INTRODUCTION AUX APPLICATIONS DES
ONDELETTES

C. CHARLES *

RESUME

Cette note technique fait suite & une note antérieure. Son objectif est de
faire prendre conscience au lecteur de la large étendue d’applications des on-
delettes. Elle se découpe en deux parties. La premiére illustre la théorie des
ondelettes au moyen d’applications tournées vers la statistique. La deuxiéme se
tourne vers les applications en traitement du signal et de I'image.

SUMMARY

The objective of this note is to make known a large number of applications
of the wavelet theory. This note is divided in two parts. The first one briefly pre-
sents a few examples that illustrate the use of wavelets in statistics. The second
one deals with applications in signal and image processing.

1. APPLICATIONS EN STATISTIQUE

Dans ce paragraphe, nous présentons deux exemples qui illustrent 1'utili-
sation des ondelettes en statistique non-paramétrique. Il s’agit d’estimation de
densité de probabilité et de diagramme de régression. Pour I'estimation de den-
sité, nous proposons une nouvelle méthode non-paramétrique. Ceci veut dire que
nous proposons une forme de lissage d’histogramme et non une équation expri-
mant la densité en fonction de sa variable. De méme pour la régression, nous
proposons une nouvelle méthode non-paramétrique. Ceci veut dire que nous
proposons une nouvelle méthode pour retracer ’évolution de la moyenne de la
variable en fonction de sa variable explicative et non pour trouver I’équation ex-
primant la variable en fonction de sa variable explicative. Dans chaque cas, nous
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commengons par expliquer le contexte statistique du probléme. Nous décrivons
ensuite une solution basée sur les ondelettes. Ses avantages et inconvénients sont
détaillés.

1.1. Utilisation des ondelettes pour I’estimation de densité

Une grande partie de la littérature consacrée a la statistique non-
paramétrique concerne ’estimation de densité. Des apergus sont donnés dans
SILVERMAN, 1986 et IZENMAN, 1991. Toutes les méthodes proposées ont leurs
propres avantages et inconvénients. Par exemple, la méthode du noyau bénéfi-
cie de I’héritage de toutes les propriétés de continuité et de différentiabilité du
noyau, mais pose le probléme du choix du paramétre de lissage. Espérant dé-
passer ce genre d’inconvénients et désirant tirer parti des nombreuses propriétés
des ondelettes, des chercheurs, parmi lesquels Pinheiro et Vidakovic (PINHEIRO,
VIDAKOVIC, 1997), ont adapté les estimateurs de densité par série orthogonale
de Cencov (CENCOV, 1962). Dans cette section, nous présentons les estimateurs
de densité par série orthogonale de Cencov et I'adaptation de celui-ci avec les
ondelettes par Pinheiro et Vidakovic.

L’idée de Cencov est simple. La densité inconnue f de carré intégrable peut
étre représentée comme un développement en série orthogonale convergente

f(@) =7 ajy(x), (1)

jeJ

ou {¢;,j € J} est une base orthonormée de fonctions dans Ly(D), D C IR et
J est un ensemble approprié d’indices. Par exemple, la base orthonormée peut
étre la base de Fourier ou une base d’ondelettes. A partir de ’équation 1, les
coefficients a; peuvent étre exprimés comme

aj = Zai /wi(fc)i/)j(a:)dx = /f(z)z/}j(:c)dz = E(¢;(X)). (2)

i€

Soit X = (X1, Xs, ..., X,) un échantillon de la distribution inconnue f. Il semble
naturel d’estimer a; par

4= > (X) @

et f(z) par A
fla) =7 agy(a). (4)
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Cependant, cet estimateur pourrait ne pas étre bien défini. En fait,
1 n
a = - > wi(Xi)
i=1
1 n
= = Z/¢j(m)5(x — X;)dx
i=1

= 15006 - X (a)de
= Jg@)(a)do

ot g(x) est la fonction de probabilité empirique et ¢ est la fonction de Dirac.
Comme G; et a; sont identiques pour la fonction de probabilité empirique, ce
qui suit est vrai pour tout échantillon X :
1 n

> athy(a) =~ 0w — Xi). (5)

jeJ i=1
Cet estimateur a une variance infinie et n’est pas consistant au sens ISE (Inte-
grated Square Error). La pratique standard est alors de sélectionner un nombre
fini de coefficients empiriques a; et de les seuiller de maniére appropriée.

Une base d’ondelettes est souvent choisie pour {#;,j € J} & cause de sa lo-
calisation en temps et en fréquence qui permet d’obtenir un estimateur puissant.

