a, zeta potential of 

0.1 g/l suspension prepared through the addition of 3 vol.% of deionised water to dry 

acetone is marked, while the value emphasised in curve b is the measure of 0.1 g/l 

suspension directly prepared in technical grade acetone (2.5 vol.% water content). 

Subsequently, results plotted in figure 1 and 2 (curve b) indicate the charge reversal is a 

consequence of the medium acidification promoted by the solid increase in presence of 

water. Otherwise, the development of charged surfaces in 10 g/l suspensions (+30 mV) 

has not any effect in the conductivity. 

Consequently, YBCO surface reactions affect to the surface charge even in 

organic media [18]. Indeed, both suspension parameters solids and water content 

determine YBCO particle stability in acetone, being key for later shaping process. 

Table 2 summarises the sense and deposition of the particle electrophoresis for 

different suspensions. Diluted suspension (0.1 g/l) of YBCO in dry acetone represents 

in this work the most favourable conditions to avoid YBCO dissolution. The surface of 

the YBCO particles in dry acetone is negative, as plotted in figure 2 (curve b), and 

deposition takes place at the anode during EPD. However, reliability of EPD with 0.1 

g/l suspensions in technical grade acetone is very low. Deposition mainly occurs at the 

anode (table 2), as expected for negative zeta potentials in figure 2, but occasionally 

deposition takes also place on both electrodes, simultaneously. Kinetics of Ba
2+

 

carbonation at room conditions in the presence of a small amount of water (2.5 vol.%) 

affects to the particle charging mechanism, especially for low solid contents. Particle 

surface should become positive after the homogenization time as a consequence of the 

medium acidification, YBCO depositing in the cathode. 

Cathodic deposition occurs for 1 and 10 g/l suspensions. This was expected for 

10 g/l suspensions in technical grade acetone, due to the strongly positive character of 

particle surfaces, and also for 1 g/l suspension attending to the low accuracy of zeta 

potential measurements in figure 2, curve b. However, it was unexpected for 

suspensions prepared in dry acetone. Since EPD tests were performed at room 

conditions, cathodic deposition for dry acetone evidences the effect of the hygroscopic 

character of the solvent, affecting the YBCO surface stability, stepping up by a higher 

amount of powder in suspension. 
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Figure 3 plots the variation of the suspension conductivity and the deposited 

mass as a function of water content at the solvent, for EPD in 10 g/l suspensions at 200 

V for 180 s. Pictures within this figure show the appearance of the obtained deposits for 

water contents of 2.9 (b), 6.5 (c) and 10.7 vol.% (d). As expected the suspension 

conductivity increases with the amount of water, from values below 0.5 µS/cm for 

technical grade acetone to 6 µS/cm. Regarding the deposit quality, When dry acetone 

was used as dispersing media, the YBCO particles deposited heterogeneously in the 

anode. The addition of a small amount of water leads to a poor and heterogeneous 

deposition as figure 3b shows. The increments in water contents to a range between 6.5 

to 8 vol.%, leads to uniform YBCO coatings (figure 3c). Larger water additions 

promote worse quality films and low growth as can be clearly observed in figure 3d. In 

fact this phenomenon of a window for the homogeneous deposition conditions has been 

previously observed by other authors for other polar/non-polar solvent mixtures [37, 52, 

53].  

Although water addition promotes a slightly film growth, the achievement of 

homogeneous films concurs within the interval of higher deposited mass observed in 

figure 3a. Therefore, suspension stability evidenced by the film homogeneity is also 

noticeable through the relative increase of the deposition rate. The stability of the 

suspension is associated to two phenomena. One is the particle deagglomeration, which 

is related to the film homogeneity, and the other is the particle electrokinetics where 

faster particles lead to higher deposited mass. For that reason a narrow range of stability 

could be determined where homogeneous and heavier coatings can be produced. 

