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Probabilistic graphical models (PGM) efficiently encode a probability distribution on a large set of

variables. While they have already had several successful applications in biology, their poor scaling in terms

of the number of variables may make them unfit to tackle problems of increasing size. Mixtures of trees

however scale well by design. Experiments on synthetic data have shown the interest of our new learning

methods for this model, and we now wish to apply them to relevant problems in bioinformatics.
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PGM Example : In Bayesian networks, the product of conditional probability dis-

tributions is the joint probability distribution over all variables.

P(X|S, θ) =

n∏

i=1

Pθ(Xi|PaS(Xi))

Interest :

• Inference of conditional distribution : P(A|B) where A,B ∈ X ,

•Maximum a posteriori probability inference : a = argmaxAP(A|B) where A,B ∈ X ,

•Visual representation of relationships between variables.

Problems : Intractable algorithms: Learning and inference are np-hard, and in practice

are challenging on more than 1000s variables.

Mixtures of trees T :
•Generate an ensemble of m tree structures {Si}.

•Determine their parameter vectors {θ∗1, . . . , θ
∗
m}.

•Average their predictions by using some appropri-

ate weighting scheme {µ1, . . . , µm}.

Key points:

•Trees → efficient algorithms.

•Mixture → improved modeling power.
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∑
i µiP (X|Si, θi)
PT (X) =

100 samples, 1000 variables
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How could those models be useful in bioinformatics?
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Protein structure inference
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