Dans ce cas-ci, {1; }jes = {Bjo, Vin} s o ezt {aitics = {jow djk} s ne
Nous estimons

X 1 n
Cije = ; b5k (Xi)

pour j = jo,k € Z et

1 n
djr = — D wik(Xi)
=1

pour j > jo,k € Z. La sélection de j, dépend de l'ondelette meére et de la
régularité de la densité. Le lecteur peut se référer & PINHEIRO et VIDAKOVIC,
1997pour plus d’explications. Ensuite, il est nécessaire de seuiller certains de
ces coefficients comme spécifié plus haut. Kolaczyk (KoLACzZYK, 1994)propose
le seuil suivant A = log(n)//n pour les niveaux jusque j; = |[logan —1]. Donoho
(DONOHO, 1996) suggére de prendre le niveau j; = |logan — loga(logn)]| ot n
est la taille de ’échantillon. De fagon similaire, Delyon et Juditsky (DELYON et
JUDITSKY, 1993)recommandent j; = [log22n — loga(Inn)]. Ceci veut dire que,
si nous utilisons un seuillage fort, nous obtenons certains nouveaux coefficients

di :{ dig si|djk| >,

’ 0 sinon,
Vio < j < j1,Vk, et si nous utilisons un seuillage doux, nous obtenons certains
nouveaux coefficients
Cich -\ s Cij,/.C > A,
djr = Czj,k + A si cij,k < =
0 stnon,



Vo < j < j1,Vk.

Pinheiro et Vidakovic (PINHEIRO et VIDAKOVIC, 1997)ont amélioré cet es-
timateur par ondelettes. Plutdt qu’estimer directement la densité inconnue f,
ils estiment sa racine carrée : y/f. Deux arguments justifient ce choix. Premié-
rement, comme beaucoup de méthodes standards d’estimation de densité, celle
développée ci-dessus pourrait permettre d’obtenir un estimateur de densité avec
des valeurs négatives. Une fagon de contourner le probléme est de tronquer 1’es-
timateur en mettant a zéro les valeurs négatives et en normalisant la troncature.
Une autre facon est d’estimer une transformation de f, telle que log f ou +/f.
Deuxiémement, en plus de la positivité, 'estimateur de densité doit avoir une
intégrale de un. Le fait d’estimer /f va satisfaire cette contrainte grace au fait
que 1 = [f = (V{VF) = IVFIP. En effet, si Vf = >, a1;(x), alors
la;lI7, = [[V/fI> = 1 par I'identité de Parseval. Ainsi, normaliser les coefficients
revient a rendre un estimateur bona fide. Techniquement, Vidakovic calcule les
coefficients de +/f avec

Cik =

et

X 1 o= ¥0(X;
dip=— @ij,k( )

pour un certain premier estimateur de la densité inconnue, f,,. Le calcul de ¢é;

(d; k resp.) est motivé de la fagon suivante :
o= /I = [o/T = [ 2

(dje = (W V) :/¢j7k\/f:/%f)-

Le plus simple premier estimateur est ’histogramme. Pinheiro et Vidakovic sug-
gérent de choisir j; comme 'argument minimum de E(j) =), di & €t de seuiller
les coeflicients comme suit :

~ ~ 72 ~

dj,k = I(d?,k > kd )deg

ot d? est la moyenne de cfik et © € IR. Souvent, Kk = 0.5 est choisi. Aprés le
seuillage, les coefficients restants sont normalisés. L’identité de Parseval assure
alors que 'estimateur est une densité bonafide.

En conclusion, l'algorithme général basé sur les ondelettes pour ’estima-
tion d’une densité univariée est une méthode assez récente. L’estimateur est
simple, adaptatif en localisation (choix de j;) et régularité (choix de l'onde-
lette mére), et efficace. Nous avons vu que Pinheiro et Vidakovic ont a partir
de 1a développé leur propre estimateur par ondelettes non négatif dont 'inté-
grale vaut 1. Ils ont montré que, sur de nombreux exemples, leur estimateur



est meilleur que celui des noyaux. Dans MULLER ET VIDAKOVIC, 1998, les au-
teurs ont montré que le rapport du MISE de l'estimateur par ondelettes sur
le MISE de l'estimateur par noyaux est strictement inférieur & 1 sur de nom-
breux exemples. De nombreux autres travaux ( ADRIAN, 2008, RENAUD, 1999,
TRIBOULEY, 2008 pour n’en citer que quelques-uns) montrent que les estima-
teurs de densité par ondelettes ont une erreur minimale et sont avantageux du
point de vue calculatoire. Ils offrent une meilleure estimation quand la densité
recherchée n’est pas réguliére. L’estimation de densité par ondelettes est pro-
posée sur MatLab. Un minimum d’informations est disponible & ’adresse sui-
vante : http ://www.mathworks.com/help/toolbox/wavelet /ug/{8-95760.ht m1{8-
40906 (visité le 26/01/11).

