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Abstract - A mixed hidden Markov model (HMM) is developed for predicting
breeding values of a biomarker (here, somatic cell score) and the individual
probabilities of health and disease (here, mastitis) based upon measurements of the
biomarker. At a first level, the unobserved disease process (Markov model) is
introduced and, at a second level, the measurement process is modelled, making
the link between the unobserved disease states and the observed biomarker values.
This hierarchical formulation allows joint estimation of the parameters of both
processes. The flexibility of this approach is illustrated on simulated data. Firstly,
lactation curves for the biomarker are generated based upon published parameters
(mean, variance and probabilities of infection) for cows with known clinical
condition (health or mastitis due to E. coli or S. aureus). Next, estimation of the
parameters is performed via Gibbs sampling, assuming the health status is
unknown. Results from the simulations and the mathematics showed that the
mixed HMM is appropriate to estimate the quantities of interest although the
accuracy of the estimates is moderate when the prevalence of the disease is low.
The paper ends with some indications for further developments of the

methodology.

hidden Markov model/ mixed model/ mastitis/ somatic cell score



10

11

12

13

14

15

16

17

18

19

20

21

22

1. INTRODUCTION

Studies have shown variability among cows for natural resistance to intra-
mammary infection (IMI). Selection is therefore possible but direct
measures of IMI are not readily available. Usually, information on IMI is
based upon biomarkers such as somatic cell scores (SCS), electrical
conductivity, immunoglobulin or acute phase proteins (reviewed in
Detilleux, accepted). One important difficulty in using these biomarkers to
find the most resistant animals is that factors known to influence their
expression may be different in healthy (IMI-) from infected (IMI+) cows.
As these are usually unidentified, breeding values tend to be biased. To
reduce this bias and to infer more precisely cows’ individual probabilities to
be IMI- or IMI+, several authors have used the mixture model methodology
on SCS [2], [8], [12], [17]. A generalization of the mixture model is the
hidden Markov model (HMM) that presents the advantages to not only
estimate individual probabilities of being infected but also to predict
individual probabilities of new infection and of recovery, both useful to
compute epidemiological measures of IMI spread within a population and to
assist mastitis control programs.

The objective of this study is to present the mathematical formalism
behind the HMM methodology as it may apply to the analysis of infectious

disease biomarkers assumed to be dependent upon the genetic make-up of
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the cows. The fit of the HMM will be assessed on data simulated based on
parameters obtained in a survey of clinical mastitis cases. Bayesian
estimates of the parameters will be obtained using the Gibbs sampler.
Finally, limitations and possible extensions of the current approach will be

discussed.

2. MATERIALS AND METHODS

Throughout, k indexes the individual cow, t (t =1 to T) is the follow-up
time point during the lactation (e.g., month in milk), y,' is the value of the
biomarker observed at t on animal k, and z' is the corresponding unknown
health status (IMI- or IMI+). Let z' = 0 if y;' is from an unknown IMI-
sample and z' = 1 if y;' is from an unknown IMI+ sample. For simplicity, T
is assumed constant for all cows. We use the notation Qdegérd et al. [17]

utilized for their finite mixture model, with slight modifications.

2. 1. General formulation of the model

Conditionally on the unknown vector z, it was assumed that the vector of

observations y could be described by the linear model:

y=M0 |J.0+M1 |J.1+Za+e
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where y is the (NT X 1) data vector of y', Ho and py are (T X 1) vectors of
fixed effects for data on a IMI- or IMI+ cow, respectively, a is the (Na X 1)
vector of random additive genetic effects; My is the (NT X T) matrix with
elements = 1 if z,' = 0 and = 0 otherwise; M is the (NT X T) matrix with
elements = 1 if z' = 1 and = 0 otherwise; e is the (NT X 1) vector of
residuals; Z is the (NT X Na) incidence matrix relating a to y, N is the
number of animals with data and Na is the number of animals with pedigree
records.

The conditional distribution of y, given the vector z, the location and scale

parameters, was assumed to be:

(¥l Mo, f1, 65,07, a,2z) ~N[(Mg Ho+ My Wi+ Z a), R]
with R = F, cs§+ Flcf, where F;j is the (NT X NT) diagonal matrix with

elements = 1 if z,' = i and = 0 otherwise. The parameterscj and of are the
residual variances associated to a record on an IMI- and IMI+ cow,

respectively. For the additive effects, it was assumed that (a |62) ~ N [0,

Ac’] where cg is the additive genetic variance and A is the matrix of

additive genetic relationship between animals.

