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RÉSUMÉ

Cette note technique fait suite à une note antérieure. Son objectif est de
faire prendre conscience au lecteur de la large étendue d’applications des on-
delettes. Elle se découpe en deux parties. La première illustre la théorie des
ondelettes au moyen d’applications tournées vers la statistique. La deuxième se
tourne vers les applications en traitement du signal et de l’image.

SUMMARY

The objective of this note is to make known a large number of applications
of the wavelet theory. This note is divided in two parts. The first one briefly pre-
sents a few examples that illustrate the use of wavelets in statistics. The second
one deals with applications in signal and image processing.

1. APPLICATIONS EN STATISTIQUE

Dans ce paragraphe, nous présentons deux exemples qui illustrent l’utili-
sation des ondelettes en statistique non-paramétrique. Il s’agit d’estimation de
densité de probabilité et de diagramme de régression. Pour l’estimation de den-
sité, nous proposons une nouvelle méthode non-paramétrique. Ceci veut dire que
nous proposons une forme de lissage d’histogramme et non une équation expri-
mant la densité en fonction de sa variable. De même pour la régression, nous
proposons une nouvelle méthode non-paramétrique. Ceci veut dire que nous
proposons une nouvelle méthode pour retracer l’évolution de la moyenne de la
variable en fonction de sa variable explicative et non pour trouver l’équation ex-
primant la variable en fonction de sa variable explicative. Dans chaque cas, nous
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commençons par expliquer le contexte statistique du problème. Nous décrivons
ensuite une solution basée sur les ondelettes. Ses avantages et inconvénients sont
détaillés.

1.1. Utilisation des ondelettes pour l’estimation de densité

Une grande partie de la littérature consacrée à la statistique non-
paramétrique concerne l’estimation de densité. Des aperçus sont donnés dans
Silverman, 1986 et Izenman, 1991. Toutes les méthodes proposées ont leurs
propres avantages et inconvénients. Par exemple, la méthode du noyau bénéfi-
cie de l’héritage de toutes les propriétés de continuité et de différentiabilité du
noyau, mais pose le problème du choix du paramètre de lissage. Espérant dé-
passer ce genre d’inconvénients et désirant tirer parti des nombreuses propriétés
des ondelettes, des chercheurs, parmi lesquels Pinheiro et Vidakovic (Pinheiro,
Vidakovic, 1997), ont adapté les estimateurs de densité par série orthogonale
de Cencov (Cencov, 1962). Dans cette section, nous présentons les estimateurs
de densité par série orthogonale de Cencov et l’adaptation de celui-ci avec les
ondelettes par Pinheiro et Vidakovic.

L’idée de Cencov est simple. La densité inconnue f de carré intégrable peut
être représentée comme un développement en série orthogonale convergente

f(x) =
∑
j∈J

ajψj(x), (1)

où {ψj , j ∈ J} est une base orthonormée de fonctions dans L2(D), D ⊂ IR et
J est un ensemble approprié d’indices. Par exemple, la base orthonormée peut
être la base de Fourier ou une base d’ondelettes. A partir de l’équation 1, les
coefficients aj peuvent être exprimés comme

aj =
∑
i∈J

ai

∫
ψi(x)ψj(x)dx =

∫
f(x)ψj(x)dx = E(ψj(X)). (2)

SoitX = (X1, X2, . . . , Xn) un échantillon de la distribution inconnue f . Il semble
naturel d’estimer aj par

âj =
1

n

n∑
i=1

ψj(Xi) (3)

et f(x) par
f̂(x) =

∑
j∈J

âjψj(x). (4)
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Cependant, cet estimateur pourrait ne pas être bien défini. En fait,

âj =
1

n

n∑
i=1

ψj(Xi)

=
1

n

n∑
i=1

∫
ψj(x)δ(x−Xi)dx

=
∫
{ 1

n

n∑
i=1

δ(x−Xi)}ψj(x)dx

=
∫
g(x)ψj(x)dx

où g(x) est la fonction de probabilité empirique et δ est la fonction de Dirac.
Comme âj et aj sont identiques pour la fonction de probabilité empirique, ce
qui suit est vrai pour tout échantillon X :∑

j∈J
âjψj(x) =

1

n

n∑
i=1

δ(x−Xi). (5)

Cet estimateur a une variance infinie et n’est pas consistant au sens ISE (Inte-
grated Square Error). La pratique standard est alors de sélectionner un nombre
fini de coefficients empiriques âj et de les seuiller de manière appropriée.

Une base d’ondelettes est souvent choisie pour {ψj , j ∈ J} à cause de sa lo-
calisation en temps et en fréquence qui permet d’obtenir un estimateur puissant.
Dans ce cas-ci, {ψj}j∈J = {φj0,k, ψj,k}j≥j0,k∈ZZ et {aj}j∈J = {cj0,k, dj,k}j≥j0,k∈ZZ.
Nous estimons

ĉj,k =
1

n

n∑
i=1

φj,k(Xi)

pour j = j0, k ∈ ZZ et

d̂j,k =
1

n

n∑
i=1

ψj,k(Xi)

pour j ≥ j0, k ∈ ZZ. La sélection de j0 dépend de l’ondelette mère et de la
régularité de la densité. Le lecteur peut se référer à Pinheiro et Vidakovic,
1997pour plus d’explications. Ensuite, il est nécessaire de seuiller certains de
ces coefficients comme spécifié plus haut. Kolaczyk (Kolaczyk, 1994)propose
le seuil suivant λ = log(n)/

√
n pour les niveaux jusque j1 = blog2n−1c. Donoho

(Donoho, 1996) suggère de prendre le niveau j1 = blog2n − log2(logn)c où n
est la taille de l’échantillon. De façon similaire, Delyon et Juditsky (Delyon et
Juditsky, 1993)recommandent j1 = blog22n − log2(lnn)c. Ceci veut dire que,
si nous utilisons un seuillage fort, nous obtenons certains nouveaux coefficients

d̂j,k =

{
d̂j,k si |d̂j,k| ≥ λ,
0 sinon,

∀j0 ≤ j ≤ j1,∀k, et si nous utilisons un seuillage doux, nous obtenons certains
nouveaux coefficients

d̂j,k =

 d̂j,k − λ si d̂j,k ≥ λ,
d̂j,k + λ si d̂j,k ≤ −λ,
0 sinon,
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∀j0 ≤ j ≤ j1,∀k.

Pinheiro et Vidakovic (Pinheiro et Vidakovic, 1997)ont amélioré cet es-
timateur par ondelettes. Plutôt qu’estimer directement la densité inconnue f ,
ils estiment sa racine carrée :

√
f . Deux arguments justifient ce choix. Premiè-

rement, comme beaucoup de méthodes standards d’estimation de densité, celle
développée ci-dessus pourrait permettre d’obtenir un estimateur de densité avec
des valeurs négatives. Une façon de contourner le problème est de tronquer l’es-
timateur en mettant à zéro les valeurs négatives et en normalisant la troncature.
Une autre façon est d’estimer une transformation de f , telle que log f ou

√
f .