Obvious Labib et al. [16] have studied the donor-acceptor behaviour of organic 

solvent with oxides, suggesting that particles acquire their charge from direct electron 

transfer from a neutral liquid molecule in most cases. The donor-acceptor role depends 

on the electron donicity of the solvent linked to the particle. Some publications dealing 

with EPD films report the dispersion of several particles in acetone. In these works, 

oxides (such as SiO2) in which acid sites predominate at the surface develop a negative 

charge in acetone dispersions [19, 33, 35, 51, 60]. Since the solvent acts as donor, 

electron transfer occurs from the liquid to the solid. Oxides such as ZrO2 show a zero 

surface charge in acetone [52, 53, 61], while other oxides, i.e. ZnO, MgO, SbO, etc., 

behave as positive particles depositing in the cathode [62-67]. In later cases, electron 

transfer occurs from solid to liquid, having the solvent a lower donicity character than 

considered oxides. Similarly occurs for the SbO or PZT when inorganic bases or acids, 

i.e. NH4OH and HNO3, were added in acetone [66-68] or alcoholic media [59, 68, 69]. 

In 0.1 g/l suspensions in dry acetone, the solvent acts as donor, and electron 

transfer takes place from the liquid to the solid leading to negative surfaces. In acetone-

water mixtures, the presence of water steps up YBCO dissolution and BaCO3 formation. 

Since YBCO dissolution occurs in a lower ratio than in aqueous suspensions, protons 

liberated by the Ba
+2

 carbonation (figure 1) promote the acetone protonation, displacing 

the equilibrium through the enol formation [70]. In this case, the change in the donor-

aceptor character of the solvent is the main cause of the evolution of the YBCO charged 

surfaces. This behaviour is more evident for concentrated suspensions, where YBCO 

particles have higher zeta potentials leading to a clear cathodic deposition. 

Moreover, the adsorption of water at the particle surface increases its donicity, 

helping to charge transfer [55]. Hence, larger amounts of water enhance charging and 

improve the uniformity of the coatings, as seen in figure 3c. The presence of ions 

produced by the YBCO dissolution in 10 g/l suspensions fits the increase of 

conductivity. If the amount of water is larger the charging mechanism by selective 

adsorption of ions (H
+
, Ba

2+
 and Ba(OH)

+
) on hydrated surfaces [18] should displace 
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the donor-acceptor mechanism. In those cases, stability conditions should be studied 

and adjusted, because of those YBCO suspensions lead to heterogeneous deposits 

(figure 3d). 

Finally, although homogeneous YBCO films can be achieved with water as 

dispersing agent, stability attained through above described mechanisms depends on the 

weak chemical stability of YBCO surfaces, which can jeopardize process reliability. In 

view of these results further studies considering other stabilisers combined with water 

should be developed. 

 

3.2. Dispersing mechanism of YBCO particles in acetone-I2 solution 
Early studies dealing with structures formed by halogen molecules with 

oxygenated solvents reveal the presence of 1:1 complexes in solutions of iodine in 

alcohols and ketones, corresponding to the form: RR’O
+
·I2

-
 or RR’CO

+
·I2

-
 [71]. 

Complexes result from an acid-base interaction in the electron–donor sense in which 

iodine acts as the acid or electron-acceptor. The increase of Lewis basicity of the 

organic oxygenated solvents leads to a high interaction with iodine. Recently, Kebede at 

al. [72] has demonstrated that solvent-I2 complex remains in equilibrium with a charged 

complex form while generates triiodine (I3
-
). The increase of the solution conductivity 

and the shift to shorter wavelength of the absorption peak of I2 in the visible region 

(usually at 500 nm), evidence the presence of the solvent·I2 complex, which later 

promotes the formation of cationic solvent·I
+
 complex and I3

-
 [72]. Proposed reactions 

of the I2 solutions in acetone are: 
(CH3)2CO + I2   (CH3)2CO

+
·I2

-
 (3) 

(CH3)2CO
+
·I2

-
  CH3CH2ICOH

+
 + I

-
 (4) 

(CH3)2CO
+
·I2

-
 + I

-
  (CH3)2CO + I3

- (5) 

I2
-
 + I

-
  I3

-
 (6) 

 

where reaction (4) summarised the acetone halogenation catalysed by the presence of 

H2O, which results in the formation of a stable cation CH3CH2ICOH
+
 [70]. 

