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Abstract -    A mixed hidden Markov model (HMM) is developed for predicting 1 

breeding values of a biomarker (here, somatic cell score) and the individual 2 

probabilities of health and disease (here, mastitis) based upon measurements of the 3 

biomarker.  At a first level, the unobserved disease process (Markov model) is 4 

introduced and, at a second level, the measurement process is modelled, making 5 

the link between the unobserved disease states and the observed biomarker values. 6 

This hierarchical formulation allows joint estimation of the parameters of both 7 

processes.  The flexibility of this approach is illustrated on simulated data.  Firstly, 8 

lactation curves for the biomarker are generated based upon published parameters 9 

(mean, variance and probabilities of infection) for cows with known clinical 10 

condition (health or mastitis due to E. coli or S. aureus).  Next, estimation of the 11 

parameters is performed via Gibbs sampling, assuming the health status is 12 

unknown.  Results from the simulations and the mathematics showed that the 13 

mixed HMM is appropriate to estimate the quantities of interest although the 14 

accuracy of the estimates is moderate when the prevalence of the disease is low.  15 

The paper ends with some indications for further developments of the 16 

methodology. 17 

 18 

hidden Markov model/ mixed model/ mastitis/ somatic cell score 19 

20 
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1. INTRODUCTION 1 

 2 

   Studies have shown variability among cows for natural resistance to intra-3 

mammary infection (IMI).  Selection is therefore possible but direct 4 

measures of IMI are not readily available.  Usually, information on IMI is 5 

based upon biomarkers such as somatic cell scores (SCS), electrical 6 

conductivity, immunoglobulin or acute phase proteins (reviewed in 7 

Detilleux, accepted).  One important difficulty in using these biomarkers to 8 

find the most resistant animals is that factors known to influence their 9 

expression may be different in healthy (IMI-) from infected (IMI+) cows.  10 

As these are usually unidentified, breeding values tend to be biased.  To 11 

reduce this bias and to infer more precisely cows’ individual probabilities to 12 

be IMI- or IMI+, several authors have used the mixture model methodology 13 

on SCS [2], [8], [12], [17].  A generalization of the mixture model is the 14 

hidden Markov model (HMM) that presents the advantages to not only 15 

estimate individual probabilities of being infected but also to predict 16 

individual probabilities of new infection and of recovery, both useful to 17 

compute epidemiological measures of IMI spread within a population and to 18 

assist mastitis control programs. 19 

   The objective of this study is to present the mathematical formalism 20 

behind the HMM methodology as it may apply to the analysis of infectious 21 

disease biomarkers assumed to be dependent upon the genetic make-up of 22 
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the cows.  The fit of the HMM will be assessed on data simulated based on 1 

parameters obtained in a survey of clinical mastitis cases.  Bayesian 2 

estimates of the parameters will be obtained using the Gibbs sampler.  3 

Finally, limitations and possible extensions of the current approach will be 4 

discussed.  5 

 6 

2. MATERIALS AND METHODS 7 

 8 

   Throughout, k indexes the individual cow, t (t = 1 to T) is the follow-up 9 

time point during the lactation (e.g., month in milk), yk
t
 is the value of the 10 

biomarker observed at t on animal k, and zk
t
 is the corresponding unknown 11 

health status (IMI- or IMI+).  Let zk
t
 = 0 if yk

t
 is from an unknown IMI- 12 

sample and zk
t
 = 1 if yk

t
 is from an unknown IMI+ sample.  For simplicity, T 13 

is assumed constant for all cows.  We use the notation Ødegård et al. [17] 14 

utilized for their finite mixture model, with slight modifications.  15 

 16 

2. 1. General formulation of the model  17 

 18 

   Conditionally on the unknown vector z, it was assumed that the vector of 19 

observations y could
 
be described by the linear model:

 
 20 

y = M0  µµµµ0 + M1  µµµµ1 + Z a + e 21 
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where y is the (NT X 1) data vector of yk
t
, µµµµ0 and µµµµ1 are (T X 1) vectors of 1 

fixed effects for data on a IMI- or IMI+ cow, respectively, a is the (Na X 1) 2 

vector of random additive genetic effects; M0 is the (NT X T) matrix with 3 

elements = 1 if zk
t
 = 0 and = 0 otherwise; M1 is the (NT X T) matrix with 4 

elements = 1 if zk
t
 = 1 and = 0 otherwise; e is the (NT X 1) vector of 5 

residuals; Z is the (NT X Na) incidence matrix relating a to y, N is the 6 

number of animals with data and Na is the number of animals with pedigree 7 

records.  8 

   The conditional distribution of y, given the vector z,
 
the location and scale 9 

parameters, was assumed
 
to be: 10 

(y| µµµµ0,  µµµµ1 , ,σ,σ 2

1

2

0  a , z)  ~ N [(M0  µµµµ0 + M1  µµµµ1 + Z a), R] 11 

with R = F0
2

0σ +  F1 ,σ 2

1  where Fi is the (NT X NT) diagonal matrix with 12 

elements = 1 if zk
t
 = i and = 0 otherwise.  The parameters  σ20 and 2

1σ are the 13 

residual variances associated to a record on an IMI- and IMI+ cow, 14 

respectively.  For the additive effects, it was assumed that (a | 2

aσ ) ~ N [0, 15 

A 2

aσ ] where 2
aσ  is the additive genetic variance and A is the matrix of 16 

additive genetic relationship between animals.   17 

 18 

2. 2. Sampling distribution of the observations given group status 19 

 20 
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   The density of the vector y for the subset of the Ni observations with
 
zk

t
 = 1 

i, i.e. {z = i}, given the location parameters and the residual variances can be 2 

written as:
  