Deuxièmement, en plus de la positivité, l’estimateur de densité doit avoir une
intégrale de un. Le fait d’estimer

√
f va satisfaire cette contrainte grâce au fait

que 1 =
∫
f = 〈

√
f,
√
f〉 = ‖

√
f‖2. En effet, si

√
f =

∑
j∈J ajψj(x), alors

‖aj‖2l2 = ‖
√
f‖2 = 1 par l’identité de Parseval. Ainsi, normaliser les coefficients

revient à rendre un estimateur bona fide. Techniquement, Vidakovic calcule les
coefficients de

√
f avec

ĉj,k =
1

n

n∑
i=1

φj,k(Xi)√
f̂n(Xi)

et

d̂j,k =
1

n

n∑
i=1

ψj,k(Xi)√
f̂n(Xi)

pour un certain premier estimateur de la densité inconnue, f̂n. Le calcul de ĉj,k
(d̂j,k resp.) est motivé de la façon suivante :

cj,k = 〈φj,k,
√
f〉 =

∫
φj,k

√
f =

∫
φj,k√
f
f

(dj,k = 〈ψj,k,
√
f〉 =

∫
ψj,k

√
f =

∫
ψj,k√
f
f).

Le plus simple premier estimateur est l’histogramme. Pinheiro et Vidakovic sug-
gèrent de choisir j1 comme l’argument minimum de E(j) =

∑
k d̂

2
j,k et de seuiller

les coefficients comme suit :

d̂j,k = I(d̂2
j,k > κ

¯̂
d2)d̂j,k

où ¯̂
d2 est la moyenne de d̂2

j,k et κ ∈ IR. Souvent, κ = 0.5 est choisi. Après le
seuillage, les coefficients restants sont normalisés. L’identité de Parseval assure
alors que l’estimateur est une densité bonafide.

En conclusion, l’algorithme général basé sur les ondelettes pour l’estima-
tion d’une densité univariée est une méthode assez récente. L’estimateur est
simple, adaptatif en localisation (choix de j1) et régularité (choix de l’onde-
lette mère), et efficace. Nous avons vu que Pinheiro et Vidakovic ont à partir
de là développé leur propre estimateur par ondelettes non négatif dont l’inté-
grale vaut 1. Ils ont montré que, sur de nombreux exemples, leur estimateur
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est meilleur que celui des noyaux. Dans Muller et Vidakovic, 1998, les au-
teurs ont montré que le rapport du MISE de l’estimateur par ondelettes sur
le MISE de l’estimateur par noyaux est strictement inférieur à 1 sur de nom-
breux exemples. De nombreux autres travaux ( Adrian, 2008, Renaud, 1999,
Tribouley, 2008 pour n’en citer que quelques-uns) montrent que les estima-
teurs de densité par ondelettes ont une erreur minimale et sont avantageux du
point de vue calculatoire. Ils offrent une meilleure estimation quand la densité
recherchée n’est pas régulière. L’estimation de densité par ondelettes est pro-
posée sur MatLab. Un minimum d’informations est disponible à l’adresse sui-
vante : http ://www.mathworks.com/help/toolbox/wavelet/ug/f8-95760.htmlf8-
40906 (visité le 26/01/11).

1.2. Utilisation des ondelettes pour la régression

Dans cette section, nous considérons uniquement les familles d’ondelettes
qui forment une base orthonormée. Nous expliquons comment utiliser une base
d’ondelettes pour construire un estimateur non paramétrique pour une fonction
de régression m dans le modèle

Yi = m(Xi) + εi, i = 1, . . . , n. (6)

Si on considère le modèle fixe, les Xi sont non aléatoires et les erreurs sont des
variables normales indépendantes et identiquement distribuées εi ≈ N(0, σ2

ε ). Si
on considère le modèle aléatoire, les (Xi, Yi) sont des variables aléatoires indé-
pendantes et identiquement distributées (X,Y ) avec m(x) = E(Y |X = x) et
εi = Yi −m(Xi).

1.2.1. Modèle fixe

L’objectif est de construire un estimateur non paramétrique pour une fonc-
tion de régression m ∈ L2([0, 1]) dans le modèle

Yi = m(xi) + εi, i = 1, . . . , n, n = 2J , J ∈ IN, (7)

où xi = i
n et les erreurs εi sont des VA iid εi ≈ N(0, σ2

ε ). Notons que lorsque n
n’est pas dyadique ou xi 6= i

n ou encore les erreurs ne sont pas des VA normales
iid, la méthode proposée ci-dessous nécessite des adaptations non vues dans cette
note.

L’idée générale est celle de Cencov qui considère que toute fonction m peut
être décomposée dans une base à l’aide de coefficients :

m(x) =
∑
j∈J

ajψj(x)

où {ψj , j ∈ I} est une base orthonormée de fonctions dans L2(D), D ⊂ [0, 1],
I est un ensemble approprié d’indices et aj =

∫
m(x)ψj(x)dx. Pour m ∈ L2,
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∑
j a

2
j < ∞ entraine que m(x) est bien approximée en prenant seulement un

petit nombre N de aj .

Un estimateur par ondelettes consiste à choisir une base {ψj , j ∈ I} d’on-
delettes. Cet estimateur peut être linéaire ou non linéaire. L’estimateur par on-
delettes linéaire procède par projection des données sur un espace de niveau plus
grossier en prenant les N premiers coefficients. Cet estimateur est du type des
noyaux. Une autre possibilité pour estimer m est de détecter quels coefficients
relatifs aux détails contiennent l’information importante au sujet de la fonction
m et de mettre à zéro les autres coefficients. Ceci donne lieu à un estimateur
non linéaire. En pratique, il consiste à prendre les N plus grands coefficients en
valeur absolue.

Estimateur par ondelettes linéaire
Supposons que nous avons des données (xi, Yi)

n
i=1 provenant du modèle défini

à l’équation 7 et une base orthonormée d’ondelettes générée par une ondelette
mère ψ et une ondelette père φ. L’estimateur linéaire procède en choisissant
un niveau j1 et représente une estimation de la projection de m dans l’espace
Vj1 ⊂ L2(IR) (pour plus d’explications, voir Delouille, 2002 pour l’analyse
multirésolution) :

m̂(x) =

2j0−1∑
k=0

ĉj0,kφj0,k(x) +

j1−1∑
j=j0

2j−1∑
k=0

d̂j,kφj,k(x), (8)

avec j0 le niveau le plus grossier de la décomposition et ĉj0,k = cYj0,k et d̂j,k = dYj,k.
Le niveau j1 joue un rôle de paramètre de régularisation : une petite valeur de
j1 veut dire que beaucoup de coefficients relatifs aux détails seront mis de côté,
et ceci pourrait donc trop lisser. D’un autre côté, si j1 est trop grand, trop de
coefficients seront gardés et certaines bosses artificielles resteront probablement
dans l’estimation de m(x).