2. 2. Sampling distribution of the observations given group status
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The density of the vector y for the subset of the N; observations with 7 =
1, 1.e. {z =1}, given the location parameters and the residual variances can be

written as:

pr (¥l Wi, o, {z=1})

-1
O(ci)™"? eX]D{(z—z) (y—Mi pi- Za) Fi(y —M; ;- Z a)}.

1
2.3. Prior distributions of parameters and of the unknown status vector

For i = 0 or 1, normal prior densities were assumed for the location

parameters:

1
pr(p;) O (s{)™ exp {(- 22 (W= 1m)” (= 1m)},

1

where 1 is the (TX1) vector of 1. The prior density for the additive effects,

conditionally on the additive variance, was:

pr(alo?) O(e2) ™2 exp{<-2%> 2’ Alal.
Ga

Under simple mixture models, the individual elements of the classification
vector z are assumed to be independent a priori and to follow the same
Bernoulli distribution with the mixing proportion as parameter. Here, under
a equally simple mixed HMM, the variables z' do not follow the same

distribution. The first element of the series (z') follows a Bernoulli
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distribution with Ay as parameter while the other elements follow Bernoulli
distributions with state transition probabilities from zkt'1 to z' as parameters.

Formally, the unknown state at time t may be decomposed in:
pr(zi, =0) =p(z} =iz{' =0)pz =0)+p(z} =iz =Dp(zy’ =1)
where p(z, = i‘zf{l =j) are the state transition probabilities with i, j =0 or 1.

The state transition probabilities are assumed to possess the first-order

Markov property namely that, given the present state, the future and past

states are independent or that the current value (z, ) depends solely on the

most recent past value (zf('1 ). Transition probabilities are also independent

of the actual time at which the transition takes place (stationarity

assumption). Then, we have pr(z, :i‘zf;l =J) InE for all t and

(z. =izt" =0) ~ Ber(@®)and (z. :i\z{;l =1) ~ Ber(x").

2. 4. Priors for variance components and probabilities

Scale-inverse chi-square distributions with v degrees of freedom and scale

parameters (8%, s%, and s?;) were used for the variance components:
pr(c2) O (62) ™2 exp(-vs2/262),

pr(cg) O (55) V2% exp(- vsi/20¢), and
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pr(o7) O (o7) ™™ exp(-vsi2a7).

Finally, A, n}° and =)' were assigned uniform (i.e. Beta(1,1)) prior

distributions.
2. 5. Joint posterior distributions

For all cows, the joint posterior density of all unknown parameters is given
by:
Pr(io, Ky, 04,500,071 2, 2, OO Aly)
O pr(yl 1o, 11,03,65,07 , 2, a, TOTEL )
pr (zl 1o, 11,0;,6,07 , &, TOTEY A)
pr(alpo, py,0;,65,07 , TS A)
Pr(H) Pr(py) pr(og) pr(c}) pr(y) pr(it) pr(it™) pr( A)

where A = [A4, .., AN, = [n?o,...,noNO]and = [n?l,...,nONl ’

Explicitly, the joint posterior is:

- 1
(Gé) No+v+2)2 exp —2—2{\/ sé +(y-Mo Ho-Za) Fo(y-My Wo-Z a)}
Gy

LNy 1
G exp-g{vsf +(y =M pi-Za) Fi(y—M; Wy-Za))
1
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So

(ﬁﬂ”wpwg%xm—nmrmr4mm

51

- 1 .
((52) (N+v+2)2 exp——2 R s§+ a’ Al a}

a

N 0,1 1,1
|_| (}\‘k)Kk +1 (1 _}\‘k)Kk +1
k=1

(ﬂ:OO)nk+1 (1_ 000}’ +1 I—I(nm nk+1 gl n'+1
k=

where KL’I 1s an indicator function which takes the value 1 if Zkl =iand

0 otherwise and n] = number of transitions from 7 = jto 7 b=y,

2. 6. Fully conditional posterior distributions.

The conditional posterior distributions of each parameter (or block of
parameters) are required for implementing a Gibbs sampler. Conditional on
y and z, these conditional posterior densities are analytical because they only
involve one of the possible realizations in the space of all possible

sequences of z. For the location parameters, we have:
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2 ¢ it 2
S; Z(Yk —a, ) K} +m; o;

2 2
(u!@,y,2)~ N| —=% 5 Oi

1

N ’ N
2 i, 2 2 i, 2
(si Zﬂit)"'ci (s Zﬂit)"'ci
k k

2

where O refers to values of all parameters that the conditional distributions
depend upon (i.e., all parameters except the one under consideration), ni;t is

the number of cows with IMI- (i = 0) or IMI+ (i = 1) unknown state at the ¢

time.

