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ABSTRACT 

Murine placentation is associated with the invasion of maternal endometrium by trophoblasts and 

an extensive maternal and foetal angiogenesis. Plasminogen activator inhibitor-1 (PAI-1) is 

transiently produced by spongiotrophoblasts and trophoblast giant cells at 10.5-11.5 day post-

coitum (dpc). Knowing the key contribution of PAI-1 in the regulation of angiogenesis, we have 

now analyzed the consequence of PAI-1 deficiency on murine placentation. Morphological and 

quantitative computer-assisted image analysis revealed abnormal placental morphology in PAI-1 

-/- mice at 10.5 and 12.5 dpc. At 10.5 dpc, the genetic ablation of PAI-1 resulted in a transient 

reduction of both maternal and foetal vascularizations in the placenta and increased trophoblast 

cell density. This was associated with a poorer development of the labyrinth and an extension of 

the decidua. A larger spongiotrophoblast layer appeared at 12.5 dpc in PAI-1 deficient mice. 

Placental morphology was normalized at 14,5 dpc. Microarray analyses performed on laser 

capture microdissected labyrinths revealed that 46 genes were differentially expressed at 10.5 dpc 

between the two genotypes. However, only 11 genes were still differently modulated at 14.5 dpc 

when normalization of placental morphology had take place. This transcriptomic profiling 

highlighted a dysregulation in the expression of placenta-related cathepsin family members. All 

together our data provide evidence for a transient impaired placental morphology in PAI-1-

deficient mice which is then normalized leading to normal embryonic development.  

 

Keywords: PAI-1, angiogenesis and placentation.  
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1. INTRODUCTION 

Extensive maternal and foetal vascular remodellings during placentation result in a large 

network of closely apposed but separated maternal and foetal circulations (24). The maternal 

uterine vascular bed changes dramatically during pregnancy as existing vessels dilate and new 

vessels form (13). In addition, in primates and rodents, terminal vascular bed is not lined by 

endothelial cells but is rather hemochorial, meaning that maternal blood perfuses a space lined 

by trophoblast cells. Failure in placental angiogenesis can lead to pregnancy disorders, including 

miscarriages, foetal growth restriction and preeclampsia (8). 

The precise molecular mechanisms that regulate maternal vascular development during 

gestation and its relationship to foetoplacental development are largely unknown. Adequate 

placentation involves successful invasion of uterine decidua by primary and secondary 

trophoblast cells. These cells express several factors with potent angiogenic (e.g., VEGF, 

Proliferin) and vasoactive (e.g., nitric oxide, Adrenomedullin) effects (13). Their invasive 

property is associated with their capacity to secrete serine proteases (plasminogen/plasmin), 

matrix metalloproteinases (MMPs) and cathepsins that degrade the extracellular matrix (37; 45). 

A functional synergism of both serine proteases and MMPs regulates vascularisation during 

placental development (48).  

The plasminogen/plasmin system consists of an inactive proenzyme, plasminogen which 

is converted into plasmin by urokinase-type plasminogen activator (uPA) or tissue-type 

plasminogen activator (tPA). Plasminogen activator inhibitor-1 (PAI-1) is a primary uPA 

regulator which inhibits uPA by forming a covalent complex, thus controlling the 

thrombotic/fibrinolytic process(7; 39). In addition, through its binding to the extracellular matrix 

(ECM), PAI-1 regulates cell adhesion and migration by interfering with the binding between 

cellular integrins or uPA receptor (uPAR) and vitronectin (16).  
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The key role of PAI-1 in angiogenesis associated to cancer progression is well 

documented. In vivo experiments revealed that: (1) pharmacological PAI-1 levels prevent 

angiogenesis and tumorigenesis; (2) physiological PAI-1 levels inversely facilitate tumour 

growth and angiogenesis, and (3) tumour growth and angiogenesis are impaired in the absence of 

PAI-1 in mice (3; 20; 36). We have shown in several in vivo and in vitro models of angiogenesis 

that such angiogenic property of PAI-1 results from its ability to inhibit plasmin and thereby to 

protect endothelial cells from excessive proteolytic degradation (2-4; 20; 33; 39) and/or 

apoptosis (5). Based on the similarities between tumor cell invasion and trophoblast invasion 

(49), we extended our study by investigating the putative function of PAI-1 during physiological 

placentation through a genetic approach. Intriguing findings are the observations that PAI-1 

knockout mice are fertile and that their litter sizes are normal (11). During implantation, PAI-1 is 

produced specifically by spongiotrophoblasts and trophoblast giant cells at days 10.5-11.5 dpc 

(50). The cell specific and timely regulated expression of PAI-1 in placenta, suggest that it might 

play a significant role, during early phases of placental vascular remodelling. In the present 

study, we explored the putative role of PAI-1 during mouse placentation by analysing the 

vasculature and morphology of placenta at 10.5, 12.5 and 14.5 dpc in PAI-1 mice deficient or in 

their control counterparts. In order to evaluate gene expression modulation associated to PAI-1 

deficiency, laser capture microdissection (LCM) of labyrinth from PAI-1+/+ and PAI-1-/- mice 

followed by microarray analysis were carried out. We provide evidence for a transient 

perturbation of placental morphology associated with a deregulation at the transcript levels of 

murine cathepsin family members.    