3 

pr (y| µµµµi, 2
iσ , {z = i}) 4 

 )
2σ

1
exp{( )(σ

2
i

/2N2
i

i
−∝ (y – Mi  µµµµi - Z a)’ Fi (y – Mi  µµµµi - Z a)}. 5 

 6 

2.3. Prior distributions of parameters and of the unknown status vector 7 

 8 

   For i = 0 or 1, normal prior densities were assumed for the location 9 

parameters: 10 

)
2s

1
 {(-  exp)(s)pr(µ

2
i

 T/2-2
ii ∝ (µi – 1 mi)’ (µi – 1 mi)}, 11 

where 1 is the (TX1) vector of 1.  The prior density for the additive effects, 12 

conditionally on the additive variance, was:  13 

pr(a  )
2σ

1
exp{(-)(σ)σ

2
a

N/22
a

2
a

−∝ a’ A
-1
 a }. 14 

   Under simple mixture models, the individual elements of the classification 15 

vector z are
 
assumed to be independent a priori and to follow the same 16 

Bernoulli
 
distribution with the mixing proportion as parameter.  Here, under 17 

a equally simple mixed HMM, the variables zk
t
 do not follow the same 18 

distribution.  The first element of the series (zk
1
) follows a Bernoulli 19 
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distribution with λk as parameter while the other elements follow Bernoulli 1 

distributions with state transition probabilities from zk
t-1
 to zk

t
 as parameters.  2 

Formally, the unknown state at time t may be decomposed in: 3 

1)p(z 1)zip(z 0)p(z 0)zip(zi)pr(z 1-t
k

1-t
k

t
k

1-t
k

1-t
k

t
k

t
k ===+=====  4 

where j)zip(z 1-t
k

t
k ==  are the state transition probabilities with i, j = 0 or 1.  5 

The state transition probabilities are assumed to possess the first-order 6 

Markov property namely that, given the present state, the future and past 7 

states are independent or that the current value ( t
kz ) depends solely on the 8 

most recent past value ( 1-t
kz ).  Transition probabilities are also independent 9 

of the actual time at which the transition takes place (stationarity 10 

assumption).  Then, we have  πj)zipr(z 
ij
k

1-t
k

t
k === for all t and 11 

 0)zi(z 1-t
k

t
k == ~ )Ber(π00k and  1)zi(z 1-t

k
t
k == ~ )Ber(π01k . 12 

 13 

2. 4. Priors for variance components and probabilities 14 

 15 

   Scale-inverse chi-square distributions with ν degrees of freedom and scale 16 

parameters (s²a, s²0, and s²1) were used for the variance components:   17 

)σ /2s ν exp(- )(σ)pr(σ 2
a

2
a

2)/2 (ν2
a

2
a

+−∝ ,  18 

)/2σs ν exp(- )(σ)pr(σ 2
0

2
0

2)/2 (ν2
0

2
0

+−∝ , and 19 
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)σ /2s ν exp(- )(σ)pr(σ 2
1

2
1

2)/2 (ν2
1

2
1

+−∝ . 1 

Finally, λk,
00
kπ and 01

k
π  were assigned uniform (i.e. Beta(1,1)) prior 2 

distributions. 3 

 4 

2. 5. Joint posterior distributions 5 

 6 

   For all cows, the joint posterior density of all unknown parameters is given
 

7 

by: 8 

  
2
1

2
0

2
a10 σ,σ,σ,µ,pr(µ , z, a, π π π π00000000

,ππππ01010101
, λλλλ|y)  9 

         ∝  pr(y| 2
1

2
0

2
a10 σ,σ,σ,µ,µ , z, a, π π π π00000000

,ππππ01010101
, λλλλ)  10 

               pr (z| 2
1

2
0

2
a10 σ,σ,σ,µ,µ , a, π π π π00000000

,ππππ01010101
, λλλλ)  11 

                pr(a| 2
1

2
0

2
a10 σ,σ,σ,µ,µ , ππππ00000000

,ππππ01010101
, λλλλ)       12 

               )pr(σ )pr(σ )pr(σ )pr(µ )pr(µ 2
a

2
1

2
010  pr(ππππ00000000

) pr(ππππ01010101
) pr( λ)λ)λ)λ) 13 

where λ λ λ λ = [λ1, .., λN]’, ππππ00000000
]π,...,[π 00

N
00
1= and ππππ01010101

]π,...,[π 01
N

01
1= ’.   14 

 15 

Explicitly, the joint posterior is:
  

16 

  { 2
02

0

2)/2ν(N2
0 s ν

2σ

1
 exp )(σ 0 −++−

+ (y - M0  µµµµ0 - Z a)’ F0 (y - M0  µµµµ0 - Z a)} 17 

  { 2
12

1

2)/2ν(N2
1 s ν

2σ

1
exp  )(σ 1 −++−

+ (y – M1  µµµµ1 - Z a)’ F1 (y – M1  µµµµ1 - Z a)} 18 
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   )
2s

1
 {(-  exp)(s

2
0

 T/2-2
0 (µµµµ0 – 1 m0)’ (µµµµ0 – 1 m0)}  1 

   )
2s

1
 {(-  exp)(s

2
1

 T/2-2
1 (µµµµ1 – 1 m1)’ (µµµµ1 – 1 m1)}  2 

  2
a2

a

2)/2ν (N2
a s {ν

2σ

1
exp   )(σ −++− + a’ A

-1
 a} 3 

  