Let W = [Z My M;] and the vector of parameters 8 = [a Wy H1]”. Hence,
one can write the model as: y=Z a+ My o + My Iy + e =W 0+ e. By
partitioning the parameter vector Bas ;= a and 02 = [My Wi]” , we can

compute the conditional posterior distribution of the vector of additive
genetic values as (al®, y, z) ~N (4, C;;") with 4 =C;/ [r1 - Clzez] and ry,
Ci1, Cyz = the corresponding partition of C = [W’ R* W + AY/0,”] and r =
W’ Rly.

The fully conditional posterior density of the genetic variance is

pr(c; [©,y,2) O(c;) ™2 exp —z%{v s;+a’ A a)

a

which is in the form of a scale-inverse chi-square density, with [N + V]

degrees of freedom and scale parameter [a' A" a + v s%]. Likewise, the

10
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observations are:
2
pr(ci | G)’ ya Z)

LN vt 1
O(of) M exp—z—z{vs? +(y—M; - Za) Fi(y—M; |- Z a)}

1

which are in the form of scale-inverse chi-square densities, with [N; + V]
degrees of freedom, and with scale parameter = {v si2 +(y—-Mi Wi-Za) F;

(y—M; Wi-Za)} fori=0and 1.

For the k™ cow, the fully conditional posterior densities of the parameters

A, n0and =)!are:

pr ()\‘k |®aya Z)

|:| )LKg'1+l(1 _ }\‘)K};1+l,pr (ngo | @) |:| (nl(zo nﬁ°+l (1 _ nl(zo n}(°+l,
and pr(n)' |0©,y,z) O (ng1)ng‘+1 (1-m) )nlkbr1 which are in the form of beta
distributions.

Finally, one must compute the fully conditional distribution for each

individual z'. These may be obtained either from the pr(z]®, y) or by

considering pr(z, [z(-z, ), ©,y) where z(-z, ) represent the hidden vector z

11



1

2

4

5

6

7

8

9

10

11

12

13

without z, , as suggested by one referee. Under the first alternative, pr(z|© )

can be decomposed as :

Zk 9 ’ Y)a

pr(z|®,y) = pr(z,[0, ) |‘| pr(zi

which leads to a stochastic version of the forward-backward algorithm in
which z, is sampled from a Bernoulli distribution with parameter

pr (z}( =0ny) and each z, is sampled successively (for t = 2 to T) from

ij,t

Bernoulli distributions with parameter &' = pr(z; =i|z}' =j,y). The

Jtl blt

. ij,
computations are reduced as components of & = may be

_]tl Jtl
o By

stored gradually as t increases from 1 to T:

=pr([yL,yﬁ,---yL] Nz, =j),
=pr(fyy sy 11z =),
=pr(z =iz =j)and by’ =pr(y; |z} =i).

l_]_

The forward and backward probabilities can be efficiently calculated by the

following recursion formulae [10]:

_[aou +aitl ‘1] bj,t

it _ Ot+1 01 0,t+1 Lt 1i 1+
= bpt e il b

12
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with initial conditions given by: oy =i, by, ay' =(1-2,) by and

L’T =1fori=0and 1.

In the second alternative, pr(z} |z(-z} ), ©,y) is reduced to pr(z} |z\",z}",

©, y) because of the first-order Markov property on z. Then, pr(z, =
t+1

i\zlt('1 =j,z, =r1,0,y) 0 pr(yi‘z}( =1) pr(zi =1i)if t = 1. It is proportional

to pr(zy = i‘zf{l =]) pr(yi‘zf( =1,0) pr(z;" =1z, =i)fort=2to T-1 and to

pr(yﬂzg =1) pr(z, :i‘zg_l =jif t = T. Note this alternative uses T

different components while the first alternative generates a realization of z

directly from its conditional p(z|y,® ). It presents also a more complicated
correlation structure (since each z, depends on bothz" and z;"') than the

first alternative which may lead to a slower mixing chain.

2. 7. Implementation of a Gibbs Sampler

The following steps describe how a Gibbs sampling can be implemented
for our model, using the stochastic version of the forward-backward

algorithm to sample z:

1. Set initial values for parameters as needed.

13
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2. Select the block (6;) of the vector 8, compute 61 =C;! [r1 -C,,0 2]

and replace a with [61+C1_? 2 rannor(0)] where rannor(0) is a

random draw from a standard normal distribution.