Grâce à l’orthogonalité de la transformée en ondelettes et l’égalité de Par-
seval, le risque L2 (MISE ou Mean Integrated Square Error) de l’estimateur
linéaire est égal au risque l2 de ses coefficients d’ondelettes :

MISE = E‖m̂−m‖2L2
=
∑
k

E[ĉj0,k−c0j0,k]2+

j1−1∑
j=j0

∑
k

E[d̂j0,k−d0
j0,k]2+

∞∑
j=j1

∑
k

(d0
j,k)2

(9)
= S1 + S2 + S3,

où
s0
j0,k := 〈m,φjk〉 et d0

j0,k := 〈m,ψjk〉 (10)

sont appelés coefficients théoriques dans le contexte de la régression. Le terme
S1 + S2 constitue le biais stochastique tandis que S3 est le biais déterministe.
Le niveau j1 optimal est tel que les deux biais sont de même ordre de grandeur.
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En pratique, des méthodes de validation croisée sont souvent utilisées pour dé-
terminer le niveau optimal.

Estimateur par ondelettes non linéaire
Etant donné le modèle de régression de l’équation 7, nous pouvons décomposer
les coefficients relatifs aux détails d̂Yjk des Yi comme

d̂Yjk = djk + ρjk, (11)

où djk sont les coefficients relatifs aux détails des m(xi) et ρjk ceux associés aux
εi. Si la fonctionm(x) permet une représentation en ondelettes creuse, seulement
un petit nombre de coefficients relatifs aux détails djk contribueront au signal
et seront non négligeables. Cependant, chaque coefficient empirique d̂Yjk a une
contribution non nulle provenant de la partie bruitée ρjk.

Supposons que le niveau de bruit n’est pas trop haut, de telle façon que
le signal peut être distingué du bruit. Alors, par la propriété de parcimonie de
l’ondelette, seuls les plus grands coefficients relatifs aux détails pourraient être
inclus dans l’estimateur par ondelettes. Par conséquent, quand on veut estimer
une fonction inconnue, on inclut seulement les coefficients qui sont plus grands
en valeur absolue qu’un certain seuil. En réalité, on applique le seuillage fort.
Maintenant, puisque chaque coefficient empirique consiste à la fois en une partie
du signal et une partie du bruit, il serait peut-être souhaitable de seuiller tous
les coefficients. C’est le seuillage doux.

La régression se fait donc en trois étapes :
1. appliquer la transformée en ondelettes aux observations {Yi} amenant donc
ĉYj0 et d̂Yj pour j = j0, . . . , J − 1

2. manipuler les coefficients relatifs aux détails au-dessus du niveau j0 par un
seuillage

3. inverser la transformée en ondelettes et produire une estimation de m.
Le choix de j0 est souvent de 2 ou 3 en pratique, bien qu’une détermination
par validation croisée est possible. La sélection du seuil est très importante. De
nombreuses méthodes de sélection de seuil ont été développées. Le seuil universel
est

tuniv = σd
√

2 log n

où σ2
d est la variance des coefficients d’ondelettes empiriques.

Donoho et Jonhstone ont démontré les propriétés de convergence de cette
méthode qui obtient de meilleurs résultats que l’estimateur par noyaux ou par
splines pour des signaux singuliers. De plus sa complexité algorithmique est de
O(n log n) contrairement à O(n2) pour les estimateurs par noyaux ou splines.
En illustration, nous avons les figures 1 et 2 (Huang, 2003).
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Figure 1. Régression faite à partir de 128 points : courbe, courbe bruitée, régres-
sorgramme 8, régressorgramme 16, estimateur par série de cosinus, estimateur par
noyaux, estimateur par spline, estimateur par ondelettes. (D’après Huang, 2003).

Figure 2. Régression faite à partir de 128 points : courbe, courbe bruitée, estimateur
par série de cosinus, estimateur par noyaux, estimateur par spline, estimateur par
ondelettes. (D’après Huang, 2003).
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1.2.2. Modèle aléatoire

Le modèle est le suivant :

Yi = m(Xi) + εi i = 1, . . . , n,

avec (Xi, Yi) variables aléatoires iid (X,Y ), m(x) = E(Y |X = x) et εi variable
aléatoire N(0, σ2

i ).

L’estimateur à noyaux de Nadaraya-Watson est basé sur le fait que

m(x) = E(Y |X = x) =

∫
yfY |X(y|x)dx =

∫
yfXY (x, y)dy

fX(x)

et sur les densités estimées par la méthode des noyaux :

f̂XY (x, y) =
1

nh2

∑
i

Kh(x−Xi)Kh(y − Yi)

f̂X(x) =
1

nh

∑
i

Kh(x−Xi)

avec h paramètre de lissage. Par les propriétés du noyau K, on a

m̂h(x) =

∑n
i=1 YiKh(Xi − x)∑n
i=1Kh(Xi − x)

.

Cet estimateur à noyaux de Nadaraya-Watson peut être amélioré avec les
ondelettes. Soit φ une fonction d’échelle à support compact. Soit K (noyau)
défini comme

K(u, v) =
∑
k

φ(u− k)φ(v − k).

On a

m̂j(x) =

∑n
i=1 YiK(2jx, 2jXi)∑n
i=1K(2jx, 2jXi)

.

On peut montrer que

m̂j(x) =

∑
k( 1
n

∑n
i=1 Yiφjk(Xi))φjk(x)∑

k( 1
n

∑n
i=1 φjk(Xi))φjk(x)

qui n’est rien d’autre que l’estimateur de Nadaraya-Watson où les densités ont
été estimées par la méthode des ondelettes. Une illustration se trouve en figure
3. De nouveau, on peut avoir un estimateur linéaire ou non-linéaire avec ou sans
seuillage. Les avantages de cette méthode découlent des avantages de l’estima-
tion de densité par ondelettes. La régression par ondelettes (fixe ou aléatoire) est
proposée sur MatLab. Un minimum d’informations est disponible à l’adresse sui-
vante : http ://www.mathworks.com/help/toolbox/wavelet/gs/f4-1021504.html
(visité le 26/01/11).
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Figure 3. Régression par ondelettes n = 256.

2. APPLICATIONS EN TRAITEMENT DU SIGNAL ET DE
L’IMAGE

Dans ce paragraphe, nous présentons quelques exemples qui illustrent l’uti-
lisation des ondelettes dans le traitement du signal et de l’image. Il s’agit de
débruitage, d’analyse en ondelettes croisée et de cohérence par ondelettes, de la
déconvolution et de la compression. Dans chaque cas, nous commençons par ex-
pliquer le problème. Nous décrivons ensuite une solution basée sur les ondelettes.
Les avantages et inconvénients sont mis en avant.

2.1. Utilisation des ondelettes pour le débruitage

L’estimation de signaux dans du bruit est un grand exemple de l’effi-
cacité des ondelettes. En fait, dans un bruit de fond de conversations anglaises, il
est facile de suivre une discussion en français. De même, l’estimation d’un signal
mêlé à du bruit peut s’optimiser en trouvant une représentation qui sépare le
signal du bruit (Mallat, 1988). Par leur localisation en temps et en fréquence,
les ondelettes permettent une discrimination efficace du signal et du bruit.