∏∏

∏

=

++

=

++

+

=

+ −

N

1k

1 n01
k

1  n01
k

N

1k

1 n00
k

 1 n00
k

1K
k

N

1k

1K
k

11
k

01
k

10
k

00
k

1,1
k

0,1
k

)π-(1)(π x   )π-(1)(π

   )λ(1 )(λ 

 4 

where i,1
kK is an indicator function which takes the value 1 if zk

1
 = i and 5 

0 otherwise and ij
kn  = number of transitions from zk

t
 = j to zk

t+1
 = i . 6 

 7 

2. 6. Fully conditional posterior distributions. 8 

 9 

   The conditional posterior distributions of each parameter (or
 
block of 10 

parameters) are required for implementing a Gibbs sampler. Conditional on 11 

y and z, these conditional posterior densities are analytical because they only 12 

involve one of the possible realizations in the space of all possible 13 

sequences of z.  For the location parameters, we have:
 

14 
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( Θ|µ t
i , y, z) ~



















++

+−

∑∑

∑
N

k

2
i

ti,
k

2
i

2
i

2
i

N

k

2
i

ti,
k

2
i

N

k

2
ii

ti,
kk

t
k

2
i

σ)η(s

σ s 
,

σ)η(s

σ mK )a(y s

N , 1 

where Θ refers to values of all parameters that the conditional distributions 2 

depend upon (i.e., all parameters except the one under consideration), ti,
kη is 3 

the number of cows with IMI- (i = 0) or IMI+ (i = 1) unknown state at the t
th
 4 

time.   5 

   Let W = [Z M0 M1] and the vector of parameters θθθθ = [a µµµµ0 µµµµ1]’.  Hence, 6 

one can write the model as: y = Z a + M0 µµµµ0 + M1 µµµµ1 + e = W θ θ θ θ + e.  By 7 

partitioning
 
the parameter vector θθθθ as θθθθ1111    = a and θθθθ2222 = [µµµµ0 µµµµ1]’ , we can 8 

compute the conditional posterior distribution
 
of the vector of additive 9 

genetic values as (a|Θ, y, z) ~ N (â, C11
-1
) with â [ ]2121

1
11 θCrC −= −

and r1, 10 

C11, C12 = the corresponding partition of C = [W’ R
-1
 W + A

-1
/σa

2
] and r = 11 

W’ R
-1
 y.    12 

   The fully conditional posterior density
 
of the genetic variance is  13 

Θ|(σpr 2
a , y, z) 2

a2
a

2)/2ν (N2
a s {ν

2σ

1
 exp   )(σ  −∝ ++− + a’ A

-1
 a} 14 

which is in the form of a scale-inverse chi-square density, with
 
[N + ν] 15 

degrees of freedom and scale parameter [a' A
-1 
a + ν s2a].  Likewise, the 16 
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fully conditional densities of the residual variances
 
for IMI- and IMI+ 1 

observations are: 2 

Θ|(σpr 2
i , y, z)  3 

2
i2

i

2)/2ν(N2
i s {ν

2σ

1
 exp )(σ i −∝ ++−

 + (y – Mi  µµµµi - Z a)’ Fi (y – Mi  µµµµi - Z a)} 4 

which are in the form of scale-inverse chi-square densities, with
 
[Ni + ν] 5 

degrees of freedom, and with scale parameter = 2
is {ν  + (y – Mi  µµµµi - Z a)’ Fi 6 

(y – Mi  µµµµi - Z a)} for i = 0 and 1. 7 

For the k
th
 cow, the fully conditional posterior densities of the parameters 8 

λk, 00
kπ and 01

kπ are: 9 

Θ|(λpr  k , y, z) 10 

,)π(1)(πΘ)|(πpr ,λ)(1λ
1n00

k
1n00

k
00
k

1K1K 10
k

00
k

1,1
k

0,1
k ++++ −∝−∝  11 

and Θ|(πpr 01
k , y, z) 

1n01
k

1n01
k

11
k

01
k )π(1)(π

++ −∝ which are in the form of beta 12 

distributions.   13 

   Finally, one must compute the fully conditional distribution for each 14 

individual zk
t
.  These may be obtained either from the pr(z|Θ , y) or by 15 

considering pr( t
kz |z )(-z tk , Θ , y) where z )(-z tk represent the hidden vector z 16 
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without t
kz , as suggested by one referee.  Under the first alternative, pr(z|Θ ) 1 

can be decomposed as : 2 

pr(z|Θ , y) = pr Θ(z1k , y) Θ ,zpr(z 
T

2t

1t
k

t
k∏

=

−
, y), 3 

which leads to a stochastic version of the forward-backward algorithm in 4 

which 1
kz  is sampled from a Bernoulli distribution with parameter 5 

∩= 0(zpr 1
k y) and each

t
kz is sampled successively (for t = 2 to T) from 6 

Bernoulli distributions with parameter tij,
k
ξ  = j,z|ipr(z 1-t

k
t
k == y).  The 7 

computations are reduced as components of  
1-tj,

k
1-tj,

k

ti,
k

ti,
k

ij
k

1-tj,
ktij,

k
β  α

β b  πα
 ξ =  may be 8 

stored gradually as t increases from 1 to T: 9 

. i)z|pr(y b and j)  z|i pr(z  π

 i),z|]y,...,pr([yβ

   , j)z ]y ... ,y ,pr([y α

t
k

t
k

ti,
k

1-t
k

t
k

ij
k

t
k

T
k

1t
k

ti,
k

t
k

t
k

2
k

1
k

tj,
k

=====

==

=∩=
+

 10 

The forward and backward probabilities can be efficiently calculated by the 11 

following recursion formulae [10]:  12 

[ ] [ ]1t1,k1i
k

1t1,
k

1t0,
k

0i
k

1t0,
k

ti,
k

tj,
k

j1
k

1-t1,
k

j0
k

1-t0,
k

tj,
k

b   πβ   b   πβ β

b  ] πα π[α α

++++ +=

+=
 13 
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with initial conditions given by: 
0,1
kk