. Replace ; (1=0 and 1) with

0.5

N

2 ¢ Lt 2

Si Z(Yk a, ) Ky +m; o 2 2
k 8i Oj

S + A rannor(O)
2 2 2 2
(8 zni,k)+0i (8 zni,k)+0i
k k

. Replace 0%, with (a' A a + v s%) /X%\HV, where x%,, is a random

draw from a central chi-square distribution with [v + N] degrees of
freedom.
Replace 0% with {vs]+ (y = M; i~ Z a)’ F; (y — Mi Wi- Za)} /x3 .,
for1=0 or 1, where X12\1 +v 1s arandom draw from a central X-square
distribution with [N;+v] degrees of freedom.

0,1 R0l _

Compute Cﬁ’l =a, B, =pr (z}( =0ny) and sample z. from

Ber(¢)!).

Compute and store Cﬁj’t for t=2,...,Tandj=0or 1. Then, sample

zi from Ber(¢J) if zi ' =j fort=2, .., T.

14
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8. Sample Ay and nE, from their corresponding beta distributions with

parameters K}' +1and n} +1, fori,j =0 and 1, respectively.

9. Repeat (2 through 8) p times for burn-in as needed. Then, sample all

parameters O times. The total number of cycles is p + .

In this study, values for the hyperparameters are: s = 0.5, s>, = 1, my =
overall average computed from the data, m; =mg + 3,V = 2, s>, = h* 3, (s%

= variance computed from the data) and h? =0.1.

2. 8. Simulations

The model was evaluated using simulated values for the biomarker (here,
SCS) with genetic effects considered as having the same distributions for
cows with IMI+ and IMI- samples. Each simulation was replicated 10
times. Simulated rather than real data were used because a negative
diagnosis, even based on absence of bacteria in cell culture, is not a

guarantee of health and the reverse has also been observed [22].

2. 8. 1. Simulated data

15
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Results from the field study of de Haas et al. [6], [7] on pathogen-specific
SCC curves among multiparous cows were used to simulate the means of
monthly samples from IMI- and IMI+ cows. In the Figure 3b of de Haas’s
paper [6], it is shown that, in cows clinically infected with E. coli, SCC
increase rapidly after infection occurring around the 2" month-in-milk, peak
at 2,000 cells per UL above pre-infection values and return to pre-infection
levels one month later. On the other hand, presence of a long increased
SCC, without recovery within 4 consecutive months, was common in
lactations with clinical Staph. aureus mastitis. In the cows without clinical
mastitis, SCC followed an approximate inverse lactation curve. The SCC
values were log,-transformed in SCS and used to simulate the SCS means,
as explained below. In the simulations, it was also considered that cows
may be classified as high and moderate responders on the basis of the extent
of their immune response to a particular infection [14]. Therefore, SCS
were considered at higher values and of longer duration in high than
moderate responders (Figure 1).

In the simulations, 3 discrete generations were considered with 400 cows
per generation. No selection was applied, sires were selected from 30
different bulls, each cow was replaced by a daughter, and mating was at
random. Breeding values for base animals were sampled from a normal
distribution with null mean and additive variance of 0.15 or 0.25. The

values for the additive variance was found in the literature [4]. Breeding

16
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values for non-base animals were sampled from a normal distribution with
the mid-parent value as mean and variance = 0.15/2 or 0.25/2. Inbreeding
was ignored.

Somatic cell scores under healthy (SCSy) and infected (SCS,) states were
simulated as follows:

SCSo=My W+ a+e and SCS;=M; I+ a+ey,

where Mo and Y, are the (T X 1) vector means of both distributions, a is the
(N X 1) vector of breeding values (computed as above), and My and M; are
the incidence matrices relating Mo and H4; to SCSy and SCS;, respectively.
The number of observations per cow was set at T = 10 or 20 observations.
The vectors ey and e; were sampled from 2 normal distributions with null
means and residual variances set at 1.0 and 1.4. The values for the residual
variances were found in the literature [13]. Each element of |y and W, was
taken from the curves observed in cows without and with mastitis, and for
high and low responders (Figure 1). The cows were assigned to a group
(IMI+ or IMI-) at random using appropriate membership probabilities: The
proportion of cows with at least one IMI+ sample was set at P.oy = 20% and
50% and, among IMI+ cows, the proportion infected with E. coli was set at
Peoti = 0%, 50% and 100% (the other IMI+ cows were considered infected
with S. aureus). If a cow was assigned to the IMI+ group, the time at which

the clinical episode starts (= t*) was sampled from an exponential

17
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distribution with scale parameter 3 which is in agreement with the reported

median time of first occurrence of mastitis, i.e., 2 to 3 months [6].