En sciences expérimentales, les signaux sont habituellement bruités. Il est
souvent, mais pas toujours, raisonnable de considérer que le bruit est norma-
lement distribué. Dans des techniques impliquant un processus de comptage,
les données sont modélisées par une distribution de Poisson. Pour couvrir aussi
bien le cas normal que le cas de Poisson, nous décrivons la méthode de seuillage
par ondelettes de Donoho et Johnstone (Donoho et Johnstone, 1994)pour
un bruit normalement distribué et l’algorithme de Kolaczyk pour un bruit de
Poisson (Kolaczyk, 1996). Il est clair que ce dernier est basé sur le premier.
Notons que cette section est relative à des signaux unidimensionnels mais que
les résultats sont aisément généralisables à des signaux multidimensionnels.
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Notons également qu’il n’y a pas de différences fondamentales entre le fil-
trage d’un bruit et la régression. La démarche est identique. Historiquement, les
ondelettes ont d’abord été utilisées dans le débruitage avant d’être accaparées
par les statisticiens pour la régression.

2.1.1. Filtrage d’un bruit normalement distribué : Donoho et Johns-
tone

Modèle
On suppose que les observations (Xi)

n−1
i=0 (n = 2J ; J > 0) peuvent être mo-

délisées comme la somme d’un signal à estimer (λi)
n−1
i=0 et d’un bruit blanc

normalement distribué (Wi)
n−1
i=0 de variance σ2. Nous avons donc :

Xi = λi +Wi i = 0...n− 1. (12)

De nombreuses approches ont été suggérées pour filtrer un bruit normalement
distribué. La plupart d’entre elles sont basées sur la régularisation par spline,
l’estimation par noyau, le développement en série de Fourier, pour n’en citer
que quelques-unes. Plus particulièrement, la dernière décennie du siècle passé a
été le témoin de l’émergence d’une méthode puissante basée sur les ondelettes.
L’approche habituelle de Donoho est de développer les données bruitées en série
d’ondelettes, d’extraire les coefficients d’ondelettes significatifs par seuillage et
ensuite d’utiliser l’inverse de la transformée en ondelettes sur les coefficients dé-
bruités. Le succès de cette approche est principalement basé sur d’importantes
propriétés d’optimalité de cet estimateur par ondelettes, sur la représentation
parcimonieuse des séries d’ondelettes pour une large gamme de fonctions et sur
sa rapidité.

Meilleur estimateur
En décomposant X = (Xi)

n−1
i=0 dans une base d’ondelettes orthonormée

{ψj,k}j,k, nous trouvons les coefficients d’ondelettes :

〈X,ψj,k〉 = 〈λ, ψj,k〉+ 〈W,ψj,k〉 (13)

où les 〈W,ψj,k〉 sont des variables aléatoires normales indépendantes et iden-
tiquement distribuées possédant une moyenne nulle et une variance σ2. Dans
Mallat, 1988, Mallat explique que le filtre de Wiener généralisé donne l’esti-
mateur suivant pour λ :

λ̂ =
∑
j,k

〈X,ψj,k〉θj,kψj,k (14)

où θj,k =
|〈λ,ψj,k〉|2
|〈λ,ψj,k〉|2+σ2 minimise un critère de performance global : le "Mean

Integrated Squared Error (MISE)", E(‖λ− λ̂‖22). Notons εa la valeur minimum
du MISE. Cette méthode est théorique. Elle ne peut pas être implémentée car
il est impossible de calculer 〈λ, ψj,k〉. Notons que le rôle du facteur θj,k(< 1)
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consiste à seuiller les coefficients 〈X,ψj,k〉 dans le but d’enlever le bruit de ces
coefficients et par conséquent d’enlever le bruit de X.

Estimateur simple
L’estimation de θj,k peut être simplifiée en restreignant ses valeurs à 0 ou

1. Si le MISE est minimisé sous cette contrainte, il peut être montré que

θj,k = { 1 si |〈λ, ψj,k〉|2 > σ2

0 si |〈λ, ψj,k〉|2 ≤ σ2. (15)

Malheureusement, cet estimateur-ci requiert le calcul de 〈λ, ψj,k〉 et n’est dès
lors pas implémentable. Ce seuillage est appelé le seuillage simple et son erreur,
εsimple, satisfait :

εsimple ≥ εa ≥ εsimple/2. (16)

Estimateur par seuillage de Donoho-Johnstone
Afin d’obtenir un estimateur de λ implémentable, Donoho et Johnstone ont

suggéré un estimateur par seuillage fort où θj,k prend les valeurs suivantes :

θj,k = { 1 si |〈X,ψj,k〉| > T
0 si |〈X,ψj,k〉| ≤ T

(17)

où le seuil T est égal à
√

2log(n) σ.

Cette dernière valeur a été choisie pour T sur base de l’argument suivant.
Sous l’hypothèse nulle H0 : λ = 0, l’équation 12 devient X = W , qui implique
à son tour que 〈W,ψj,k〉 = 〈X,ψj,k〉. Afin d’obtenir λ = 0, nous devons dès
lors avoir T > |〈W,ψj,k〉|. Cependant, sous l’hypothèse alternative Ha : λ 6= 0,
nous devons être prudents afin d’éviter des valeurs de seuil trop grandes qui
mettraient tous les coefficients à zéro, spécialement dans les cas où 〈X,ψj,k〉 6=
〈W,ψj,k〉. Donoho et Johnstone (Donoho et Johnstone, 1994) ont suggéré une
valeur de seuil ayant une grande probabilité d’être juste au-dessus de la valeur
maximum prise par |〈W,ψj,k〉|. Choisir T =

√
2log(n) σ permet de satisfaire

cette contrainte puisque :

lim
n→+∞

P (T − σ log(log(n))

log(n)
≤ max

j,k
|〈W,ψj,k〉| ≤ T ) = 1, (18)

et
lim
n→∞

log(log(n))

log(n)
= 0. (19)

Donoho et Johnstone ont aussi montré que le MISE de leur estimateur par
seuillage est simplement relié à l’estimateur simple présenté ci-dessus :

εthresholding = E(‖λ− λ̂thresholding‖22) ≤ (2log(n) + 1)(σ2 + εsimple). (20)

L’estimateur par seuillage de Donoho-Johnstone donne lieu à un algorithme de
filtrage en trois étapes :
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1. la décomposition des observations dans une base d’ondelettes,
2. le T -seuillage de tous les coefficients,
3. l’application de l’inverse de la transformée par ondelettes

sur les coefficients seuillés.