 

 



 

 

5

 

2. MATERIALS AND METHODS 

 
2.1 Transgenic mice 

Homozygous mice with a single gene deficiency (PAI-1-/-) and the corresponding wild 

type animals (PAI-1+/+) were previously described (11). To generate homozygous embryos in 

mothers of the same genotype, homozygote knockout and WT females with proven fertility were 

mated with homozygotes knockout and WT males, respectively. Pregnancy was checked by 

occurrence of vaginal plugs in the morning. The day of vaginal copulation plug detection was 

designated as day 0.5 post-coitum (dpc). Embryos were collected at 10.5, 12.5 and 14.5 dpc. At 

each time point, 6 to 9 embryos were obtained from three different females. 

 

2.2 Tissue preparation 

At sacrifice, the two uterine horns were removed to isolate and separate the different feto-

placental units. Length and width of each of them were measured just after dissection. The feto-

placental units of first horn were fixed in 10% formaldehyde for 1 hour, at room temperature. 

Dehydration was achieved by incubating embryos, 2 times for 1 hour in increasing concentrations 

of alcohol (70% to 95% ethanol) followed by isopropanol and xylol. Specimens were then 

embedded in Paraplast Plus (Labonord, Rekkem, Belgium). The feto-placental units of second 

horn were embedded in Tissu-Teck (Labonord), snap frozen in liquid nitrogen, and stored at -

80oC until use. 

2.3 Histological analysis  

Serial sections (5 µm thick) were stained with Hematoxylin and Eosine or May-Grünwal-

Giemsa (MGG) staining (Merck, Darmstadt, Germany) for classical morphology analysis. To 

identify trophoblast cells in labyrinth and spongiotrophoblast, frozen sections were dryed for 10 
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min, fixed with paraformaldehyde (PFA) 4% for 10 min, permeabilised in Triton X-100 1% for 5 

min, incubated with 1.5% milk and 0.5% Tween-20 for 30 min at room temperature and then 

incubated with primary antibody (Ab). Sections were then incubated, during 2h at room tempture, 

with anti-keratin Ab (rabbit anti-mouse, Z0622, DAKO, Denmark) diluted 1/200 (1). Sections 

were washed in PBS (5x 5min) before incubation with the appropriate secondary Ab (swine anti-

rabbit, DAKO) conjugated to tetramethyl-rhodamine isothiocyanate (TRITC) diluted 1/40, for 30 

min, at room temperature. 

Decidual cells were labeled by specific staining for desmin (9; 26) as follows: paraffin 

sections were heated (1.4 bar and 126oC for 11 min in 10 mM citrate buffer, pH 6). Incubation 

with monoclonal mouse anti-desmin Ab (M0760, DAKO) (diluted 1/100) was conducted for 30 

min at room temperature and detected with ARK system (K3954, DAKO) (9; 26). The DAB 

system was used for final staining.  

Panendothelial cell “MECA32” Ab (75861E, Pharmingen, San Jose, CA, USA ) was used 

to identify both maternal and foetal blood vessels (6). For this purpose, sections were fixed in 

acetone at -20oC for 10 min then in 80% methanol for 10 min at 4°C. The primary Ab (rat-anti 

mouse MECA32) diluted 1/10, was incubated overnight at 4oC followed by the appropriate 

secondary Ab for 30 min at room temperature then revealed with DAB system.  

Cell proliferation in mice placenta was performed by Ki-67 immunostaining as follow: 

paraffin sections were heated (1.4 bar and 126oC for 11 min in 10 mM target retrieval solution). 

Endogenous peroxydases were inactivated in 3% H2O2 solution for 20 min at RT followed by 

incubation with the universal blocking reagent (HK085-5KE, BioGenex, CA, USA). Ki-67 Ab 

(M7249, DAK0) (diluted 1/50) was applied for 60 min at RT. A biotinylated rabbit anti-rat 

(E468, DAKO) (diluted 1/300) was used as secondary Ab. Immunostaining was achieved by 30 

min streptavidine/HRP incubation and DAB revelation.  
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For each specific immunohistochemistry controls were performed by omitting the primary 

antibody (Desmine IHC) or by incubating the sections with nonspecific IgG at the same 

concentration as the primary antibody. Rabbit (X0936, DAKO) and rat (012-000-002, Jackson 

Immunoresearch, UK) immunoglobulin’s fractions were used for anti-keratin, anti-Ki67 and anti-

MECA32 IHC.  