2.8.2. Evaluation of the accuracy of the estimates

The estimates ({i},G;, 67,62, 4) of the parameters (u},cg,0;,02,a) were
computed, after burn-in, as the means of the posterior distributions. Their
accuracies were assessed over the range of parameter values (sensitivity
analysis) as follows. For the predicted breeding values, the Spearman
correlation coefficient (corrgy) with the true breeding values was computed
for each replicate and averaged over the 10 replicates. For residual and
additive variances, the differences (biasgy, biasg;, and biasg,) between
estimates and simulated values were computed for each replicate and

averaged over the 10 replicates. For the location parameters, the biases

bias,o and bias,;) were calculated between the estimates and y' , where
H H i

> iz =)
—t _ k=1,nil
b=

- computed with known values for z{. Finally,
nt

sensitivity (SE), specificity (SP), and probability of correct classification

(PCC), were computed at each iterative step as:

18



10

11

12

13

14

15

16

17

18

19

sE= Y Y ol =1l =1).5p= 3 3 prlat =0z} =0). and

PcC= Y Sprlzl =105l =10 =0n 2 =0)].

k=1,N t=1,T

After burn-in, these were averaged over the d Gibbs rounds and the 10

replicates.

3. RESULTS AND DISCUSSION

From visual inspection of the algorithmic convergence, it was found that a
total of 1,000 cycles and a burn-in (p) of 200 runs were sufficient to remove
the influence of the prior values and obtain stable estimates. All results
presented thus correspond to the last (& = 800) runs of the Gibbs algorithm.
This may seem very few cycles but results were checked for 3 simulated
data sets over a higher number of cycles of the Gibbs sampler. Convergence
rates were also checked with an EM algorithm and the Gibb sampler on
models similar to those used in the simulation of this study but without
genetic covariance structure (SCS; = M; Wi + e; ). Explanations may be
linked to the simplicity of the pedigree structure, small number of cows and

the fact that value for my and s*, were obtained from the data.
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3. 1. Overall accuracy of the estimates

Overall, the sensitivity was high (SE ~ 90%) but the specificity low (SP ~

60%). Because of this high sensitivity, we can be confident that a cow with
z1 = 0 is healthy and spare the costs of further testing (e.g., bacteriological
cultures) or useless treatment. On the other end, the low specificity indicates
that cows with 2{ = 1 should be further tested to confirm the clinical

suspicion. These observations may suggest some economic interest in
HMM.

Before any testing, the probability for a cow to be IMI+ can only be
estimated from the prevalence of the disease in the population, while, after
testing, this probability is estimated from the posterior probability of being
IMI+ given a positive test (also called the positive predictive value). With
SE = 90% and SP = 60%, the difference between prior and posterior
probabilities is maximum at disease frequencies between 20% and 50%,
with posterior probabilities 20% higher than the prior probabilities. These
frequencies are within the range of prevalence typically reported for mastitis,
as illustrated in the following few studies. In Finland, Pitkild et al. [18]
reported 31% of cows with SCC>300,000/mL (mastitis) in 2001. In
Switzerland, Roesch ef al. [19] reported 40% of cows showing at least 1

positive California Mastitis Test in at least one quarter at 31 d and 102 d

20
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post partum. In a survey of clinical and subclinical mastitis in England and
Wales, the mean incidence of clinical mastitis recorded by the farmer was 47
cases per 100 cows per year [3]. In Canada, Sargeant et al. [21] observed
19.8% of cows experienced one or more cases of clinical mastitis during a 2-
year observational study. Therefore, HMM may also be of interest in field
studies, when it is necessary to precisely identify infected cows.

Breeding values from the HMM seemed accurate in predicting the true
additive genetic merit of the cows. Indeed, the correlation (corrgy) between
simulated and estimated breeding values varied from 65% to 79% over the
whole data sets. This is close to the correlations of 70 to 75% computed as
the square root of the coefficient of determination (CD), where

CD =1 —?, PEV = prediction error variance = [WR!'W + A/0,*]!

and V = true additive variance = A 0,> [11]. The PEV were computed with
the values of the parameters used in the simulation and weighted by the true
proportion of IMI- and IMI+ per cow.