The evolution of specific conductivity with time of technical grade acetone 

solutions of different I2 concentrations (0.1, 0.2, 0.4 and 1.0 g/l) is plotted in figure 4a. 

A sharp increase of conductivity takes place after a certain time for any iodine 

concentration. This gap is higher and takes place faster as the concentration of I2 

increases. Solution conductivity rises from 50 µS/cm for 0.1 g/l of I2 to 325 µS/cm at 

the 1g/l of I2 solution. These data are in good agreement with those reported in the 

literature [20]. 

In addition to specific conductivity measurements, UV/absorbance has been 

measured for all considered iodine concentrations. Figure 4b shows the evolution of 

absorbance spectra of solution of 0.2 g/l I2 in acetone. The maximum absorption is 

located at 449 nm and is due to polarization of I2 molecules, as reported by Kebede et 

al. [72]. During 20 minutes, I2 adsorption maintains constant. Then, absorbance between 

350 and 400 nm grows quickly after about 25 min while the peak at 450 nm disappears. 

This phenomenon happens simultaneously with the increase of conductivity (figure 4a). 

I
-
 absorption is located below 300 nm and could not be responsible of this double effect. 

The occurrence of species absorbing between 350 and 400 nm is related to I3
-
. Hence, 

the formation of I3
-
 through equations 4, 5 and 6, verified by the UV spectra, becomes 

associated to the conductivity increase of I2 solutions in acetone. After complete I2 

dissolution, the ionic species responsible for the high conductivity are the products of 

equations 4-5: I3
-
 and CH3CH2ICOH

+
. 

The pH of 0.1, 1 and 10 g/l YBCO suspensions in technical grade acetone with 

0.2 g/l of I2 are plotted in figure 5. YBCO powders were added to the solution of I2 in 
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acetone, and then starting pH of suspensions indicates the I2 acid character [57]. 

Acidification when increasing concentration of I2 has been reported in the literature for 

YBCO in acetone [20] and YSZ in isopropanol or a mixture of acetone and ethanol [50, 

52]. 

The starting pH of 0.1 and 1 g/l YBCO suspensions are by 4.5, while the 

concentrated suspension shows a pH close to 6. Moreover, the pH of 1 and 10 g/l 

suspensions slowly increases with time, while in the diluted suspension pH roughly 

maintains during 40 min. 

Surface reactions in YBCO powders also determine the dispersing conditions in 

I2-acetone solution. When powder is added, the acidic medium promotes the YBCO 

dissolution being this effect more evident as solid concentration increases. In fact, Ba
2+

 

concentration has been determined by ICP at the supernatant of 10 g/l suspensions being 

[Ba
2+

] = 2 10
-2

 mol/l. The YBCO surface reaction with solvent promotes neutralization 

(fig. 5), and then dissolved ions [18], i.e. Ba
2+

, join ionic species coming from I2 

dissolution (I3
-
 and CH3CH2ICOH

+
). 

Suspensions of 0.1 g/l of YBCO were prepared in solutions of I2 in technical 

grade acetone to determine surface charges. The variation of zeta potential and 

conductivity with iodine content is represented in figure 6. Conductivity increases 

linearly with I2 content. Conductivity values at such low solid contents are similar to 

those registered for iodine solutions in figure 4a, suggesting that the formation of 

triodine and CH3CH2ICOH
+
 ions after I2 dissolution (equations 4-6) results in the 

largest contribution to the conductivity of 0.1 g/l YBCO suspensions. However, lower 

conductivity values have been also reported [10, 20] for 10 g/l YBCO suspensions 

prepared with similar amounts of I2. Actually, charged particles should increase the 

number of conductive species in the suspension contributing to increase its conductivity 

[1, 73]. However, reported results for concentrated suspensions [10, 20] verified the 

decrease of conductivity with the addition of YBCO particles. Considering the ionic 

species solved in the suspension (Ba
2+

, I3
-
 and CH3CH2ICOH

+
) the formation of Ba(I3)2 

[74] could be the cause of the suspension conductivity decrease. Concluding that solid-

solvent reactivity reduces or inhibits the presence of some ionic species solved in the 

suspension medium.  