0,1
k b  λα = , 

1,1
kk

1,1
k b  )λ(1α −= and 1 

1 β Ti,
k = for i = 0 and 1. 2 

In the second alternative, pr( t
kz |z )(-z tk , Θ , y) is reduced to pr( t

kz | ,z ,z 1t
k

1-t
k

+  3 

Θ , y) because of the first-order Markov property on z.  Then, pr( t
kz = 4 

i| r, z , j z 1t
k

1-t
k == + Θ ,y) i)pr(z i)zpr(y 1

k
1
k

1
k ==∝ if t = 1.  It is proportional 5 

to i)zrpr(z ) ,izpr(y j)zipr(z t
k

1t
k

t
k

t
k

1t
k

t
k ==Θ=== +− for t = 2 to T-1 and to 6 

 j)zipr(z i)zpr(y 1T
k

T
k

T
k

T
k === − if t = T.  Note this alternative uses T 7 

different components while the first alternative generates a realization of z 8 

directly from its conditional p(z|y,Θ ).  It presents also a more complicated 9 

correlation structure (since each t
kz  depends on both 1t

k
1-t

k z and z + ) than the 10 

first alternative which may lead to a slower mixing chain. 11 

 12 

2. 7. Implementation of a Gibbs Sampler 13 

 14 

   The following steps describe how a Gibbs sampling can be implemented
 

15 

for our model, using the stochastic version of the forward-backward 16 

algorithm to sample z: 17 

1. Set initial values for parameters as needed. 18 
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2.  Select the block (θθθθ1) of the vector θθθθ, compute [ ]2121
1

111 θCrCθ
~ −= −

 1 

and replace a with [
0.5

111 Cθ
~ −+ rannor(0)] where rannor(0) is a 2 

random draw from a standard normal distribution. 3 

3. Replace µi (i = 0 and 1) with  4 

( )







































+
+



















+

+−

∑∑

∑
0rannor 

σ)n(s

σ s 
  

σ)n(s

σ mK )a(y s

0.5

N

k

2
iki,

2
i

2
i

2
i

N

k

2
iki,

2
i

N

k

2
ii

t1,
kk

t
k

2
i

 . 5 

4. Replace σ2
a with (a' A

-1 
a + ν s2a) 2

νN/χ + , where 2
νNχ +  is a random 6 

draw from a central chi-square distribution
 
with [ν + N] degrees of 7 

freedom. 8 

5. Replace σ2
i with

2
is {ν + (y – Mi  µµµµi – Z a)’ Fi  (y – Mi  µµµµi - Za)} 2

νN i
/χ +  9 

for i = 0 or 1, where 2
νN i

χ + is a random draw from a central χ-square 10 

distribution with [Ni+ν] degrees of freedom.  11 

6. Compute ∩=== 0(zpr β  αζ 1
k

0,1
k

0,1
k

0,1
k y) and sample 1

kz  from 12 

Ber( 0,1
kζ ). 13 

7. Compute and store t0j,
kζ  for 

 
t = 2, ... , T and j = 0 or 1.  Then, sample 14 

t
kz  from Ber( t0j,

kζ ) if jz
1t

k =−  for t = 2, .., T. 15 
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8. Sample λk and
ij
kπ , from their corresponding beta distributions with 1 

parameters 1K i,1
k + and 1n

ij
k + , for i ,j = 0 and 1, respectively. 2 

9. Repeat (2 through 8) ρ times for burn-in as needed.  Then, sample all 3 

parameters δ times.  The total number of cycles is ρ + δ.   4 

 5 

In this study, values for the hyperparameters are: s²0 = 0.5, s²1 = 1, m0 = 6 

overall average computed from the data, m1 = m0 + 3, ν = 2, s²a = h² s²p (s²p 7 

= variance computed from the data) and h² = 0.1.   8 

  9 

 10 

2. 8. Simulations 11 

 12 

   The model was evaluated using simulated values for the biomarker (here, 13 

SCS) with genetic effects considered as having the same distributions for 14 

cows with IMI+ and IMI- samples.  Each simulation was replicated 10 15 

times.  Simulated rather than real data were used because a negative 16 

diagnosis, even based on absence of bacteria in cell culture, is not a 17 

guarantee of health and the reverse has also been observed [22]. 18 

 19 

2. 8. 1. Simulated data    20 

 21 
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   Results from the field study of de Haas et al. [6], [7] on pathogen-specific 1 

SCC curves among multiparous cows were used to simulate the means of 2 

monthly samples from IMI- and IMI+ cows.  In the Figure 3b of de Haas’s 3 

paper [6], it is shown that, in cows clinically infected with E. coli, SCC 4 

increase rapidly after infection occurring around the 2
nd
 month-in-milk, peak 5 