En plus de T , d’autres paramètres doivent être choisis : l’échelle gros-
sière et la famille d’ondelettes. Johnstone propose blog2(n) − log2(log10(n))c
pour le choix de l’échelle grossière L (dans Donoho, 1996) ; Juditsky suggère
blog2(n) − log2(ln(n))c (dans Juditsky, 1994). Un choix éclairé de la famille
d’ondelettes est de prendre une famille donnant un nombre maximum de co-
efficients d’ondelettes 〈λ, ψj,k〉 proches de zéro. De cette manière, le signal λ
est concentré sur un petit nombre de grands coefficients et le signal n’est pas
confondu avec le bruit qui est uniformément répandu sur tous les coefficients
d’ondelettes. Le seuillage est plus efficace. Afin d’obtenir un nombre maximum
de petits coefficients d’ondelettes, il faut être attentif à trois critères dans le
choix de l’ondelette.

1. Il est préférable de choisir une ondelette qui possède beaucoup de moments
nuls. Par définition, une ondelette avec m moments nuls est orthogonale
aux polynômes de degré m− 1. En fait, on peut démontrer que si le signal
est régulier et si l’ondelette choisie possède assez de moments nuls, alors
les coefficients d’ondelettes seront petits pour les fines échelles.

2. Il est préférable de choisir une ondelette avec un petit support. En fait, si
le signal contient une singularité en to et si to est dans le support de ψj,k,
le coefficient d’ondelette correspondant sera grand. La taille du support
de l’ondelette et le nombre de moments nuls sont a priori indépendants.
Cependant, nous pouvons prouver que les contraintes qui sont imposées sur
les ondelettes orthogonales impliquent que si l’ondelette possède pmoments
nuls, son support sera au moins de taille 2p− 1. Par conséquent, il existe
un compromis entre le nombre de moments nuls et la taille du support
de l’ondelette. Si le signal possède des singularités isolées mais est régulier
entre les singularités, il est préférable de choisir une ondelette avec un
grand nombre de moments nuls afin de produire un grand nombre de petits
coefficients. Si le nombre de singularités augmente, il est préférable de
diminuer la taille du support et, par conséquent, de réduire le nombre de
moments nuls.

3. Finalement, dans le choix de l’ondelette, nous devons aussi faire attention
à la régularité de l’ondelette. Celle-ci a principalement une influence esthé-
tique sur l’erreur introduite durant le seuillage des coefficients d’ondelettes.
Une erreur régulière est toujours moins visible qu’une erreur irrégulière.
C’est pourquoi l’ondelette de Haar est rarement utilisée avec le seuillage
de Donoho-Jonhstone.

Nous terminons cette section relative au filtrage d’un bruit normalement
distribué avec quelques remarques. Notons premièrement qu’un seul seuil est
proposé pour tous les coefficients d’ondelettes. Notons également que nous ne
mentionnons ici que l’estimateur par seuillage fort de Donoho-Johnstone. Il existe
l’estimateur par seuillage doux de Donoho-Johnstone (Donoho, 1996). La pro-
priété générale du seuillage doux est qu’il assure avec une grande probabilité que
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l’estimateur est au moins aussi régulier que le signal à estimer. Cependant, il pro-
duit souvent une plus grande erreur quadratique que le seuillage fort. Finalement,
notons aussi que le seuil T dépend de la variance σ qui est souvent inconnue. Mal-
lat (Mallat, 1988) propose de l’estimer par σ̂ = 1

0.6745Median(|〈X,ψ1,j〉|)0≤j<n/2.
La figure 4 montre le seuillage d’une fonction bruitée utilisant les seuillages doux
et fort de Donoho-Johnstone. Cet algorithme peut être généralisé à plusieurs di-
mensions comme illustré dans la figure 5. Le succès de cette technique par rap-
port aux autres est lié à sa meilleure complexité algorithmique et à ses meilleurs
résultats principalement lorsque le signal à estimer est singulier.

Figure 4. (a) : signal original ; (b) : signal bruité ; (c) : estimation avec un seuillage
fort ; (d) : estimation avec un seuillage doux.
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(a)

(b)
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(c)

Figure 5. (a) : signal original ; (b) : signal bruité ; (c) : estimation par ondelettes
avec un seuillage fort.
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2.1.2. Filtrage du bruit de Poisson : Anscombe et Kolaczyk

Il est souvent raisonnable de considérer le bruit de signaux expéri-
mentaux comme étant normalement distribué. Cependant, dans des techniques
où la détection implique un processus de comptage (comme en spectroscopie :
les données correspondent au nombre d’électrons détectés comme une fonction
de leur perte d’énergie), les données sont mieux modélisées par une distribution
de Poisson. Malgré son grand nombre d’applications, peu d’études ont été réali-
sées sur le filtrage du bruit de Poisson. Ceci est probablement dû à la difficulté
d’étudier des signaux avec une variance non constante.

Modèle
Nous considérons un processus de Poisson (p.p.) non-homogène sur [a, a+

np] (a ∈ IR, n ∈ IN, p ∈ IR) :

Nt ≡ N(a, t] ∼ Po(Λ((a, t])) (21)

où Λ((a, t]) =
∫ t
a
λ(s)ds ∀t ∈ [a, a+np] et λ est l’intensité du p.p. Considérons

que ce processus est observé à intervalles de taille p. Ces observations peuvent
être considérées comme un ensemble de comptage cumulatif :Na, Na+p, ..., Na+np.
Nous notons alorsXi = Na+(i+1)p−Na+ip (i = 0, . . . , n−1). Celles-ci sont des va-
riables aléatoires de Poisson indépendantes :Xi ∼ Po(λi) où λi =

∫ a+(i+1)p

a+ip
λ(t)dt

doit être estimé. Ceci explique pourquoi le comptage de particules suit habituel-
lement une distribution de Poisson. La distribution de Poisson ne possède qu’un
seul paramètre, λ, et est notée Po(λ).

Algorithme d’Anscombe
L’algorithme d’Anscombe transforme les données Xi en utilisant la trans-

formation de Anscombe Yi = 2
√
Xi + 3/8. Celle-ci rend les données quasi gaus-

siennes avec un niveau de bruit relativement constant de 1 (Starck, Mur-
tagh, Bijaoui, 1998). Ensuite, il procède comme si les données possédaient
réellement un bruit gaussien. La méthode de Donoho et Johnstone avec le seuil
T =

√
2log(n) est utilisée. Cet algorithme est critiqué pour son lissage excessif

aux fines échelles et son lissage timide aux grandes échelles. Ceci est illustré à la
figure 7.

Algorithme TIPSH
Kolaczyk a développé un algorithme visant à fournir une alternative à

l’algorithme d’Anscombe, finement adaptée aux signaux plongés dans un bruit
de Poisson, plus particulièrement les signaux correspondants aux explosions de
rayons Gamma. Kolaczyk a proposé d’étendre la solution de Donoho-Johnstone
au cas de Poisson. De façon semblable au filtrage d’un bruit normalement dis-
tribué (voir équation 14), nous savons que λ̂, estimateur de λ, peut s’écrire :

λ̂ =
∑
j,k

〈X,ψj,k〉θj,kψj,k, (22)
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où {ψj,k}j,k représente l’ensemble des fonctions formant une base orthonormée
d’ondelettes. Kolaczyk généralise l’estimateur par seuillage de Donoho-Johnstone
en imposant

θj,k = { 1 si |〈X,ψj,k〉| > T
0 sinon. (23)

Kolaczyk trouve un seuil dépendant de l’échelle j qu’il note alors tj :

tj = 2−j/2{log(nj) +
√
log2(nj) + 2log(nj)λ∗2j} (24)

où nj = 2J−j et λ∗ est un réel constant défini plus tard.