On the other hand, the HMM was less efficient in estimating the

parameters for the IMI+ group. Indeed, 812 had a tendency to underestimate
and ﬁ} to overestimate the values used in the simulation. The biases varied
from -1.33 to -0.13 (mean = -0.59) for 812 and from -0.02 to 3.26 (mean =

1.14) for ﬁ{. The magnitude of the biases decreased when the amount of

21
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information available on IMI+ cows increased, as discussed in the sensitivity

analyses below.

3. 2. Sensitivity analyses

The robustness of the HMM approach was assessed by computing the
biases in the estimates over a wide range of values for the simulated
parameters.

Over all, estimates of means and variances were rather insensitive to the
values of the corresponding simulated values but they were sensitive to the
proportion of cows with at least one IMI+ sample (P.yw) and to the
proportion of E. coli among infected cows (P.yi). This suggests HMM

estimates are sensitive to the amount of data available to compute them. For

example, biases in the estimation of both location parameters (ﬁ(t), ﬁ{) were

highest when P, was lowest (Figure 2), suggesting that it is necessary to
have a sufficient number of observations per cow when the disease
prevalence is low. Similarly, SE, SP and PCC decreased as the proportion
of E. coli infection (Po;) increased (Figure 3). This was not surprising
because, in cows infected with E. coli, only few simulated SCS were higher
than SCS for IMI- samples, as is observed in naturally occurring E. coli

infections usually of short duration.
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Level of response to infection influenced estimates of transition
probabilities, in opposition to estimates of both location parameters and of
breeding values. For example, SE and PCC were higher among high (SE =
92%; PCC = 64%) than moderate (SE = 80%; PCC = 60%) responders
suggesting that HMM 1is more accurate when IMI- and IMI+ distributions
are farther apart. Conversely, accuracy of 67 worsened when the distance
between IMI- and IMI+ distributions increased with biasg; = -0.51 for
moderate and biasg;= -0.80 for high responders.

Note that SE and SP were insensitive to change in disease frequency
(Peow), as they should by definition, conversely to PCC that is, by definition,
a function of the disease frequency: PCC = [SE*pr(IMI+)] + [SP*pr(IMI-)].

Finally, note SE and SP reported here are different from SE and SP in

Adegérd et al. [17] in which

> t,PPM; > (1-t,)(1-PPM;)
SE=ZM_ and SPE =Xt
Zti n-— Ztl
i=l,n i=l,n

where PPM,; is the posterior mean of the estimates of z; averaged over Gibbs

samples (after burn-in), t; = 0 if IMI-, t;=1 if IMI+, and i = 1 to n cows.

3. 3. General discussion

23
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The main advance of this paper is the presentation of a HMM in which
genetic random effects were added to the conditional model for the observed
data. In the subject-area literature, HMMs with random effects have been
used in a very limited way. Only recently, Altman [1] introduced a mixed
HMM to study lesion counts in multiple sclerosis patients. In her model,
parameters for the observed and hidden data are allowed to vary randomly
among patients, although they are assumed independent from each other (no
genetic relationship). This suggests a natural extension of the present
HMM, i.e., to allow the parameters of the hidden Markov chain to vary
randomly among cows. However, interpretation of the results of such
extended model will be delicate because sets of identical genes may be
associated to both IMI and SCS (confounding effects). Stated otherwise, the
total genetic effects on SCS would be a combination of the effects of genes
responsible for presence or not of IMI (resistance to infection) and for the
magnitude of the SCS response after IMI (tolerance after infection).

Structural equation modeling is a technique to evaluate models with
different hypothesized relationships among variables. In this context, it
would be interesting to evaluate the different models proposed in Figure 4 to
determine the amount of relationships between genes insuring tolerance or
resistance to infection. In the model proposed here, biomarker value at one
specific time is independently influenced by the IMI status and by some

genes. But, both the IMI status and the biomarker values could also be
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under the influence of this same set of genes (model b of Figure 4). The
relationship between genes, biomarker and IMI status can become even
more complicated with different sets of correlated genes influencing the
expression of both traits (model e). This is important for the long-term
because some epidemiological models predict that selection for resistant
cows (no infection) may not be as durable as selection for tolerant (infection
but no disease) cows [16], [20]. Increased resistance would reduce disease
transmission, reducing the fitness advantage of carrying the resistant genes,
and possibly impose pressure upon the pathogen to evade the control
strategy. By contrast, as genes conferring disease tolerance spread within a
population, the disease incidence rises, increasing the evolutionary
advantage of carrying the tolerance genes, without leading to genetic
changes in the parasite population.