at 2,000 cells per µL above pre-infection values and return to pre-infection 6 

levels one month later.  On the other hand, presence of a long increased
 

7 

SCC, without recovery within 4 consecutive months, was common in 8 

lactations with clinical Staph. aureus mastitis.  In the cows without clinical 9 

mastitis, SCC followed an approximate inverse lactation curve.  The SCC 10 

values were log2-transformed in SCS and used to simulate the SCS means, 11 

as explained below.  In the simulations, it was also considered that cows 12 

may be classified as high and moderate responders on the basis of the extent 13 

of their immune response to a particular infection [14].  Therefore, SCS 14 

were considered at higher values and of longer duration in high than 15 

moderate responders (Figure 1).   16 

   In the simulations, 3 discrete generations were considered with 400 cows 17 

per generation.  No selection was applied, sires were selected from 30 18 

different bulls, each cow was replaced by a daughter, and mating was at 19 

random.  Breeding values for base animals were sampled from a normal 20 

distribution with null mean and additive variance of 0.15 or 0.25.  The 21 

values for the additive variance was found in the literature [4].  Breeding 22 
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values for non-base animals were sampled from a normal distribution with 1 

the mid-parent value as mean and variance = 0.15/2 or 0.25/2.  Inbreeding 2 

was ignored.   3 

   Somatic cell scores under healthy (SCS0) and infected (SCS1) states were 4 

simulated as follows:  5 

SCS0 = M0  µµµµ0 +  a + e0  and SCS1 = M1  µµµµ1 +  a + e1 , 6 

where µµµµ0 and µµµµ1 are the (T X 1) vector means of both distributions, a is  the 7 

(N X 1) vector of breeding values (computed as above), and M0 and M1 are 8 

the incidence matrices relating µµµµ0 and µµµµ1 to SCS0 and SCS1, respectively.  9 

The number of observations per cow was set at T = 10 or 20 observations.  10 

The vectors e0 and e1 were sampled from 2 normal distributions with null 11 

means and residual variances set at 1.0 and 1.4.  The values for the residual 12 

variances were found in the literature [13].  Each element of µµµµ0 and µµµµ1 was 13 

taken from the curves observed in cows without and with mastitis, and for 14 

high and low responders (Figure 1).  The cows were assigned to a group 15 

(IMI+ or IMI-) at random using appropriate
 
membership probabilities:  The 16 

proportion of cows with at least one IMI+ sample was set at Pcow = 20% and 17 

50% and, among IMI+ cows, the proportion infected with E. coli was set at 18 

Pcoli = 0%, 50% and 100% (the other IMI+ cows were considered infected 19 

with S. aureus).  If a cow was assigned
 
to the IMI+ group, the time at which 20 

the clinical episode starts (= t*) was sampled from an exponential 21 
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distribution with scale parameter 3 which is in agreement with the reported 1 

median time of first occurrence of mastitis, i.e., 2 to 3 months [6].  2 

 3 

2.8.2. Evaluation of the accuracy of the estimates 4 

 5 

   The estimates ,σ̂ ,σ,σ,µ̂( 2
a

2
1

2
0

t
i

))
â) of the parameters ,σ ,σ ,σ,(µ 2

a
2
1

2
0

t
i a) were 6 

computed, after burn-in, as the means of the posterior distributions. Their 7 

accuracies were assessed over the range of parameter values (sensitivity 8 

analysis) as follows.  For the predicted breeding values, the Spearman 9 

correlation coefficient (corrBV) with the true breeding values was computed 10 

for each replicate and averaged over the 10 replicates.  For residual and 11 

additive variances, the differences (biasσ0, biasσ1, and biasσa) between 12 

estimates and simulated values were computed for each replicate and 13 

averaged over the 10 replicates.  For the location parameters, the biases 14 

(biasµ0 and biasµ1) were calculated between the estimates and  y t
i
, where 15 

 
n

i)z(y

  y
i
t

n1,k

t
k

t
k

t
i

i
t

∑
=

=

= computed with known values for t
kz .  Finally, 16 

sensitivity (SE), specificity (SP), and probability of correct classification 17 

(PCC), were computed at each iterative step as:  18 
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After burn-in, these were averaged over the δ Gibbs rounds and the 10 3 

replicates.   4 

 5 

3. RESULTS AND DISCUSSION 6 

 7 

   From visual inspection of the algorithmic convergence, it was found that a 8 

total of 1,000 cycles and a burn-in (ρ) of 200 runs were sufficient to remove 9 

the influence of the prior values and obtain stable estimates.  All results 10 

presented thus correspond to the last (δ = 800) runs of the Gibbs algorithm.   11 

This may seem very few cycles but results were checked for 3 simulated 12 

data sets over a higher number of cycles of the Gibbs sampler.  Convergence 13 

rates were also checked with an EM algorithm and the Gibb sampler on 14 

models similar to those used in the simulation of this study but without 15 

genetic covariance structure (SCSi = Mi  µµµµi +  ei ).  Explanations may be 16 

linked to the simplicity of the pedigree structure, small number of cows and 17 

the fact that value for m0 and s²p were obtained from the data.  18 

 19 



 20

3. 1. Overall accuracy of the estimates  1 

    2 

   Overall, the sensitivity was high (SE ~ 90%) but the specificity low (SP ~ 3 

60%).  Because of this high sensitivity, we can be confident that a cow with 4 

t
kẑ = 0 is healthy and spare the costs of further testing (e.g., bacteriological 5 

cultures) or useless treatment. On the other end, the low specificity indicates 6 

that cows with t
kẑ = 1 should be further tested to confirm the clinical 7 

suspicion.  These observations may suggest some economic interest in 8 

HMM.   9 

     Before any testing, the probability for a cow to be IMI+ can only be 10 

estimated from the prevalence of the disease in the population, while, after 11 

testing, this probability is estimated from the posterior probability of being 12 