L’algorithme final procède selon les trois mêmes étapes que l’algorithme de
Donoho-Johnstone :

1. la décomposition des observations dans une base d’ondelettes de
Haar,

2. le tj-seuillage à chaque échelle des coefficients relatifs aux détails
3. l’application de la transformée de Haar inverse aux coefficients

seuillés.
Cependant, les estimateurs utilisant la base de Haar ont tendance à ressembler
à une fonction en escalier. Ceci est dû à la nature de l’ondelette de Haar. Cela
pourrait être un problème quand λ possède un certain degré de régularité. Kolac-
zyk suggère alors d’utiliser la transformée en ondelettes de Haar invariante par
translation qui évite ce problème. L’algorithme résultant de Kolaczyk est appe-
lée "Translation Invariant Poisson Smoothing using Haar Wavelets", ou TIPSH.
Pour plus de détails sur celui-ci, le lecteur pourra se référer aux articles de Ko-
laczyk (Kolaczyk, 1996 et Kolaczyk, 1997).

Dans ses articles (Kolaczyk, 1996 et Kolaczyk, 1997), Kolaczyka étudié
les signaux d’explosions de rayons Gamma. Ce genre de signal est caractérisé
par un fond relativement constant et par des pics abrupts occasionnels. Deux
illustrations sont données en figure 6. Kolaczyk a choisi l’hypothèse nulle λ = λ∗

qui correspond au fond sans les pics. C’est toujours le cas avec des explosions
de rayons Gamma. Il estime λ∗ en prenant la moyenne d’au moins 60% des ob-
servations. Ceci est justifié par le fait que ces observations sont une partie du
fond. C’est pourquoi elles sont des réalisations de Po(λ∗). Kolaczyk a réalisé une
simulation pour ses signaux et a déclaré que le MISE est minimisé en choisis-
sant un paramètre L petit quand on utilise le seuillage fort et une valeur pour
L moyenne quand on utilise le seuillage doux (dû au biais important dans ce
cas). Les figures 8 et 7 présentent certains résultats obtenus avec les algorithmes
TIPSH et Anscombe.

Ces deux figures nous permettent de comparer l’algorithme TIPSH et l’al-
gorithme standard basé sur la transformation d’Anscombe. Nous voyons que l’ap-
proche standard lisse trop le signal aux fines échelles et pas assez aux échelles
grossières. Kolaczyk affirme que son algorithme TIPSH a une plus petite er-
reur que l’erreur obtenue avec la transformation d’Anscombe, et que le biais est
particulièrement réduit. Ces deux arguments rendent TIPSH particulièrement
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Figure 6. Deux explosions de rayons Gamma (simulation). D’après Charles, 2003.

Figure 7. Estimation des fonctions d’intensité correspondant à la figure 6 au moyen
de l’algorithme d’Anscombe. D’après Charles, 2003.
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Figure 8. Estimation des fonctions d’intensité correspondant à la figure 6 au moyen
de l’algorithme TIPSH. D’après Charles, 2003.

séduisant.

2.2. Analyse en ondelettes croisée et cohérence par ondelettes

L’analyse en ondelettes croisée et la cohérence par ondelettes sont deux
méthodes permettant de découvrir des liens dans le domaine temps-fréquence
entre deux signaux.

La transformée en ondelettes continue d’un signal discret x = x(tn)1≤n≤N
avec tn = nδt est l’ensemble de ses coefficients d’ondelettes. Ceux relatifs aux
détails valent

WX(n, s) =
1√
s
δt

N−1∑
i=0

x(ti)ψ
∗(
i− n
s
δt

)

où ∗ indique le complexe conjugué lorsqu’on travaille avec une ondelette com-
plexe. Dans l’analyse en ondelettes croisée ou la cohérence par ondelettes, la
transformée en ondelettes continue est souvent utilisée avec l’ondelette de Mor-
let (qui est complexe).
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2.2.1. Spectre de puissance en ondelettes

Le spectre de puissance en ondelettes d’un signal x est défini comme

PX(n, s) = |WX(n, s)|2.

Il permet de quantifier l’importance de la variabilité du signal expliquée par
l’ondelette à chaque pas de temps et à chaque échelle.

S. Jenouvrier de l’équipe "Ecologie des oiseaux et des mammifères marins"
(CNRS) (Jenouvrier, 2004) a étudié, au moyen du spectre de puissance en
ondelettes, les périodicités des variations de la taille de la population de trois
espèces d’oiseaux marins (Figure 9). Le spectre de puissance se retrouve dans la
figure 10.

Figure 9. Taille de la population de trois espèces d’oiseaux marins. D’après Jenou-
vrier, 2004.

Figure 10. Spectres de puissance correspondant à la figure 9. D’après Jenouvrier,
2004.
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Habituellement, les scientifiques utilisent un code de couleur. Les couleurs
orangées signifient que la série temporelle étudiée présente des fortes variations
dans les périodicités correspondantes. A l’inverse, les couleurs bleutées reflètent
de faibles variations de la série temporelle dans les périodes considérées. Afin
de quantifier si les périodicités mises en évidence dans les régions orangées sont
significatives, et non pas obtenues par le simple fait du hasard, on utilise des mé-
thodes de ré-échantillonage (méthodes bootstrap). Les périodicités significatives
sont indiquées par une ligne noire pour le seuil 5 pourcent (c’est à dire que l’on
a 5 pourcent de risque que la périodicité observée soit le fait du hasard) et par
une ligne noire pointillée pour le seuil 10 pourcent. Ce sont ces lignes qui sont
importantes à visualiser et que l’on remarque sur la figure 10.

Les périodicités des variations du nombre de couples de manchot empereur,
de pétrel des neiges et de fulmar antarctique, sont similaires (autour de 3 et 5
ans) et ne sont pas constantes au cours du temps. L’analyse d’ondelettes met
en évidence des changements brusques de périodicité autour de 1980. Ces résul-
tats suggèrent un changement de régime de l’environnement à la fin des années
1970. Pendant ce changement de régime, des fortes anomalies chaudes auraient
profondément affecté les populations d’oiseaux marins. Un mécanisme probable
peut être une modification de la périodicité du cycle de la glace qui entraînerait
une diminution importante des proies consommées par ces oiseaux, et par des
effets en cascade dans la chaîne alimentaire, des changements brusques des po-
pulations de prédateurs supérieurs.

Considérons un autre exemple tiré de Grinsted, Moore, Jevrejeva,
2004. Les images ont été reproduites via le package MatLab disponible à

www.pol.ac.uk/home/research/waveletcoherence.