 

 

2.4 May-Grünwald-Giemsa (MGG) staining 

Paraffin sections were incubated 20 min at 37°C with the May-Grünwald solution diluted 

1/8 with Sorensen buffer (pH 6.4) (Merck). After rinsing in Sorensen buffer, sections were 

stained 40 min with Giemsa solution (Merck) at 37°C (stock solution was diluted 1/75 with 

Sorensen buffer) and then incubated 4 min in 0,1% acetic acid (31). 

2.5 Quantification of trophoblast, foetal and maternal blood vessel density 

Image processing was performed by using Aphelion3.2 (Adsis, Meythet, France) 

software. Images were registered in the RGB color space, in which maternal erythrocytes 

appeared red whereas foetal red cells were colored as mauve dots and trophoblast cells as purple-

blue regions (Fig. 1a). Area of region of interest was manually delineated by drawing (Fig. 1b). 

Two windows were drawn manually in order to discriminate between maternal (Fig. 1c) and 

foetal vessels (Fig. 1d). The region corresponding to trophoblast cells (Fig. 1e) was then obtained 

by subtracting the images (c) and (d) from the image (b). Resulting images were binarized (Figs. 

1f, g, h) and maternal and foetal vessel and trophoblast cell densities were determined as the 

quotient between the surface occupied by maternal vessels, foetal vessels and trophoblast cells 

and the surface of the region of interest (Fig. 1b). 

 



 

 

8

 

2.6 Morphometric analysis of labyrinth and decidua thickness 

Different zones including the labyrinth, the spongiotrophoblast, trophoblast giant cells 

and maternal decidua, were identified in hematoxylin-eosine stained sections. The widths of 

labyrinth, spongiotrophoblast and decidua were determined by drawing a line parallele to the 

basis of the labyrinth, identifying the midpoint of this line, and then extending a perpendicular 

line first to the outer edge of the spongiotrophoblast (junctional zone) and then up to the 

peripheral edge of the decidua (Fig. 2 G). These measures were used to determine the ratios 

between decidua/labyrinth and spongiotrophoblast/labyrinth.  

For these measurements, microscopic images of feto-placental sections stained with hematoxylin-

eosine were acquired via a numerical camera (Nikon, Coolpix 990, Tokyo, Japan) with identical 

magnification. For each sample, whole implantation site with the embryo in situ was cut and 

morphometric measurement was performed on 5 sections chosen in the extremities and the 

middle part of the placenta using the IMAGE J software. The average of these five values was 

determined for each implantation site. 

 

2.7 Laser Pressure Microdissection (LCM) and RNA extraction 

In order to isolate the labyrinth layer, 10 µm of foeto-placental frozen sections were carried 

out and labyrinth was microdissected. With this aim, 3 foeto-placental units from 3 different mice 

were used for each condition [(1) PAI-1+/+ at 10.5 dpc, (2) PAI-1-/- at 10.5 dpc, (3) PAI-1+/+ at 

14.5 dpc and (4) PAI-1-/- at 14.5 dpc]. The laser pressure catapulting technique was adapted from 

our previous study (42). Briefly, 8 to 10 serial frozen sections of each placenta were mounted 

onto PALM® Membrane Slides (0.17mm PEN) ready to use (PALM, Germany) and stored on ice 

until microdissection. The Robot-Microbeam (PALM) focused the laser (60nm) on the specimen 

with appropriate energy settings enabling the catapulting of the labyrinthic selected area into the 
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microfuge cap. Samples were covered with 100 µl of TRIzol (Invitrogen, CA, USA) and stored at 

-80°C. For RNA extraction, 100 µl of TRIzol and 40 µl of chloroform were added to samples, 

mixed and centrifuged for 15 min at full speed at 4°C. Supernatant was measured and transferred 

in a new tube and then a same volume of 70% ethanol was added. Samples were mixed by 

pipetting. Purification of total RNA was performed with RNeasy Mini Kit (Qiagen, Venlo, 

Netherlands) according to manufacturer’s protocol.  

 

2.8 Transcriptome analysis 

For microarray study, RNA pools were used and contained equal amount of RNA from the 

labyrinth layer of 3 mice per conditions [(1) PAI-1+/+ at 10.5 dpc, (2) PAI-1-/- at 10.5 dpc, (3) 

PAI-1+/+ at 14.5 dpc and (4) PAI-1-/- at 14.5 dpc]. The RNA quality was assessed by automated 

elecrophoresis Experion System using the RNA StdSens Analysis kit (Bio-Rad). Four 

micrograms of total RNA were labeled using the GeneChip® Expression 3’ Amplification One-

Cycle Target Labeling kit (Affymetrix, Santa Clara, CA) following the manufacturer’s protocol. 