The behaviour of zeta potential vs the I2 content of the solvent is similar to that 

described in the literature for YBCO [20] and YSZ [45, 49-53] suspensions in different 

organic solutions of I2.  Zeta Potential is strongly negative (-43 mV) in suspensions 

without I2, fitting results plotted in figure 2, while a small amount of I2 develops 

positive zeta potentials. A maximum value (+40 mV) was achieved with 0.04 g/l of I2, 

while zeta potential maintains constant for further I2 additions. 

The stability of the suspension in technical grade acetone without and with 0.2 

g/l iodine has been also qualitatively evaluated by settling tests, plotted in figure 7 for 

10 g/l YBCO suspensions. Suspensions prepared in acetone sediment faster, powders 

being completely settling in 10 minutes. Addition of 0.2 g/l of iodine increases the 

suspension stability to several hours, although both suspensions, without I2 and with 0.2 

g/l of I2, have high positive zeta potential values 30 mV (plots in figure 2, curve a, and 

6). Since zeta potential only reflects electrostatic stabilisation, a low sedimentation 

suggests the presence of steric dispersive forces acting with the I2 addition, which 

contributes to suspension stability enhancement. 

In order to explain differences in the settling behaviour, the interparticle 

potentials acting between particles have been modelized. The Derjaguin, Landau, 

Verwey and Overbeck (DLVO) theory was used. In the case of the suspension without 

I2, the electrostatic stabilization is only considered. Therefore the total interaction 
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potential is determined by electrostatic interactions (Va and Vr matt addend). However, 

when I2 is added, results suggest that an electrosteric stabilization mechanism acts 

between YBCO particles. In this case, the interparticle interaction potential was 

calculated considering the attractive (Va), repulsive (Vr) and steric (Vste) effects. The 

attractive stabilization (Va) was approximated by the Gregory’s model due to the 

particle size [75]. 

bd

bd

d

aA
dV H

a

0

0

1ln1
12

)(  (7) 

 

where a is the particle radius, d is the distance between particles, AH is the Hamaker 

constant, λ0 and b are constants.  

The spectral parameters of YBCO and acetone, such as the refractive index, n, 

and the characteristic adsorption frequency, , have been considered to determine the 

Hamaker constant [76, 77]. The refractive index (nAC) and the characteristic absorption 

UV frequency ( AC) of the acetone are 1.36 and 189 nm, respectively [70]. However, 

when 0.2 g/l I2 has been dissolved in the acetone, the maximum absorption UV 

frequency of the liquid medium ( AC/I2) is  400 nm (figure 4b) [72]. A characteristic 

absorption frequency in the UV range of 300 nm ( YBCO) and a related refractive index 

of 1.69 (nYBCO) have been considered for YBCO particles [78-80], neglecting the 

anisotropy of its optic and dielectric functions [81]. The Hamaker constant calculated 

for this approximation results on 4.73 10
-21

. 

The Hogg-Healy-Fuerstenau (HHF) theory, that considered a constant surface 

charge, was selected to calculate the repulsive electrostatic interaction: 

))exp(1ln(4
2

)( 2

0 d
a

dVr  (8) 

where a is the particles radius,  is the surface potential, ε0 is dielectric constant, ε is the 

electric constant and y κ is the inverse Debye length.  Finally, the simple hard wall 

model described by Bergström [82] was used to approximate the steric stabilization in 

the YBCO suspension stabilised in I2 solution, by means: 

22

3
)22(

2

1
:)( da

V

akT
dVs  (9) 

δ represents the thickness of the adsorbed layer, Φ the volume fraction of the adsorbent 

in the adsorbed layer,  is the solvent-adsorbent interaction parameter and V is the 

molecular volume solvent.  This equation is valid in the interpenetrational domain 

( 2)2( dD ) [82]. 