1.2. Utilisation des ondelettes pour la régression

Dans cette section, nous considérons uniquement les familles d’ondelettes
qui forment une base orthonormée. Nous expliquons comment utiliser une base
d’ondelettes pour construire un estimateur non paramétrique pour une fonction
de régression m dans le modéle

Yi=m(X;)+e, i=1,...,n. (6)

Si on considére le modéle fixe, les X; sont non aléatoires et les erreurs sont des
variables normales indépendantes et identiquement distribuées ¢; ~ N(0,02). Si
on considére le modeéle aléatoire, les (X;,Y;) sont des variables aléatoires indé-
pendantes et identiquement distributées (X,Y") avec m(z) = E(Y|X = z) et
€ = Y; — m(XZ)

1.2.1. Modéle fixe

L’objectif est de construire un estimateur non paramétrique pour une fonc-
tion de régression m € L2([0,1]) dans le modéle

Y; =m(z)+e, i=1,...,n, n=27, J€ N, (7)

ot 7; = + et les erreurs ¢; sont des VA iid ¢; =~ N (0, 0?). Notons que lorsque n
n’est pas dyadique ou z; # ;- ou encore les erreurs ne sont pas des VA normales
iid, la méthode proposée ci-dessous nécessite des adaptations non vues dans cette

note.

L’idée générale est celle de Cencov qui considére que toute fonction m peut
étre décomposée dans une base & 'aide de coeflicients :

m(z) = aji;(x)
jed

ou {¢;,7 € I} est une base orthonormée de fonctions dans Lo(D),D C [0,1],
I est un ensemble appropri¢ d’indices et a; = [ m(z)y;(z)dz. Pour m € L2,



Zj a? < oo entraine que m(z) est bien approximée en prenant seulement un
petit nombre N de a;.

Un estimateur par ondelettes consiste & choisir une base {v;,j € I'} d’on-
delettes. Cet estimateur peut étre linéaire ou non linéaire. L’estimateur par on-
delettes linéaire procéde par projection des données sur un espace de niveau plus
grossier en prenant les N premiers coefficients. Cet estimateur est du type des
noyaux. Une autre possibilité pour estimer m est de détecter quels coefficients
relatifs aux détails contiennent l'information importante au sujet de la fonction
m et de mettre a zéro les autres coefficients. Ceci donne lieu & un estimateur
non linéaire. En pratique, il consiste & prendre les IV plus grands coefficients en
valeur absolue.

Estimateur par ondelettes linéaire

Supposons que nous avons des donneées (x;,Y;)" ; provenant du modéle défini
a l’équation 7 et une base orthonormée d’ondelettes générée par une ondelette
mére 1 et une ondelette pére ¢. L’estimateur linéaire procéde en choisissant
un niveau j; et représente une estimation de la projection de m dans l’espace
Vi, C La(IR) (pour plus d’explications, voir DELOUILLE, 2002 pour 'analyse
multirésolution) :

270 1 j1—127-1 .
Z Cio ki k(@) + D Y djxdyk(x), (8)
j=jo k=0

avec jo le niveau le plus grossier de la décomposition et ¢, 1 = 03; i et d]k = d}fk.
Le niveau j; joue un réle de paramétre de régularisation : une petite valeur de
41 veut dire que beaucoup de coeflicients relatifs aux détails seront mis de coté,
et ceci pourrait donc trop lisser. D’un autre coté, si j; est trop grand, trop de
coeflicients seront gardés et certaines bosses artificielles resteront probablement
dans I'estimation de m(z).

Gréace a lorthogonalité de la transformée en ondelettes et 1’égalité de Par-
seval, le risque Ly (MISE ou Mean Integrated Square Error) de l'estimateur
linéaire est égal au risque Iy de ses coefficients d’ondelettes :

Ji—1

MISE = E|m—ml|2, = ZECM Ak +ZZE ok —d2 1] +ZZ

J=Jjo J=J1
(9)
=51+ S5+ 53,
ou
S0k = My djk) et d5 g = (m, ) (10)

sont appelés coefficients théoriques dans le contexte de la régression. Le terme
S1 + S2 constitue le biais stochastique tandis que S3 est le biais déterministe.
Le niveau j; optimal est tel que les deux biais sont de méme ordre de grandeur.