The cRNA was hybridized to Genechip Mouse Genome 430 2.0 (Affymetrix) according to the 

manifacturer’s protocol. Briefly, double-stranded cDNA was synthesized from 4 µg of total RNA 

primed with a poly-(dT)-T7 oligonucteotide. The cDNA was used in an in vitro transcription 

reaction (IVT) in the presence of T7 RNA polymerase and biotin-labeled modified nucleotides 

during 16 hours at 37°C. Biotinylated cRNA was purified and then fragmented (35-200 

nucleotides) together with hybridization controls and hybridized to the microarrays for 16 hours 

at 45°C. Using Fluidics Station (Affymetrix), the hybridized biotin-labeled cRNA was revealed 

by successive reactions with streptavidin R-phycoerythrin conjugate, biotinylated anti-

strepatvidine antibody and streptavidine R-phycoerythrin conjugate. The arrays were finally 

scanned with an affymetrix/Hewlett-Packard GeneChip Scanner 3000 7G. The raw CEL files 
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were imported in R software (http://www.r-project.org/) for data analysis. Data obtained after 

Affymetrix microarray hybridization analysis were normalized with the gcrma algorithm (29), 

available in the Bioconductor package (23). Differential analysis was performed with the varmixt 

package of R. A double-sided, unpaired t-test was computed for each gene between the two 

conditions. Variance of the difference in gene expression was split between subgroups of genes 

with homogeneous variance (17). 

 

2.9 cDNA synthesis and RT-PCR  
 

For cDNA synthesis, 1µg of total RNA was reverse transcribed with a Super Script First 

Strand Synthesis System (Invitrogen, Carslbad, USA) and random hexamers as primers. 

cathepsine 3 (Cts3), cathepsine M (CtsM), cathepsine 8 (Cts8), cathepsine E (CtsE), pregnancy-

specific-glycoprotein 19, 21 and 28 (Psg), prolactin-like protein F (PrlpF), trophoblast specific 

protein beta (Tpbpb) and fms-like tyrosine kinase 1 (Flt-1) RNA and 28S ribosomal RNA 

(rRNA) were measured in 10 ng aliquots of cDNA using Taq polymerase (Takara, Shiga, Japan) 

and 5 pmoles of specific primers (Eurogentec, Seraing, Belgium). Primers, amplification tempter 

and cycle’s number used for each gene are listed in Table 1. The thermal cycling included 2 min. 

at 95°C for denaturation and then amplification 15 sec. at 94°C, 20 sec at specific amplification 

tempeture (Table1) and then 20 sec. at 72°C with a final incubation 2 min. at 72°C. RT-PCR 

products were resolved on 10% polyacrylamide gels and analysed using a LAS-4000 Imaging 

(FujiFilm) after staining with Gelstar dye (FMC BioProduct, Rockland, ME, USA). mRNA 

products were quantified by normalization with respect to 28S rRNA. RT-PCR was performed in 

duplicate for each sample. 

 

2.10 Statistical analysis 
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For histological investigations, data were analyzed by using GraphPad 4.0 software (San 

Diego, CA). A Mann-Withney test was used to determine if difference between experimental 

groups could be considered as significant. For microarray, the raw P values were adjusted by the 

Bonferroni method, which controls the Family Wise Error Rate (FWER) (22). The level of 

statistical significance was set at 0.05 for all the comparisons. 

 
3. RESULTS 

 
3.1- Maternal and foetal vascularisations are reduced in PAI-1-/- mice at 10.5 dpc 

 
Since placental PAI-1 expression is restricted to days 10.5-11.5 dpc (50) we first 

examined PAI-1+/+ and PAI-1-/- implantation sites at 10.5 dpc when embryonic and maternal 

placental vessels invade the labyrinth. Placental circulation was assessed by the presence of 

vessels containing nucleated foetal erythrocytes stained in mauve by MGG (Fig. 2A). Remodeled 

maternal vessels where endothelial cells were substituted by trophoblast cells, were characterized 

by their content in red enucleated erythrocytes (Fig. 2A). Maternal and embryonic circulations 

were in close proximity in the labyrinth layer (Fig. 2A) which was composed of thin strands of 

trophoblast cells positive for keratin (Fig. 2C) intermingled with extensive networks of foetal and 

maternal vessels. In PAI-1-/- mice, the labyrinth was characterized by a dense network of thicker 

strands of keratin positive trophoblastic cells (Fig. 2D) which were poorly infiltrated by maternal 

and embryonic vessels (Fig. 2B).  

Both foetal and maternal blood vessel densities were significantly reduced in PAI-1 

deficient mice in comparison to WT mice (p< 0.02) (Figs. 3A, B). In addition, a 35% increase of 

trophoblast cell density was noted in PAI-1-/- mice (p= 0.0047) (Fig. 3C). Immunostaining of 

foetal and maternal blood vessels by using an anti- MECA-32 Ab confirmed the reduction of 
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blood vessel number and confirmed the reduced development of the labyrinth in PAI-1-/- mice 

(Fig. 2E, F). No difference was seen in spongiotrophoblast layer between these two groups of 

mice. 