Nous désirons examiner le possible lien entre l’étendue de la glace dans la mer
Baltique et l’échange de masse athmosphérique entre l’Arctique et le Nord At-
lantique. Pour cela, nous disposons de deux mesures : l’oscillation arctique (AO)
qui caractérise l’échange de masse atmosphérique décrit ci-dessus et l’étendue
de glace maximum annuel (BMI). Ces deux séries sont illustrées en figure 11.

Leur spectre de puissance respectif se trouve dans la figure 12. Les contours
noirs désignent le seuil de 5 pourcent et le cône d’influence où les effets de bords
peuvent se faire sentir est estompé. Il y a des caractériques communes dans les
deux spectres de puissance comme le pic significatif dans la période 5 ans au-
tour de 1940. Les deux séries ont aussi une haute puissance dans la période 2-7
ans dans l’intervalle de temps 1860-1900, bien que pour l’AO la puissance ne
dépasse pas le niveau de 5 pourcent. Il y a également une haute puissance dans
la période 8-16 ans dans les années 1950-2000. Cependant, la similitude entre ces
deux shémas est assez faible et il est difficile de dire si ce qu’il y a en commun
résulte d’une simple coincidence. Ceci justifie l’intérêt de l’analyse en ondelettes
croisée développée ci-dessous.
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Figure 11. Séries temporelles AO (au-dessus) et BMI (en-dessous).
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Figure 12. Spectres de puissance des séries temporelles AO et BMI.

2.2.2. Analyse en ondelettes croisée

L’analyse en ondelettes croisée est utilisée pour analyser le lien entre deux
signaux à partir d’un spectre de puissance commun. L’analyse en ondelettes
croisée de deux signaux x = x(tn) et y = y(tn) est définie par

WXY(n, s) = WX(n, s)WY∗(n, s)

où WY∗(n, s) est le complexe conjugué de WY(n, s). La puissance en ondelettes
croisée est dès lors définie par |WXY(n, s)|. Il faut cependant faire attention
qu’un coefficient de la puissance en ondelettes croisée peut être élevé car le
spectre de puissance en ondelettes des deux signaux est élevé ou que le spectre
de puissance en ondelettes d’un seul signal est très élevé.

La différence de phase entre les deux signaux est définie par

φ(n, s) = arctan(
I(S(W

XY(n,s)
s ))

R(S(W
XY(n,s)
s ))

).

où S est un opérateur de lissage ressemblant à l’ondelette mère.

L’analyse en ondelettes croisée de l’AO et du BMI est visible dans la figure
13. La phase est représentée par des flèches (orientée à droite : en phase, orientée
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à gauche : antiphase). Nous voyons que les caractéristiques communes trouvées
par le spectre de puissance se retrouvent ici comme étant significatives. Pour
conclure à une relation de cause à effet, il faut que les phénomènes enregistrés
soient en phase ou en antiphase. Cela nous rassure donc de voir que tous les sec-
teurs avec une puissance commune significative sont en antiphase. Ainsi, BMI
pour une grande partie reflète AO. En dehors des régions à puissance significa-
tive, nous avons beaucoup d’antiphase. Nous spéculons donc qu’il y a un lien
plus fort entre l’AO et le BMI que ce que nous montre l’analyse en ondelettes
croisée.

Figure 13. Analyse en ondelettes croisée des séries AO et BMI.

2.2.3. Analyse de cohérence par ondelettes

L’analyse de cohérence par ondelettes a le même but que celui de la puis-
sance en ondelettes croisée. Elle trouve des régions dans l’espace temps-fréquence
où les deux signaux covarient mais n’ont pas nécessairement une haute puissance
commune. La cohérence par ondelettes de deux signaux est décrite par

R2(n, s) =
|S(W

XY(n,s)
s )|2

S(W
X(n,s)
s )S(W

Y(n,s)
s )

où S est un opérateur de lissage ressemblant à l’ondelette mère. Cet opérateur
est important sinon R2(n, s) = 1. R2(n, s) donne une valeur comprise entre 0 et
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1 qui fournit une information sur la relation entre les deux signaux. Des résul-
tats différents pour l’analyse en ondelettes croisée et pour l’analyse de cohérence
permet d’identifier des régions dans l’espace temps-fréquence avec des probables
petites puissances. Les régions de puissance commune petite sont des régions
avec une petite analyse croisée mais avec une haute cohérence.

La racine carrée de la cohérence de l’AO et du BMI est montrée en figure
14. En comparaison avec l’analyse croisée, une plus large région est considérée
comme significative et toutes ses régions montrent une antiphase. Les oscillations
de l’AO sont manifestées dans le BMI de 2-20 ans, suggérant que le BMI reflète
l’AO.

Figure 14. Cohérence de l’AO et du BMI.

2.3. Utilisation d’ondelettes pour la déconvolution

Dans beaucoup de techniques spectroscopiques, les spectres peuvent être
modélisés comme la convolution bruitée d’une fonction instrumentale avec un
vrai signal à estimer. En principe, cette estimation du vrai signal pourrait être
trouvée à travers la déconvolution.

Une approche bien connue pour la déconvolution est basée sur la trans-
formée de Fourier Mallat, 1988. Le théorème de convolution affirme que si le
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signal enregistré f = g ∗ h (g convolué par h), alors F = GH où F , G et H sont
les transformées de Fourier de f , g et h. Si h est le signal à retrouver et g la
fonction instrumentale, ceci permet que h soit la transformée de Fourier inverse
de (F/G). Cette technique ne fonctionne vraiment pas bien quand G a de très
petites valeurs, comme montré dans la figure 15. Dans cet exemple, les très pe-
tites valeurs mises à zéro par l’ordinateur ont été mises à la plus petite valeur
de l’ordinateur différente de zéro par notre algorithme. De plus, cela fonctionne
vraiment mal sur des signaux expérimentaux car cela agit souvent comme un
amplificateur de bruit et dès lors cela requiert un filtrage drastique comme vu
dans la figure 16.

Figure 15. Modèle : f = g ∗ h. Mauvaise déconvolution par Fourier due aux très
petites valeurs de G (la transformée de Fourier de g). Le vrai signal h n’est pas
retrouvé. D’après Charles, 2003.

Dans le domaine des ondelettes, nous avons une formule similaire. Dans le
cas continu, nous obtenons

Wf(u, s) = (g ∗Wh(., s))(u); Lf(u, s) = (g ∗ Lh(., s))(u).
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Figure 16. Modèle : f = g ∗ h+W où W est le bruit. Mauvaise déconvolution par
Fourier due aux petites valeurs de G (la transformée de Fourier de g) et dû au bruit.
Le vrai signal h n’est pas retrouvé. D’après Charles, 2003.

28



Dans le cas discret, utilisant une transformation en ondelettes non-orthogonales,
nous avons

df(j,k) = (g ∗ dh(j,.))(k); cf(j,k) = (g ∗ ch(j,.))(k). (25)

Malheureusement, nous pouvons voir que, contrairement à la transformée de
Fourier où le produit de convolution se transforme en un simple produit, le pro-
duit de convolution est préservé par la transformée en ondelettes.