En pratique, des méthodes de validation croisée sont souvent utilisées pour dé-
terminer le niveau optimal.

Estimateur par ondelettes non linéaire
Etant donné le modele de régression de I’équation 7, nous pouvons décomposer
les coefficients relatifs aux détails d}fk des Y; comme

Ci}/k = dji + pjr, (11)

ou djj, sont les coefficients relatifs aux détails des m(x;) et Pjk CEUX associés aux
€;. Si la fonction m(x) permet une représentation en ondelettes creuse, seulement
un petit nombre de coefficients relatifs aux détails d;;, contribueront au signal
et seront non négligeables. Cependant, chaque coefficient empirique d?k a une
contribution non nulle provenant de la partie bruitée p;y.

Supposons que le niveau de bruit n’est pas trop haut, de telle fagon que
le signal peut étre distingué du bruit. Alors, par la propriété de parcimonie de
I'ondelette, seuls les plus grands coefficients relatifs aux détails pourraient étre
inclus dans ’estimateur par ondelettes. Par conséquent, quand on veut estimer
une fonction inconnue, on inclut seulement les coeflicients qui sont plus grands
en valeur absolue qu'un certain seuil. En réalité, on applique le seuillage fort.
Maintenant, puisque chaque coefficient empirique consiste & la fois en une partie
du signal et une partie du bruit, il serait peut-étre souhaitable de seuiller tous
les coefficients. C’est le seuillage doux.

La régression se fait donc en trois étapes :

1. appliquer la transformée en ondelettes aux observations {Y;} amenant donc

é}; et d}’ pour j = jg,...,J —1
2. manipuler les coefficients relatifs aux détails au-dessus du niveau jy par un
seuillage

3. inverser la transformée en ondelettes et produire une estimation de m.

Le choix de jy est souvent de 2 ou 3 en pratique, bien qu’une détermination
par validation croisée est possible. La sélection du seuil est trés importante. De
nombreuses méthodes de sélection de seuil ont été développées. Le seuil universel

est
tuniv = 0q\/ 2logn

ot 02 est la variance des coefficients d’ondelettes empiriques.

Donoho et Jonhstone ont démontré les propriétés de convergence de cette
méthode qui obtient de meilleurs résultats que ’estimateur par noyaux ou par
splines pour des signaux singuliers. De plus sa complexité algorithmique est de
O(nlogn) contrairement a O(n?) pour les estimateurs par noyaux ou splines.
En illustration, nous avons les figures 1 et 2 (HUANG, 2003).



Figure 1. Régression faite a partir de 128 points : courbe, courbe bruitée, régres-
sorgramme 8, régressorgramme 16, estimateur par série de cosinus, estimateur par
noyaux, estimateur par spline, estimateur par ondelettes. (D’aprés HuaNG, 2003).
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Figure 2. Régression faite a partir de 128 points : courbe, courbe bruitée, estimateur
par série de cosinus, estimateur par noyaux, estimateur par spline, estimateur par
ondelettes. (D’aprés HUANG, 2003).



1.2.2. Modéle aléatoire

Le modéle est le suivant :
lem(Xl)—Fez 1=1,....,n,

avec (X;,Y;) variables aléatoires iid (X,Y), m(z) = E(Y|X = z) et ¢; variable
aléatoire N(0,07?).

L’estimateur & noyaux de Nadaraya-Watson est basé sur le fait que

_ Jufxy(@,y)dy

m(z) =E(Y|X =2) = /yfy|X(y|:c)dz @)

et sur les densités estimées par la méthode des noyaux :

Frr () = = 37 Kalw = X0 Kaly = Y0

A 1
fx(z)=— ZKh(x - Xi)
avec h parameétre de lissage. Par les propriétés du noyau K, on a

S, YiER(Xi — )
Z?:l Kpn(Xi — ) .