3.2- The labyrinth is poorly developed and the decidual layer is extended in PAI-1-/- mice at 

10.5 dpc  

The decidua identified with an anti-desmin antibody appeared larger in PAI-1-/- mice than 

in WT animals (Figs. 2G, H). A quantitative morphometric assessment of relative labyrinth and 

decidua thickness confirmed the relative poorer development of the labyrinth and the higher 

extension of the decidual layer in PAI-1-/- mice. The decidua/labyrinth ratio was 2.3-fold higher 

in PAI-1-/- than in their WT counterpart (Fig. 3D). This increased ratio was related to a thicker 

decidua and a thinner labyrinth layer in PAI-1-/- mice (p=0.0002). This is presumably the 

consequence of a decreased decidual invasion by trophoblast cells. 

Ki-67 immunohistochemistry, revealed that PAI-1-/- placentas presented a larger area or 

patches of Ki67 positive cells at the labyrinth layer comparing to PAI-1+/+ placentas (Fig.2I, J). 

This finding confirms that reduction of labyrinth layer in the absence of PAI-1 is correlated to 

differentiation delay of trophoblast cells.  

 

3.3- The labyrinthic vascularization is restored with a larger spongiotrophoblast layer in 

PAI-1-/- mice at 12.5dpc  

At day 12.5, when placental PAI-1 is no longer expressed, important differences appeared 

in the spongiotrophoblast (Fig. 4A, B). In PAI-1-/- mice, spongiotrophoblast appeared much 

denser with more trophoblast cells and less lacunar structures, leading to an increased thickness 

(Fig. 4B). Morphometric measurement revealed a 34% increased spongiotrophoblast/labyrinth 

ratio in PAI-1-/- mice (Fig. 5A). The relative decidua/labyrinth ratio was again more important in 
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PAI-1-/- mice (Fig. 5B). Thus, at day 12.5, PAI-1 deficiency led to a reduction of the labyrinth 

thickness and an enhancement of the thickness of spongiotrophoblast layer. However, in sharp 

contrast to the observation performed at 10.5 dpc, the labyrinth morphology (Figs. 4C, D) and 

vessel density (Figs. 4 E, F) evaluated with an anti-MECA32 antibody appeared identical in PAI-

1+/+ and PAI-1-/- mice, suggesting a normalization of the labyrinth structure. Quantification of 

foetal and maternal blood vessel and trophoblast cell densities confirmed these observations. 

 

3.4- Placental morphology is normalized in PAI-1-/- mice at 14.5 dpc 

At day 14.5, the placental morphology of PAI-1-/- and PAI-1+/+ mice were 

indistinguishable. The morphological differences observed in the placenta of PAI-1-/- or PAI-1+/+ 

mice, at days 10.5 and 12.5, were no longer present. The decidua/labyrinth ratio was identical in 

PAI-1+/+ and PAI-1-/- mice. Morphometric quantifications confirmed the restoration of a normal 

placental morphology in PAI-1 deficient mice. This observation demonstrates that the lack of 

PAI-1 transiently affected placental morphology and vascularisation which is then followed by a 

normalization of placental structure between 12.5 and 14.5 dpc. 

 

3.5- Phenotype observed at 10.5 dpc in PAI-1-/- mice is associated with gene modulation 

To assess the molecular basis of the impaired angiogenesis observed in PAI-1deficient 

mice, we performed a transcriptomic profiling using the Affymetrix Mouse Genome 430 2.0 

chips (34,000 genes) in the labyrinth layer of PAI-1+/+ and PAI-1-/- at 10.5 and 14.5 dpc. This 

microarray analysis revealed that more genes were significantly modulated during the course of 

pregnancy by comparing 10.5 dpc to 14.5 dpc than when comparing the two genotypes at 

identical lengths of pregnancy. Indeed, the comparison of gene expression between 10.5 dpc and 

14.5 dpc revealed that 496 genes were differentially expressed in PAI-1+/+ mice and 210 in PAI-1-
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/- mice. Among those genes, 159 were co-expressed in the two genotypes (Figure 6A). When 

comparing PAI-1 proficient and deficient mice at the early time point, i.e. at 10.5 dpc when 

specific alteration of the labyrinth layer was histologically observed, only 46 genes were 

differentially expressed between PAI-1+/+ and PAI-1-/- (Figure 6B). Later on, at 14.5 dpc, when 

placental morphology was normalized, only 8 of these 46 genes were still differently regulated 

between the two genotypes. In addition, two additional genes appeared differently expressed at 

this latter time point. Features of the identified gene profile in PAI-1-deficient mice at 10.5dpc 

are that (1) most are related to molecules specifically expressed in the murine placenta (Fig. 6), 

and (2) no extracellular matrix components, MMPs or serine proteases has been identified. 