Other extensions of the HMM are possible. Trends and seasonality in
SCS can be readily accommodated to relax the assumption of time-
independence between transition probabilities [15]. Prior information on the
parameters can be included to increase accuracy and speed up convergence.
Location parameters can be made more realistic by considering effects
affecting SCS values, such as age, herd, or season, as a few examples.
Elements of the M matrices could take different values than zeroes or ones

to reflect the different effects on SCS for different parts of the lactation.
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The genetic variance could also be different for IMI- and IMI+ samples and
would allow for genetic difference in the response in SCS to IML.

The first-order Markov assumption is also a limiting feature of the HMM
and mechanisms of transmission of the IMI between cows could also be
considered more precisely in deriving the transition probabilities. Indeed,
transmission of infection is a complex process that involves the mixing
structure of the population (as it determines the probability of contact
between animals), the infectiousness of the contagious animal (or infective
dose) and the susceptibility of a healthy cow (i.e., its probability of getting
infected after contact with a contagious animal). To solve these issues,
Cooper and Lipsitch [5] proposed to model the transition probabilities of the
hidden Markov chain in terms of the parameters of epidemiologic models
used to describe the transmission of an infectious disease at the population

level.

3. 4. Conclusions

In summary, it is shown that the mixed HMM provides a good fit to the
data sets simulated in this study. The advantages of the HMM over other
approaches are the prediction of health or disease status, the reduction of
confirmatory diagnosis costs, and the increased accuracy in breeding values.

However, future work needs to be done to extend the HMM proposed here,

26



10

11

12

13

14

15

16

17

18

19

20

21

22

the most important piece of which is to quantify the level of resistance and
tolerance to infection while considering the mechanisms of transmission

between healthy and sick cows.
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FIGURE CAPTIONS

Figure 1. Means of SCS for lactations without clinical mastitis (plain line)
and lactations with clinical mastitis associated with Staphylococcus aureus
(square) or Escherichia coli (triangle) occurring on the median MIM for

multiparous cows (Adapted from de Haas et al., [6]) .

Figure 2. Differences between simulated and estimated values for the
means of the distributions for healthy (dot bar) and infected (slash bar) cows

as a function of the proportion of infected cows.

Figure 3. Sensitivity (plain bar), specificity (open bar) and probability of
correct classification (circled bar) as a function of the proportion of E. coli

among infected cows.

Figure 4. Five different hypothetical models of the relationship between
genetic background (G), intra-mammary infection (IMI) and biomarker
(Bio). The first model (a) is the model of this study (The dependent

variables are the targets of one-headed arrows).
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ANNEX

Table I. Sensitivity (SE), specificity (SP), and probability of correct
classification (PCC) as a function of the level of response to infection, high
(H) or moderate (M) responders, number of samples per cow (T), percentage

of cows with at least one IMI+ sample (P..), percentage infected with E.

coli (P.i), and residual and additive genetic variances (0(2), 012,05 ). Data

sorted by SE.
SE SP PCC T Peow Peoii o2 o’ o
High responders
95.03 59.65 63.70 10 50 50 1.0 1.0 0.15
94.50 58.19 60.64 10 20 0 1.4 14 0.15
94.25 49.59 56.73 10 20 50 1.4 1.4 0.15
94.03 58.05 59.90 20 20 50 1.0 1.0 0.25
93.92 62.71 65.98 20 50 0 1.0 1.0 0.25
93.79 58.88 60.63 20 20 50 1.4 1.4 0.25
93.20 57.51 59.31 20 20 50 1.4 1.4 025
93.08 55.15 56.95 10 20 50 1.4 14 0.25
92.64 58.23 62.16 10 50 50 1.4 1.4 0.15
92.64 65.99 68.16 20 20 0 1.4 14 0.25
92.63 57.49 58.34 20 20 50 1.4 1.4 0.25
92.03 59.91 61.49 20 20 50 1.4 14 0.25
90.41 50.89 51.65 10 20 100 1.4 1.4 0.15
89.58 50.60 51.34 10 20 100 1.4 14 0.15
89.05 69.75 73.53 20 50 0 1.0 1.0 0.15
88.81 68.09 72.19 20 50 0 1.4 14 0.25
88.19 66.02 70.42 20 50 0 1.4 1.4 025
88.14 68.43 72.38 20 50 0 1.0 1.4 0.15
85.06 68.53 71.84 20 50 0 1.0 1.4 025
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84.27