As it is discussed above, particles are positive in charge in both suspensions 

while solved ionic species are different in nature and concentration. In acetone, the 

conductivity of the YBCO suspension is very low (< 0.2 µS/cm), so the concentration of 

both co-ions and counter-ions can be also considered low. The operational pH changes 

towards acid values ( pH = 1), pointing up a slightly YBCO dissolution and 

subsequence quickly Ba
2+

 carbonation. Attending to the pH, only an excess of OH
-
 ions 

remains in the suspension (figure 1). Hence, further calculations have been done 

considering the operational pH in figure 1 to determine the concentration of the only 

positive ionic specie, i.e. [H
+
]=10

-8.5
 mol/l. 

It has been also verified that conductivity measured in 0.2 g/l I2 dissolution in 

acetone (75 µS/cm in figure 4a) is mainly due to the presence of I3
-
 and CH3CH2ICOH

+
 

species. However, when YBCO is added, it dissolves leading to the Ba
2+

 leaching and 

later Ba(I3)2 precipitation. In this case, the presence of the YBCO, and related surface 
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reactions, determines the pH (figure 5) and the conductivity of the suspension [10]. 

Besides species solved due to the acetone halogenation, the main positive ionic species 

are Ba
2+

 and H
+
. As determined above, Ba

2+
 concentration in this suspension is [Ba

2+
] = 

2 10
-2

 mol/l. Operational pH is 4 in figure 5, so the H
+
 concentration is [H

+
] = 10

-4
 

mol/l. Consequently, further calculation has been made considering Ba
2+

 as the only co-

ion due to its valence (z = +2) and in view of Ba
2+

 concentration is two orders of 

magnitude higher than H
+
 concentration. It is important to note that mistakes done by 

considering the operational pH, contribute to maximize H
+
 concentration in both 

suspensions (equation 2) [83]. 

Figure 8 shows the calculated interparticle potential for 10 g/l YBCO 

suspensions prepared in technical acetone (2.5 vol.% H2O) (solid line), which presents a 

primary minimum at short interparticle distances. The energy barrier localizes between 

0.5 and 1.5 nm, preventing the attraction between particles. High values of potential 

interaction at the energy barrier is mainly due to high particle size (4 μm), suggesting 

that particle coagulation should be avoided for distances higher than 1.5 nm. 

Consequently, the adsorption of short organic molecules onto the particle surface should 

be enough to stabilize YBCO suspensions by means a steric mechanism. 

Besides positive species solved in presence of 0.2 g/l of I2, CH3CH2ICOH
+
 can 

be adsorbed onto the particle surface fitting the characteristic curve of the reversal zeta 

potential sign in figure 6. Considering an adsorbed layer of 1 nm [84], dot line in figure 

8 shows the total interaction potential for 10 g/l YBCO suspensions prepared in 0.2 g/l 

I2-acetone solution. The primary minimum disappears since the adsorption of the 

molecules avoids the direct contact between particles, and the barrier energy moves to 

2-2.5 nm. Hence, suspension stability increases justifying settling results in figure 7. 

The addition of I2 avoids powder sedimentation for 9 h. 

Figure 9a shows the evolution of deposited mass per unit area with increasing I2 

contents in 10 g/l YBCO suspensions in technical grade acetone. EPD tests were carried 

out applying 200 V for 60 s. The film growth with water addition (figure 3a), under 

similar electric conditions (200 V) for 180 s, has been also plotted for comparative 

proposes. Particle migration always occurs toward the negative electrode (cathode) with 

I2, as expected from positive zeta potential values of YBCO (figure 2, curve b, and 

figure 6). Deposit growths homogeneously compared to low reliability and uniformity 

of deposits without I2. Maximum deposition takes place for 0.04-0.05 g/l of I2, while a 

larger addition of I2 (>0.15 g/l) reduces the deposit yield because of higher suspension 

conductivities [10, 73]. 

In agreement with other authors (table 1), deposition with I2 as stabilizer 

achieves a maximum fitting higher zeta potential values. A picture of a deposit obtained 

applying 200V for 60 s in a 10 g/l suspension in 0.2 g/l of I2 acetone solution was 

shown in figure 9b. 