To validate this transcriptional profiling, quantitative RT-PCR assays were performed on 

the same RNA pools those used for microarray analysis. Among the regulated genes, we 

validated the RNA expression of those that are potentially implicated in the impaired 

angiogenesis and abnormal morphology. Results in Fig. 7 are expressed as the mRNA ratio in 

PAI+/+ to PAI-1-/- at 10.5 and 14.5 dpc. This analysis confirmed the up-regulation of cathepsin 8 

(Cts8) and the down-regulation observed at 10.5 dpc in PAI-1-deficient mice for cathepsin 3 

(Cts3), cathepsin M (CtsM), pregnancy-specific-glycoprotein (Psg) 19, 21 and 28, prolactin-like 

protein F (PrlpF), trophoblast specific protein beta (Tpbpb), and fms-like tyrosine kinase 1 (Flt-

1). In sharp contrast, such a differential regulation between the two genotypes was not anymore 

detected at 14.5 dpc (mRNA ratio around 1) (Fig.7), further supporting the normalization of 

placental features at this time point.  
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4. DISCUSSION 

 

PAI-1 contribution in pathological processes associated to abnormal angiogenesis such as 

cancer and age-related macular degeneration is well documented (4; 25; 33), but its function 

during the remodeling of maternal tissues associated with human embryo implantation is not yet 

fully determined (21; 28; 45). In mice, PAI-1 is essentially produced by spongiotrophoblast and 

trophoblast giant cells at days 10.5-11.5 dpc (50). Through a genetic approach, we tested the 

hypothesis that PAI-1, which is a key regulator of pathological angiogenesis could contribute to 

the control of placental angiogenesis. We provide, for the first time, evidence that PAI-1 gene 

deletion transiently affects the process of placentation. 

The lack of PAI-1 resulted at day 10.5 dpc, when PAI-1 is normally expressed by the 

trophoblasts, in an enlarged decidua and a reduced labyrinth layer due to trophoblast cells 

differenciation delay as evidenced by Ki-67 immunostaining. Similar results were also described 

with cystein cathepsin proteases in trophoblast function (47). Moreover, both maternal and foetal 

vessel densities were decreased. Prolactin immunohistochemistry revealed no difference in 

trophoblast giant cells density between PAI-1+/+ and PAI-1-/- mice (data not shown). At later time 

point (14.5 dpc) a normalization of placental morphology was evident. Such a normalization 

detected at a time when PAI-1 is no longer expressed in normal mouse pregnancy indicates that 

placental remodeling and embryo growth become subsequently independent from PAI-1 status. 

These data emphasize the importance of PAI-1 specifically at early steps of angiogenesis onset. 

They are on line with previous studies related to cancer progression (36).  

PAI-1 is a multifunctional molecule known to control not only extracellular matrix 

proteolysis, but also cell matrix interaction through binding to vitronectin and cell surface 

molecules such as integrins and uPA receptor (7; 15; 18; 43). We previously showed in various in 



 

 

16

 

vivo and in vitro models of angiogenesis that PAI-1 plays a critical angiogenic role mainly 

through its capacity to tightly control extracellular proteolysis (4). The necessity of a balance 

between plasminogen activators and PAI-1, at least in pathological angiogenesis, is supported by 

evidence of a dose-dependent effect of PAI-1 (2; 20; 32). One function of PAI-1 may consist in 

the protection of angiogenic vascular endothelial cells or other migrating cells by preventing 

excessive pericellular proteolysis and cellular damage as well as by preserving matrix integrity 

(4; 10; 39; 41). We also recently reported that PAI-1 displays a proangiogenic activity by 

protecting endothelial cells from Fas-ligand mediated apoptosis induced by plasmin (5). 

Although, PAI-1 action could rely on the control of plasmin-mediated proteolysis, the absence of 

a phenotype in plasminogen-deficient mice suggests that the action of PAI-1 could not be simply 

related to this mechanism. In an attempt to determine whether impaired vascularisation in the 

labyrinth layer could be related to excessive extracellular matrix protein deposit, 

immunostainings of fibrin(ogen), collagen III and collagen VI were performed. However, no 

difference between the two genotypes of mice was detected (data not shown). Moreover, in both 

physiological (the present work) and pathological angiogenesis process, the phenotype associated 

to PAI-1 deficiency (impaired angiogenesis) is more severe than that observed in plasminogen-

deficient mice. Indeed, the defect of tumor vascularisation observed in PAI-1-/- mice could not be 

fully phenocopied by plasminogen deficiency(3) . Therefore, one can suggest that PAI-1controls 

placenta formation by regulating adhesive, migratory, and growth properties of invasive cells (15; 

38; 41). 

Transient elevated PAI-1 expression could serve to temporally and spatially modulate 

plasmin initiated peritrophoblast proteolysis further facilitating epithelial invasive potential.    

Microarray analysis performed on microdissected labyrinth layers demonstrated that 46 genes 

were differentially regulated in the absence of PAI-1 gene at 10.5 dpc. In sharp contrast, at 14.5 
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dpc, when placental morphologies normalization takes place, only 10 genes were found 

differentially regulated between PAI-1-/- and PAI-1+/+. Among the 38 genes modulated between 

PAI-1+/+ and PAI-1-/-, at 10.5 dpc, 20 (52%) were placenta-specific genes or placenta-specific 

members of gene families. Placenta-specific genes include the pregnancy-specific-glycoproteins 

(Psg) (44), and carcinoembyonic antigen-related cell adhesion molecules (Ceacam) (44) which 

both belong to the immunoglobulin super family, trophoblast specific protein b (Tpbpb), 

prolactine like protein (Prlp) and decidual/trophoblast prolactin-related protein (Dtrp) (30; 40). 