IMI+ given a positive test (also called the positive predictive value).  With 13 

SE = 90% and SP = 60%, the difference between prior and posterior 14 

probabilities is maximum at disease frequencies between 20% and 50%, 15 

with posterior probabilities 20% higher than the prior probabilities.  These 16 

frequencies are within the range of prevalence typically reported for mastitis, 17 

as illustrated in the following few studies.  In Finland, Pitkälä et al. [18] 18 

reported 31% of cows with SCC>300,000/mL (mastitis) in 2001.  In 19 

Switzerland, Roesch et al. [19] reported 40% of cows showing at least 1 20 

positive California Mastitis Test in at least one quarter at 31 d and 102 d 21 
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post partum.  In a survey of clinical and subclinical mastitis in England and 1 

Wales, the mean incidence of clinical mastitis recorded by the farmer was 47 2 

cases per 100 cows per year [3].  In Canada, Sargeant et al. [21] observed 3 

19.8% of cows experienced one or more cases of clinical mastitis during a 2-4 

year observational study. Therefore, HMM may also be of interest in field 5 

studies, when it is necessary to precisely identify infected cows.  6 

    Breeding values from the HMM seemed accurate in predicting the true 7 

additive genetic merit of the cows.  Indeed, the correlation (corrBV) between 8 

simulated and estimated breeding values varied from 65% to 79% over the 9 

whole data sets.  This is close to the correlations of 70 to 75% computed as 10 

the square root of the coefficient of determination (CD), where 11 

V

PEV
1CD −= , PEV = prediction error variance = [W’R

-1
 W + A

-1
/σa

2
]
-1
 12 

and V =  true additive variance = A σa
2
 [11].  The PEV were computed with 13 

the values of the parameters used in the simulation and weighted by the true 14 

proportion of IMI- and IMI+ per cow.  15 

   On the other hand, the HMM was less efficient in estimating the 16 

parameters for the IMI+ group.  Indeed, 2
1
σ
)
 had a tendency to underestimate 17 

and t
1
µ̂ to overestimate the values used in the simulation.  The biases varied 18 

from -1.33 to -0.13 (mean = -0.59) for 2
1
σ
)
 and from -0.02 to 3.26 (mean = 19 

1.14) for t
1
µ̂ .   The magnitude of the biases decreased when the amount of 20 
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information available on IMI+ cows increased, as discussed in the sensitivity 1 

analyses below.  2 

 3 

3. 2. Sensitivity analyses   4 

 5 

   The robustness of the HMM approach was assessed by computing the 6 

biases in the estimates over a wide range of values for the simulated 7 

parameters.   8 

   Over all, estimates of means and variances were rather insensitive to the 9 

values of the corresponding simulated values but they were sensitive to the 10 

proportion of cows with at least one IMI+ sample (Pcow) and to the 11 

proportion of E. coli among infected cows (Pcoli).  This suggests HMM 12 

estimates are sensitive to the amount of data available to compute them.  For 13 

example, biases in the estimation of both location parameters )µ̂ ,µ̂( t
1

t
0

 were 14 

highest when Pcow was lowest (Figure 2), suggesting that it is necessary to 15 

have a sufficient number of observations per cow when the disease 16 

prevalence is low.  Similarly, SE, SP and PCC decreased as the proportion 17 

of E. coli infection (Pcoli) increased (Figure 3).  This was not surprising 18 

because, in cows infected with E. coli, only few simulated SCS were higher 19 

than SCS for IMI- samples, as is observed in naturally occurring E. coli 20 

infections usually of short duration.   21 
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   Level of response to infection influenced estimates of transition 1 

probabilities, in opposition to estimates of both location parameters and of 2 

breeding values.  For example, SE and PCC were higher among high (SE = 3 

92%; PCC = 64%) than moderate (SE = 80%; PCC = 60%) responders 4 

suggesting that HMM is more accurate when IMI- and IMI+ distributions 5 

are farther apart.  Conversely, accuracy of 2
1σ
)
 worsened when the distance 6 

between IMI- and IMI+ distributions increased with biasσ1 = -0.51 for 7 

moderate and biasσ1= -0.80 for high responders.   8 

   Note that SE and SP were insensitive to change in disease frequency 9 

(Pcow), as they should by definition, conversely to PCC that is, by definition, 10 

a function of the disease frequency:  PCC = [SE*pr(IMI+)] + [SP*pr(IMI-)]. 11 

   Finally, note SE and SP reported here are different from SE and SP in 12 

Ødegård et al. [17] in which  13 

∑

∑
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=

=

−
=
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ii

tn

)PPM-(1 )t-(1

SPE  14 

where PPMi is the posterior mean of the estimates of zi averaged over Gibbs 15 

samples (after burn-in), ti = 0 if IMI-, ti = 1 if IMI+, and i = 1 to n cows.    16 

 17 

3. 3. General discussion  18 

 19 
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   The main advance of this paper is the presentation of a HMM in which 1 

genetic random effects were added to the conditional model for the observed 2 

data.  In the subject-area literature, HMMs with random effects have been 3 

used in a very limited way.  Only recently, Altman [1] introduced a mixed 4 

HMM to study lesion counts in multiple sclerosis patients.  In her model, 5 

parameters for the observed and hidden data are allowed to vary randomly 6 

among patients, although they are assumed independent from each other (no 7 

genetic relationship).  This suggests a natural extension of the present 8 

HMM, i.e., to allow the parameters of the hidden Markov chain to vary 9 

randomly among cows.  However, interpretation of the results of such 10 

extended model will be delicate because sets of identical genes may be 11 

associated to both IMI and SCS (confounding effects).  Stated otherwise, the 12 

total genetic effects on SCS would be a combination of the effects of genes 13 

responsible for presence or not of IMI (resistance to infection) and for the 14 

magnitude of the SCS response after IMI (tolerance after infection).   15 

   Structural equation modeling is a technique to evaluate models with 16 

different hypothesized relationships among variables.  In this context, it 17 

would be interesting to evaluate the different models proposed in Figure 4 to 18 

determine the amount of relationships between genes insuring tolerance or 19 

resistance to infection.  In the model proposed here, biomarker value at one 20 

specific time is independently influenced by the IMI status and by some 21 

genes.  But, both the IMI status and the biomarker values could also be 22 
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under the influence of this same set of genes (model b of Figure 4).  The 1 