Cependant, un résultat théorique existe dans le cas d’une convolution par
une gaussienne. Nous supposons que f(t) = (f0 ∗gσ)(t) où gσ est une gaussienne
de variance σ2 :

gσ(t) =
1√
2πσ

e−
t2

2σ2 .

Soit ψ = (−1)nθ(n) avec θ(t) = λe−
t2

2σ2 . Nous avons

Wf(u, s) = (
s

s0
)n+ 1

2Wf0(u, s0) avec s0 =

√
s2 +

σ2

β2
.

Ces formules permettent de retrouver les coefficients d’ondelettes de f0 et dès
lors de retrouver f0 en utilisant la transformée en ondelettes inverse.

Mais les ondelettes interviennent principalement dans des procédés itéra-
tifs de déconvolution. Une solution simple au problème de déconvolution serait
d’optimiser les moindres carrés : minh ‖f − g ∗ h‖2. Cependant, ce problème est
mal posé au sens de Hadamard : la solution n’est pas unique et n’est pas stable.
De faibles variations du signal observé f vont entraîner de fortes variations du
signal restauré h. Une procédure assez standard pour éviter ces instabilités ou
pour "régulariser" le problème est de modifier la fonction à minimiser de façon
à ce qu’elle contienne l’erreur mais aussi une certaine connaissance a priori de
ce que pourrait être la solution. Si, par exemple, on sait que h doit avoir une
petite α-norme, la fonction à minimiser devient

‖f − g ∗ h‖2 + µ‖h‖2α

où µ est une constante positive appelée paramètre de régularisation. La solution
basée sur les ondelettes est de minimiser

‖f − g ∗ h‖2 +
∑
j,k

µ(j,k)‖dj,k‖p

où {dj,k}j,k représente l’ensemble des coefficients en ondelettes de la fonction h.
Si on sait que la fonction h possède une représentation en ondelettes creuse dans
une certaine base orthonormée d’ondelettes, alors

∑
j,k µ(j,k)‖dj,k‖p sera petit.

Le problème de déconvolution est donc transformé en un problème d’optimisa-
tion qui est résolu de façon itérative. La figure 17 illustre ce principe. Pour plus
d’information, voir Daubechies, Defrise, Demol, 2004.
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(a) (b) (c)

(e) (f)

Figure 17. (a) g ; (b) f ; (c) h et h estimé ; (e) f bruité ;(f) h et h estimé pour f
bruité.

2.4. Utilisation des ondelettes pour la compression

Réduire un litre de jus de fruit à quelques grammes de poudre concentrée
est typiquement une compression avec perte. Le goût de la boisson reconstituée
est semblable au goût du jus de fruit initial mais a souvent perdu de sa finesse.
Dans le compression de signaux ou d’images, nous sommes confrontés au même
compromis entre qualité et compression. Les applications principales concernent
le stockage de données et la transmission à travers des canaux à bande passante
limitée (Mallat, 1988).

Un codeur par transformée décompose un signal dans une base orthogonale
et quantifie les coefficients de décomposition, c’est-à-dire que ces coefficients sont
remplacés par des valeurs proches mais appartenant à un ensemble déterminé.
La quantification est donc l’étape dans laquelle on pert réellement de l’informa-
tion mais qui fait gagner beaucoup de place. La distortion du signal reconstitué
est minimisée par une optimisation de la quantification, de la base et de l’allo-
cation de bits. Pour information, une image en niveaux de gris a typiquement
5122 pixels, chacun codé sur 8 bits. Actuellement, les meilleurs algorithmes de
compression d’images sont des codages par transformée, sur des bases de cosi-
nus (jpeg standard) ou d’ondelettes (jpeg2000). L’efficacité de ces bases vient
de leur capacité à construire des approximations non linéaires précises à l’aide
de quelques vecteurs non nuls. Avec moins de 1 bit par pixel, on reconstruit
des images visiblement parfaites. A 0.25 bit par pixel, l’image reste de bonne
qualité. A titre d’exemple, la vitesse de compression d’une image 60*480*24 sur
un pentium est de 3s pour le format jpeg standard et de 1s pour le format jpg
2000.
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En illustration, l’image 18 est compressée suivant le jpeg standard (figure
19) et suivant jpeg2000 (figure 20). Les deux images compressées ont la même
taille (16k). On remarque sur la figure 19 des artefacts de pixels 8x8 un peu
partout. Le résultat est également assez mauvais autour du texte. Le ratio moyen
de compression pour un jpeg standard est de 1 :25 alors que pour un jpeg2000
il est de 1 :50.

Figure 18. Image originale (http ://www.fnordware.com/j2k/jp2samples.html).

Figure 19. Image de la figure 18 compressée avec jpeg.
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Figure 20. Image de la figure 18 compressée avec jpeg2000.

2.5. Autres utilisations des ondelettes

Les ondelettes ont de nombreuses autres applications qui n’ont pas été
expliquées dans cette note. Elles peuvent par exemple aider dans la classification
de signaux. Si le but est de classifier des signaux monodimensionnels selon des
classes de signaux invariantes par translation, la classification peut se faire par
arbre de décision où le dictionnaire de questions est :

Qj,d,d̄,θ(X) = 1

⇐⇒ il existe deux extrema locaux de la transformée à l’échelle j tels que

{ d ≤ |ui − uk| ≤ d̄
min{| < ψj,ui , X >, | < ψj,uk , X > |} ≥ θ.

Si le but est la segmentation d’une image, elle peut se faire en suivant les étapes :
1. extraction (au moyen d’ondelettes) de vecteurs de caractéristiques de l’image

sur des fenêtres aléatoires,
2. itération du calcul des vecteurs jusqu’à stabilisation du réseau de neurones,
3. K-Means non supervisé sur les vecteurs.

Les ondelettes peuvent aussi être utiles dans la détection automatique de
singularités d’un signal grâce aux lignes de modulus maxima. Elles peuvent être
utiles dans la détection automatique des contours dans une image par une ver-
sion multiéchelle de l’algorithme de Canny. Elles sont également utilisées avec
efficacité dans le domaine des séries temporelles, de l’interpolation, etc.
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3. EN GUISE DE CONCLUSION

Dans cette note technique, nous avons développé diverses applications
de base de la transformée en ondelettes. La régression et l’estimation de la den-
sité par ondelettes semblent être une bonne alternative à la méthode des noyaux.
L’efficacité des ondelettes dans les méthodes de filtrage est incontestable, que ce
soit pour un modèle gaussien ou un modèle poissonien. L’analyse cohérente par
ondelettes est utilisée pour examiner le lien possible entre deux signaux. En dé-
convolution, les ondelettes sont efficaces lorsque le problème est transformé en
un problème d’optimisation. Quant à la compression via les ondelettes, son ef-
ficacité est universellement reconnue car les ondelettes sont à la base du format
jpeg2000. Les ondelettes sont donc un outil qui peut être utilisé dans un grand
nombre de domaines différents. Son succès provient non seulement de son ana-
lyse temps-fréquence mais aussi de ses algorithmes rapides.
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