These gene modulations might reflect the morphological changes observed at early stage of 

placental formation. Surprisingly, the transcriptomic analysis did not reveal any modulation of 

serine proteases or MMPs, or their inhibitors. These two proteolytic systems have however been 

shown to display overlapping functions during embryo implantation and development (12; 14; 

45), as well as during physiological remodeling processes such as wound healing (34). In 

contrast, our study pinpointed a dysregulation in cystein cathepsin expression. Two murine 

cathepsins (cts3 and M) specifically expressed by spongiotrophoblasts were downregulated at 

10.5 dpc (37). In the opposite, cts8 transcripts mainly produced by giant trophoblastic cells were 

upregulated at this time point. In addition, the expression of Tpbps encoding a truncated protein 

with homology to cathepsin (19; 37) was repressed. Tpbps may function as inhibitors of 

cathepsin proteases. Little is known about the functions and targets of these cathepsins. Whether 

the transcriptomic modulation of murine cathepsin family members contribute to impaired 

angiogenesis or participate to the subsequent normalization of placenta development remains to 

be determined. In this context, it is intriguing to note that Cts8 whose transcripts were up-

regulated in PAI-1-deficient mice is produced by trophoblast cells that invade the maternal 

decidua and contribute to spiral artery remodeling (47; 52). Cts8 has been reported to endow 

trophoblast giant cells with smooth muscle-degrading function (47). 
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Several compensatory angiogenic factors allowing mice to escape to the phenotype could 

be associated with PAI-1 deficiency. Indeed, we have previously shown that the angiogenic 

factor, FGF-1, is important for primary tumor growth and compensates the absence of PAI-1 

(35). However, no modulation of FGF-1 mRNA expression was observed in our microdissected 

samples (data not shown). In addition, angiogenic factors such as VEGF or Placental Like 

Growth Factor (PlGF) were not listed in our microarray analysis to be differentially regulated 

between PAI-1+/+ and PAI-1-/- mice. The unique known angiogenic factor to be modulated at 10.5 

dpc was fms-like tyrosine kinase 1 (Flt-1) (27). However, its down-regulation observed in PAI-1-

deficient mice likely reinforces the impaired placental vascularization rather than compensates 

for the lack of PAI-1.  

Altogether, our data show that, despite the unaffected pregnancy outcomes, transient 

morphological abnormalities at the level of labyrinth, spongiotrophoblast and decidua as well as 

modulation of several gene expressions by trophoblast cells, result from the deficiency of PAI-1 

at 10.5 and 12.5 dpc. Through a genetic approach, we provide new insights into the unique 

function of PAI-1, in the setup of placental maternal and foetal vascularisation.  

Successful human embryo implantation and placentation also requires a tight control of 

placental expression of proteases and of their inhibitors (53). Abnormalities in PAI-1 expression 

are documented in patient with reported implantation failures, early preeclampsia, HELLP 

syndrome (46; 51; 54). It is therefore interesting to speculate that the major transient placental 

abnormalities elicited by lack of PAI-1 expression in this murine model my also translate in 

human placental pathogenesis.  
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Gene Accession N° Sequence 
Size PCR 
product 

T° 

28S rRNA-FP 
28S rRNA-RP 

U13369 
5’-GTTCACCCACTAATAGGGAACGTGA-3’ 
5’-GATTCTGACTTAGAGGCGTTCAGT-3’ 

212 bp 66°C 

PrlpF-FP 
PrlpF-RP 

NM_011168 
5’-GGACGAAGCTCAACAGATTCC-3’ 
5’-CCAGAAAAGACGGTGTATTCCA-3’ 

252 bp 54°C 

Psg19-FP 
Psg19-RP 

NM_011964 
5’-CCGGGAAGACACAGGATATT-3’ 
5’-TGTGAACACGGAGAAGAACG-3’ 

194 bp 54°C 

Psg21-FP 
Psg21-RP 

NM_027403 
5’-TTGCTGGAGCTGAAGGTTTT-3’ 
5’-CGTGTTTTGGTGACTGGATG-3’ 

184 bp 54°C 

Psg28-FP 
Psg28-RP 

NM_054063 
5’-CCCTGTGGATCCAAAATGTC-3’ 
5’-GCTGGTCGGCACTAATTCAA-3’ 

179 bp 54°C 

Tpbpb-FP 
Tbppb-RP 

AY034576 
5’-CAGCTGCTATAATCCCTGAACC-3’ 
5’-CATCAACAACTGGCTGTGTTTT-3’ 

255 bp 58°C 

CtsM-FP 
CtsM-RP 

NM_022326 
5’-CTATCTTCCTGGCCATGCTC-3’ 
5’-ACCAAAGGCATTCATTTCCA-3’ 