Finally, I2 plays an important role in the charging mechanism of the YBCO 

surfaces. The stability in acetone without I2 depends on the donor-acceptor character of 

the pair powder-solvent, while an optimal I2 content assures suspension stability, 

enhancing film growth in terms of higher reliability, homogeneity and deposit yield. 

The interaction of I2 with solvents depends on their basic character. Detailed 

studies summarized in table 1 suggest that dispersion with I2 is more effective in 

solvents mainly composed by ketones. A recent study demonstrates that dispersion 

depends on the I2-solvent interaction [37], while results in table 1 verify that the amount 

of I2 for each system solvent-particle should be optimised. In fact, the surface charge of 

the particles becomes positive whatever was their nature [19, 33-44], and the effective 

amount of I2 added is related to the morphologic properties of the particles [38, 58, 85]. 
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In the case of acetone, the effectiveness of I2 as stabilizing agent should be 

mainly attributed to the formation of the iodine complex cation CH3CH2ICOH
+
 in 

acetone solutions (equations 3-6). This ion adsorbs onto YBCO surfaces leading to a 

positive charge. Moreover, according to the stabilization mechanisms proposed for 

organic media [86], the presence of a small amount of water (2.5 vol.% in technical 

grade acetone) helps to the CH3CH2ICOH
+ 

adsorption. This assures a steric hindrance 

operating at very short interparticle distances, while the presence of charges provides a 

high positive zeta potential and hence, the electrostatic repulsion at longer distances 

shown in the interparticle potential plot in figure 8. 

Concluding, the experimental techniques used in this work, including 

conductivity, pH measurements, zeta potential, settling tests and visible/UV spectra 

support the proposed charging mechanism. The CH3CH2ICOH
+
 surface adsorption is 

consistent with the zeta potential plots in figure 6, and those collected in the literature 

(table I). The steric effect of the CH3CH2ICOH
+
 adsorption contributes to prevent the 

particles coagulation predicted by the calculated interparticle potential interaction in 

technical grade acetone (figure 8), and explain the low sedimentation rate of 10 g/l 

YBCO suspension prepared in a 0.2 g/l I2 solution in acetone (figure 7). Otherwise, the 

presence of that organic short chain at the particle surface promotes a higher cohesion 

between particles and improves particles-substrate adherence leading to a homogeneous 

and reliable film growth, as shown in figure 9. 

 

4. Conclusions 

 

Charging of YBCO particles in an acetone-I2 solution has been described. This 

stabilisation mechanism can be extensive to the dispersion of such a kind of particles in 

a halogenated organic liquid. The present work states that surface charging in I2 acetone 

solution takes place through the formation of CH3CH2ICOH
+
 intermediated complex 

cations. The adsorption of this species provides a steric contribution to the stabilisation 

mechanism. Hence an optimal I2 content assures suspension stability, enhancing film 

growth in terms of higher reliability, homogeneity and deposit yield.. 

Specifically, the iodine complex cation CH3CH2ICOH
+
 in YBCO suspensions 

stabilized by I2 addition adsorbs onto YBCO surfaces helped by the presence of a small 

amount of water. This assures a steric hindrance operating at very short interparticle 

distances, while the presence of charges provides a high positive zeta potential and 

hence, the electrostatic repulsion at longer distances. 

Low chemical stability of YBCO surfaces determines dispersing conditions in 

acetone, solid and water contents being key parameters for later shaping process. Solid-

solvent reactivity determines the number of positive/negative sites at the particle 

surface. The Ba
2+

 carbonation kinetics determines the keno-enol equilibrium changing 

the solvent donor-acceptor character, and then the YBCO surface charge. In order to 

obtain homogeneous YBCO deposits by EPD, 10 g/l suspensions in at least technical 

grade acetone (2.5 vol.% of water) are desirable. 
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Table 1. Data collected from published dispersing studies of oxide particles in organic 

solvents with I2. The nature, size, and specific surface area (SSA) of the particles, solid 

content, solvent, pH, specific conductivity ( ), I2 content, zeta potential (ZP) of the 

suspensions, and mass per unit area deposited (m) under determined electrical 

conditions (EC) are shown. 