relationship between genes, biomarker and IMI status can become even 2 

more complicated with different sets of correlated genes influencing the 3 

expression of both traits (model e).  This is important for the long-term 4 

because some epidemiological models predict that selection for resistant 5 

cows (no infection) may not be as durable as selection for tolerant (infection 6 

but no disease) cows [16], [20].  Increased resistance would reduce disease 7 

transmission, reducing the fitness advantage of carrying the resistant genes, 8 

and possibly impose pressure upon the pathogen to evade the control 9 

strategy.  By contrast, as genes conferring disease tolerance spread within a 10 

population, the disease incidence rises, increasing the evolutionary 11 

advantage of carrying the tolerance genes, without leading to genetic 12 

changes in the parasite population. 13 

   Other extensions of the HMM are possible.  Trends and seasonality in 14 

SCS can be readily accommodated to relax the assumption of time-15 

independence between transition probabilities [15].  Prior information on the 16 

parameters can be included to increase accuracy and speed up convergence.  17 

Location parameters can be made more realistic by considering effects 18 

affecting SCS values, such as age, herd, or season, as a few examples.  19 

Elements of the M matrices could take different values than zeroes or ones 20 

to reflect the different effects on SCS for different parts of the lactation.  21 
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The genetic variance could also be different for IMI- and IMI+ samples and 1 

would allow for genetic difference in the response in SCS to IMI.  2 

   The first-order Markov assumption is also a limiting feature of the HMM 3 

and mechanisms of transmission of the IMI between cows could also be 4 

considered more precisely in deriving the transition probabilities.  Indeed, 5 

transmission of infection is a complex process that involves the mixing 6 

structure of the population (as it determines the probability of contact 7 

between animals), the infectiousness of the contagious animal (or infective 8 

dose) and the susceptibility of a healthy cow (i.e., its probability of getting 9 

infected after contact with a contagious animal).  To solve these issues, 10 

Cooper and Lipsitch [5] proposed to model the transition probabilities of the 11 

hidden Markov chain in terms of the parameters of epidemiologic models 12 

used to describe the transmission of an infectious disease at the population 13 

level.   14 

   15 

3. 4. Conclusions 16 

 17 

   In summary, it is shown that the mixed HMM provides a good fit to the 18 

data sets simulated in this study.  The advantages of the HMM over other 19 

approaches are the prediction of health or disease status, the reduction of 20 

confirmatory diagnosis costs, and the increased accuracy in breeding values.  21 

However, future work needs to be done to extend the HMM proposed here, 22 
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the most important piece of which is to quantify the level of resistance and 1 

tolerance to infection while considering the mechanisms of transmission 2 

between healthy and sick cows. 3 

    4 
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FIGURE CAPTIONS 1 

 2 

Figure 1.  Means of SCS for lactations without clinical mastitis (plain line) 3 

and lactations with clinical mastitis associated with Staphylococcus aureus 4 

(square) or Escherichia coli (triangle) occurring on the median MIM for 5 

multiparous cows (Adapted from de Haas et al., [6]) . 6 

 7 

Figure 2.  Differences between simulated and estimated values for the 8 

means of the distributions for healthy (dot bar) and infected (slash bar) cows 9 

as a function of the proportion of infected cows. 10 

 11 

Figure 3.  Sensitivity (plain bar), specificity (open bar) and probability of 12 

correct classification (circled bar) as a function of the proportion of E. coli 13 

among infected cows.   14 

 15 

Figure 4.  Five different hypothetical models of the relationship between 16 

genetic background (G), intra-mammary infection (IMI) and biomarker 17 

(Bio).  The first model (a) is the model of this study (The dependent 18 

variables are the targets of one-headed arrows).   19 

 20 

21 
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Figure 3.   1 
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Figure 4.     1 
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ANNEX 1 

 2 

Table I.  Sensitivity (SE), specificity (SP), and probability of correct 3 

classification (PCC) as a function of the level of response to infection, high 4 

(H) or moderate (M) responders, number of samples per cow (T), percentage 5 

of cows with at least one IMI+ sample (Pcow), percentage infected with E. 6 

coli (Pcoli), and residual and additive genetic variances (  σ,σ ,σ 2
a

2
1

2
0 ).  Data 7 

sorted by SE.  8 

 9 

SE SP PCC T Pcow Pcoli 
  

    

High responders 

95.03 59.65 63.70 10 50 50 1.0 1.0 0.15 

94.50 58.19 60.64 10 20 0 1.4 1.4 0.15 

94.25 49.59 56.73 10 20 50 1.4 1.4 0.15 

94.03 58.05 59.90 20 20 50 1.0 1.0 0.25 

93.92 62.71 65.98 20 50 0 1.0 1.0 0.25 

93.79 58.88 60.63 20 20 50 1.4 1.4 0.25 

93.20 57.51 59.31 20 20 50 1.4 1.4 0.25 

93.08 55.15 56.95 10 20 50 1.4 1.4 0.25 

92.64 58.23 62.16 10 50 50 1.4 1.4 0.15 

92.64 65.99 68.16 20 20 0 1.4 1.4 0.25 

92.63 57.49 58.34 20 20 50 1.4 1.4 0.25 

92.03 59.91 61.49 20 20 50 1.4 1.4 0.25 

90.41 50.89 51.65 10 20 100 1.4 1.4 0.15 

89.58 50.60 51.34 10 20 100 1.4 1.4 0.15 

89.05 69.75 73.53 20 50 0 1.0 1.0 0.15 

88.81 68.09 72.19 20 50 0 1.4 1.4 0.25 

88.19 66.02 70.42 20 50 0 1.4 1.4 0.25 

88.14 68.43 72.38 20 50 0 1.0 1.4 0.15 

85.06 68.53 71.84 20 50 0 1.0 1.4 0.25 

2
0σ

2
1σ

2
aσ
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84.27 55.36 55.94 20 20 100 1.4 1.4 0.25 