233 bp 60°C 

Ctse-FP 
Ctse-RP 

NM_007799 
5’-TCCATCCATCGCAGTCCGACA-3’ 
5’- TGCTGGCCATCCACAGTCAACC-3’ 

133 bp 58°C 

Cts3-FP 
Cts3-RP 

NM_026906 
5’-CCTAATGAGTGCTGTGGCAA-3’ 
5’-CCCAGGCTGTTCTTGATGAT-3’ 

213 bp 60°C 

Cts8-FP 
Cts8-RP 

NM_019541 
5’-ACCCTGAACGTTCTGCTGCTAGAAT-3’ 
5’-TCCGATAGTTGCTACAGCACGCAT-3’ 

89 bp 58°C 

Flt1-FP 
Flt1-RP 

NM_010228 
5’-CACAGGATATGGCTCAGGGTCGAAGT-3’ 
5’-ATGGGGGAGTGATGCTCAGCGTTT-3’ 

179 bp 60°C 

 

Table 1: Sequence of primers used for RT-PCR studies. 
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Figure 1:  

Quantification method of maternal vessels, foetal vessels and trophoblast cells by computer-

assisted image analysis. (a) Histological cross-section of labyrinth, (b) Window with isolated 

labyrinth layer, (c) Windows allowing the identification of maternal vessels, (d) foetal vessels 

and (e) trophoblast cells. (f) Binary images of maternal vessels, (g) foetal vessels and (h) 

trophoblast cells. 

 

Figure 2: 

Labyrinth and decidua histology in implantation sites of PAI-1+/+ (left panels) and PAI-1-/- (right 

panels) mice at 10.5 dpc. A-B: May-Grümwal-Giemsa staining of labyrinth layer. Foe: Foetal 

blood vessels; Ma: Maternal blood vessels; Tro: Trophoblast cells. C-D: Trophoblast cells 

staining using anti-keratin Ab. E-F: Labeling of foetal blood vessels using MECA-32 Ab in the 

labyrinth layer. G-H: Labeling of the decidua using anti-desmin Ab. I-J: labeling of cells 

proliferation using Ki-67 Ab. De: Decidua; Lab: Labyrinth; Sp: Spongiotrophoblast. 

 

Figure 3: 

A, B and C: Quantification of foetal and maternal blood vessels and trophoblast cell density at 

10.5 dpc, in PAI-1+/+ and PAI-1-/- mice. Quantification was performed according to the 

computer-assisted method described in materials and methods and in Fig 1. A: Foetal blood 

vessel density. B: Maternal blood vessel density. C: Trophoblast cells density. D: Decidua/ 

labyrinth ratio was determined by measuring the thickness of the decidua and the labyrinth on 

microscopic images of foeto-placental units stained with hematoxylin-eosine. Five different 
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measurements were performed for each sample and results represent the average of all values. 

The number of implantation sites analyzed is indicated in each graph (n). 

 

Figure 4: 

Labyrinth, spongiotrophoblast and decidua histology and blood vessel architecture in 

implantation sites of PAI-1+/+ (left panels) and PAI-1-/- (right panels) at 12.5 dpc. A-B: Overview 

of the labyrinth layer with hematoxylin&eosin staining. C-D: Fluorescent labeling of trophoblast 

cells using anti-keratin Abs. E-F: Labeling of foetal blood vessels in the labyrinth layer using 

MECA-32 Abs. 

De: Decidua; Lab: Labyrinth; Sp: Spongiotrophoblast. 

 

Figure 5: 

Calculation of the Spongiotrophoblast/labyrinth (A) and decidua/ labyrinth (B) ratios at 12.5 dpc 

in PAI-1+/+ and PAI-1-/- mice. Decidua, spongiotrophoblast and labyrinth thickness were 

measured on microscopic images of hematoxylin-eosine stained sections of feto-placental unity 

as described in materials and methods. Five different measurements were performed for each 

sample and results represent the average of all values. The number of implantation sites analyzed 

is indicated (n). 

 

Figure 6: Venn diagram illustration of genes differentially modulated between PAI-1+/+ and PAI-

1-/- at 10.5 and 14.5 dpc by. The 38 genes modulated at 10.5 dpc are listed according to their 

association with or exclusive expression in murine placental cells.   
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Figure 7:  
 
Semi-quantitative RT-PCR analysis with the same RNA samples used in the transcriptomic 

analysis. Results are expressed as the mRNA ratio in PAI-1+/+ to PAI-1-/- at 10.5 and 14.5 dpc. 

PAI-1+/+/PAI-1-/- ratio of Psg19 (A), Psg21 (B), Psg28 (C), Prlpf (D), Tpbpb (E), Cts3 (F), CtsM 

(G), Cts E (H) Cts 8 (I) and Flt1 (J). Line indicate the value 1 of PAI-1+/+/PAI-1-/- ratio.  

 

 

 

 

 

 