 

Ref 

PARTICLE SUSPENSION EPD 

Oxides 
Size 

µm 

SSA 

m
2
/g 

Solids 

g/l
 

Solvent pH
a 

b 

mS/cm
 

I2
c 

g/l
 

ZP
d
 

mV 

m
d
 

mg/cm
2 

EC 

V x min 

[49] YSZ 0.25 12 10 IPA - - 0.5 +15 60-65 10 x 60 

[50] YSZ 
0.25 12 10 IPA 6-2 - 0.6 +40 - - 

0.008 117 10 IPA 7-2 - 0.2 +35 4 10 x 20 

[52] YSZ 0.25 12 9 

EtOH - - 0.4 +20 - - 

Ac - - 0.4 +65 - - 

AcAc - - 0.4 +45 - - 

Ac/EtOH 7-2 <14 0.4 +60 12 20 x 8 

[53] YSZ 0.25 12 2 Ac/EtOH - - 0.6 +45 1 10 x 1 

[45] YSZ 0.25 12 10 AcAc  <12 0.5 +50 65 10 x 20 

[12] YBCO 1-5 - 10 Ac - - - - 50 - 

[20] 
YBCO - - 10 Ac 3-4 < 0.2 1 +65 4 150 x 0.5 

BT - - 10 Ac - - 0.5 +70 - - 

[10] YBCO 2-6 - 10 Ac - < 0.13 - - - - 

a
 pH range from suspensions prepared adding I2 up to 1 g/l  

b
 Conductivity measured for suspension prepared adding I2 up to 1 g/l. 

c
 I2 concentration of the suspensions with maximum zeta potential and for a maximum in the deposited 

mass  
d
 Maximum zeta potential and mass per unit area deposited under described electrical conditions related 

to a I2 concentration. 

 

 

 
Table 2: Electrophoretic migration and deposition sense related to the suspensions solid contents           

and the solvent analytical grade. 

Acetone grade 0.1 g/l 1 g/l 10 g/l 

Technical Anodic Cathodic Cathodic 

Dry Anodic Cathodic Cathodic 
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Figure 1. Evolution of pH for suspensions in technical grade acetone with 0.1, 1 and 10 g/l 
YBCO concentrations. 

 

 

 

 

 

Figure 2. Zeta potential of YBCO suspensions prepared: 
- curve (a), in dry acetone with a solid content of 0.1 g/l, related to the added amount 

of water, and 

- curve (b), in technical grade acetone ( 2.5 vol.% of water), related to the solids 
concentration increase. 

 

 

 



Published in: Journal of the European Ceramic Society  (2011), vol. 31, pp. 1075-1086. 

Status: Postprint (Author’s version) 

 

 19 

(a) 

(b) (c) (d) 

Figure 3. (a) Deposited mass and suspension conductivity as a function of the water content for 

10 g/l suspensions in acetone. YBCO coatings obtained by EPD using 10 g/l suspensions 

prepared in acetone with 2.9 (b), 6.5 (c) and 10.7 (d) vol% of water. 
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Figure 4. (a) Specific conductivity evolution with time for different I2 concentrations in acetone. 
(b) UV/Visible spectra evolution with time in a solution of 0.2 g/l of iodine in acetone. 
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Figure 5. Evolution of operational pH for suspensions of different amounts of YBCO in a solution 
of 0.2 g/l I2 in acetone. 
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Figure 6. Zeta potential and specific conductivity with iodine content 
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Figure 7. Sedimentation behaviour of acetone suspension with and without 
iodine. 
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Figure 8. Interaction potentials for 10 g/l YBCO suspensions prepared in technical grade acetone ( ― ) 
and  a 0.2 g/l I2 solution in acetone (- - -) . 
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Figure 9. (a) YBCO deposit mass per unit area as a function of the iodine content and water in 
10 vol.% acetone suspensions. (b) Picture of a deposit obtained applying 200V for 60 s in a 10 

g/l suspension dispersed by the addition of 0.2 g/l of I2.  
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