Moderate responders 

94.24 57.41 59.28 20 20 50 1.0 1.0 0.25 

79.74 52.41 52.95 20 20 50 1.0 1.0 0.25 

79.09 54.89 56.74 20 20 0 1.4 1.4 0.25 

77.95 53.64 54.81 20 20 50 1.4 1.4 0.25 

77.67 64.32 67.03 20 50 0 1.0 1.4 0.15 

77.06 63.14 65.90 20 50 0 1.0 1.4 0.25 

75.77 51.78 52.24 20 20 100 1.4 1.4 0.25 

73.04 58.81 61.60 20 50 0 1.0 1.4 0.25 

 1 

2 
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Table II.  Accuracy of the estimates of the mixed hidden Markov model as 1 

a function of the level of response to infection, high (H) or moderate (M) , 2 

number of samples per cow (T), percentage of cows with at least one IMI+ 3 

sample (Pcow), percentage infected with E. coli (Pcoli), and residual and 4 

additive genetic variances (  σ,σ ,σ 2
a

2
1

2
0 ).  The accuracy is determined as the 5 

differences between values used in the simulations and estimates of means 6 

(biasµ0, biasµ1) and residual variances (biasσ0, biasσ1) in IMI- and IMI+ cows, 7 

respectively; the differences between values used in the simulations and 8 

estimates of additive genetic variance (biasσa); and the correlation between 9 

predicted and simulated breeding values (corrBV).  Data sorted by corrBV. 10 

 11 

corrBV biasσ0 biasσ1 biasσa biasµ0 biasµ1 T Pcow Pcoli 
  

    

High responders 

0.79 0.00 -0.66 -0.08 0.24 0.47 20 50 0 1.0 1.4 0.15 

0.79 0.02 -0.65 -0.02 0.21 0.28 20 50 0 1.0 1.0 0.15 

0.78 -0.02 -0.78 0.00 0.22 0.43 20 50 0 1.0 1.4 0.25 

0.77 0.01 -0.70 0.01 0.28 0.51 20 50 0 1.4 1.4 0.25 

0.77 0.02 -0.63 0.04 0.23 0.52 20 50 0 1.4 1.4 0.25 

0.74 -0.01 -0.29 0.05 0.41 2.16 20 20 100 1.4 1.4 0.25 

0.74 0.06 -0.46 -0.01 0.50 2.93 10 20 100 1.4 1.4 0.15 

0.73 0.04 -0.57 0.02 0.31 0.80 20 20 0 1.4 1.4 0.25 

0.73 0.09 -0.48 -0.03 0.55 3.26 10 20 100 1.4 1.4 0.15 

0.72 0.03 -0.42 0.04 0.52 1.26 20 20 50 1.4 1.4 0.25 

0.71 0.02 -0.46 0.04 0.42 1.22 20 20 50 1.4 1.4 0.25 

0.71 0.03 -0.48 0.05 0.40 1.13 20 20 50 1.4 1.4 0.25 

0.71 0.09 -0.65 -0.02 0.44 1.86 10 20 50 1.4 1.4 0.15 

0.70 0.02 -0.44 0.04 0.38 1.17 20 20 50 1.4 1.4 0.25 

0.70 0.09 -0.60 0.06 0.51 1.73 10 20 50 1.4 1.4 0.25 

0.69 0.03 -0.57 0.04 0.36 0.87 20 50 0 1.0 1.0 0.25 

2
0σ

2
1σ

2
aσ
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0.69 0.11 -0.74 -0.03 0.40 1.69 10 20 0 1.4 1.4 0.15 

0.68 0.08 -1.25 -0.02 0.38 1.48 10 50 50 1.0 1.0 0.15 

0.67 0.03 -0.44 0.06 0.43 1.06 20 20 50 1.0 1.0 0.25 

0.67 0.07 -1.21 -0.03 0.39 1.46 10 50 50 1.4 1.4 0.15 

Moderate  responders 

0.76 -0.02 -0.46 -0.02 0.24 0.00 20 50 0 1.0 1.4 0.15 

0.75 -0.01 -0.13 0.05 0.48 1.61 20 20 100 1.4 1.4 0.25 

0.75 -0.01 -0.14 0.07 0.47 1.30 20 20 50 1.0 1.0 0.25 

0.75 -0.03 -0.21 0.04 0.32 0.70 20 20 0 1.4 1.4 0.25 

0.74 -0.02 -0.18 0.06 0.32 0.82 20 20 50 1.4 1.4 0.25 

0.73 -0.03 -0.46 0.04 0.32 0.19 20 50 0 1.0 1.4 0.25 

0.72 -0.04 -0.36 0.05 0.39 -0.02 20 50 0 1.0 1.4 0.25 

0.66 0.03 -0.45 0.06 0.44 1.22 20 20 50 1.0 1.0 0.25 

 1 