Moderate responders

94.24
79.74
79.09
77.95
77.67
77.06
75.77
73.04

55.36

57.41
52.41
54.89
53.64
64.32
63.14
51.78
58.81

55.94

59.28
52.95
56.74
54.81
67.03
65.90
52.24
61.60

20

20
20
20
20
20
20
20
20

20

20
20
20
20
50
50
20
50

100

50
50

50

100

1.4

1.0
1.0
1.4
1.4
1.0
1.0
1.4
1.0

1.4

1.0
1.0
1.4
1.4
1.4
1.4
1.4
1.4

0.25

0.25
0.25
0.25
0.25
0.15
0.25
0.25
0.25
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Table II. Accuracy of the estimates of the mixed hidden Markov model as

a function of the level of response to infection, high (H) or moderate (M) ,

number of samples per cow (T), percentage of cows with at least one IMI+

sample (Pcw), percentage infected with E. coli (P), and residual and

additive genetic variances (o;,0;7,6. ). The accuracy is determined as the

differences between values used in the simulations and estimates of means

(biasyo, biasy;) and residual variances (biasgo, biasg) in IMI- and IMI+ cows,

respectively; the differences between values used in the simulations and

estimates of additive genetic variance (biasg,); and the correlation between

predicted and simulated breeding values (corrgy). Data sorted by corrgy.

corrgy  biasgy biasgi biasg, biasy biasy T Peow  Peoli 6] o o’

High responders
0.79 0.00 -0.66 -0.08 024 047 20 50 0 1.0 1.4 0.15
0.79 0.02 -0.65 -0.02 0.21 0.28 20 50 0 1.0 1.0 0.15
0.78 -0.02 -0.78 0.00 022 043 20 50 0 1.0 1.4 0.25
0.77 0.01 -0.70 0.01 0.28 0.51 20 50 0 1.4 1.4 0.25
0.77 0.02 -0.63 0.04 023 052 20 50 0 1.4 1.4 0.25
0.74 -0.01 -0.29 0.05 041 216 20 20 100 1.4 1.4 0.25
0.74 0.06 -0.46 -0.01 050 293 10 20 100 1.4 1.4 0.15
0.73 0.04 -0.57 0.02 0.31 0.80 20 20 0 1.4 1.4 0.25
0.73 0.09 -0.48 -0.03 055 326 10 20 100 1.4 1.4 0.15
0.72 0.03 -0.42 0.04 0.52 1.26 20 20 50 1.4 1.4 0.25
0.71 0.02 -0.46 0.04 042 1.22 20 20 50 1.4 1.4 0.25
0.71 0.03 -0.48 0.05 0.40 1.13 20 20 50 1.4 1.4 0.25
0.71 0.09 -0.65 -0.02 044 186 10 20 50 1.4 1.4 0.15
0.70 0.02 -0.44 0.04 0.38 1.17 20 20 50 1.4 1.4 0.25
0.70 0.09 -0.60 0.06 051 1.73 10 20 50 1.4 1.4 0.25
0.69 0.03 -0.57 0.04 0.36 0.87 20 50 0 1.0 1.0 0.25
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0.69
0.68
0.67
0.67
Moderate
0.76
0.75
0.75
0.75
0.74
0.73
0.72
0.66

0.11
0.08
0.03
0.07

-0.74
-1.25
-0.44
-1.21

responders

-0.02
-0.01
-0.01
-0.03
-0.02
-0.03
-0.04

0.03

-0.46
-0.13
-0.14
-0.21
-0.18
-0.46
-0.36
-0.45

-0.03
-0.02

0.06
-0.03

-0.02
0.05
0.07
0.04
0.06
0.04
0.05
0.06

0.40
0.38
0.43
0.39

0.24
0.48
0.47
0.32
0.32
0.32
0.39
0.44

1.69
1.48
1.06
1.46

0.00
1.61
1.30
0.70
0.82
0.19
-0.02
1.22

10
10
20
10

20
20
20
20
20
20
20
20

20
50
20
50

50
20
20
20
20
50
50
20

50
50
50

100

50

50

50

1.4
1.0
1.0
1.4

1.0
1.4
1.0
1.4
1.4
1.0
1.0
1.0

1.4
1.0
1.0
1.4

1.4
1.4
1.0
1.4
1.4
1.4
1.4
1.0

0.15
0.15
0.25
0.15

0.15
0.25
0.25
0.25
0.25
0.25
0.25
0.25
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