’ﬁ’Lh (SC)

Cet estimateur a noyaux de Nadaraya-Watson peut étre amélioré avec les
ondelettes. Soit ¢ une fonction d’échelle a support compact. Soit K (noyau)
défini comme

K(u,v) =Y ¢(u—k)(v—k).
k

> YK (292,29 X;)
Y K(202,2X;)

()

On peut montrer que

i () = >k (E Y0 Yigin(X0))jn ()
! (3 iy bk (X)) by ()

qui n’est rien d’autre que 'estimateur de Nadaraya-Watson oil les densités ont
été estimées par la méthode des ondelettes. Une illustration se trouve en figure
3. De nouveau, on peut avoir un estimateur linéaire ou non-linéaire avec ou sans
seuillage. Les avantages de cette méthode découlent des avantages de l'estima-
tion de densité par ondelettes. La régression par ondelettes (fixe ou aléatoire) est
proposée sur MatLab. Un minimum d’informations est disponible a ’adresse sui-
vante : http ://www.mathworks.com /help/toolbox/wavelet /gs/f4-1021504.html
(visité le 26/01/11).




Wavelet Regression

Figure 3. Régression par ondelettes n = 256.

2. APPLICATIONS EN TRAITEMENT DU SIGNAL ET DE
LIMAGE

Dans ce paragraphe, nous présentons quelques exemples qui illustrent 1'uti-
lisation des ondelettes dans le traitement du signal et de I'image. Il s’agit de
débruitage, d’analyse en ondelettes croisée et de cohérence par ondelettes, de la
déconvolution et de la compression. Dans chaque cas, nous commengons par ex-
pliquer le probléme. Nous décrivons ensuite une solution basée sur les ondelettes.
Les avantages et inconvénients sont mis en avant.

2.1. Utilisation des ondelettes pour le débruitage

L’estimation de signaux dans du bruit est un grand exemple de I'effi-
cacité des ondelettes. En fait, dans un bruit de fond de conversations anglaises, il
est facile de suivre une discussion en frangais. De méme, I’estimation d’un signal
mélé & du bruit peut s’optimiser en trouvant une représentation qui sépare le
signal du bruit (MALLAT, 1988). Par leur localisation en temps et en fréquence,
les ondelettes permettent une discrimination efficace du signal et du bruit.

En sciences expérimentales, les signaux sont habituellement bruités. Il est
souvent, mais pas toujours, raisonnable de considérer que le bruit est norma-
lement distribué. Dans des techniques impliquant un processus de comptage,
les données sont modélisées par une distribution de Poisson. Pour couvrir aussi
bien le cas normal que le cas de Poisson, nous décrivons la méthode de seuillage
par ondelettes de Donoho et Johnstone (DONOHO et JOHNSTONE, 1994)pour
un bruit normalement distribué et l'algorithme de Kolaczyk pour un bruit de
Poisson (KoLACzYK, 1996). Il est clair que ce dernier est basé sur le premier.
Notons que cette section est relative & des signaux unidimensionnels mais que
les résultats sont aisément généralisables & des signaux multidimensionnels.

10



Notons également qu’il n’y a pas de différences fondamentales entre le fil-
trage d’un bruit et la régression. La démarche est identique. Historiquement, les
ondelettes ont d’abord été utilisées dans le débruitage avant d’étre accaparées
par les statisticiens pour la régression.

2.1.1. Filtrage d’un bruit normalement distribué : Donoho et Johns-
tone

Modéle
On suppose que les observations (X;)"-} (n = 2”7;J > 0) peuvent étre mo-
délisées comme la somme d'un signal a estimer (\;)}-) et d’un bruit blanc

normalement distribué (W)=} de variance 0. Nous avons donc :
Xi=X\+W, i=0..n—1. (12)

De nombreuses approches ont été suggérées pour filtrer un bruit normalement
distribué. La plupart d’entre elles sont basées sur la régularisation par spline,
Pestimation par noyau, le développement en série de Fourier, pour n’en citer
que quelques-unes. Plus particuliérement, la derniére décennie du siécle passé a
été le témoin de ’émergence d’une méthode puissante basée sur les ondelettes.
L’approche habituelle de Donoho est de développer les données bruitées en série
d’ondelettes, d’extraire les coefficients d’ondelettes significatifs par seuillage et
ensuite d’utiliser 'inverse de la transformée en ondelettes sur les coefficients dé-
bruités. Le succés de cette approche est principalement basé sur d’importantes
propriétés d’optimalité de cet estimateur par ondelettes, sur la représentation
parcimonieuse des séries d’ondelettes pour une large gamme de fonctions et sur
sa rapidité.

Meilleur estimateur
En décomposant X = (X;)7-, dans une base d’ondelettes orthonormée
{10} .1}k, nous trouvons les coefficients d’ondelettes :

(X Y500 = (N ¥jk) + (W, bs1) (13)

ou les (W, ) sont des variables aléatoires normales indépendantes et iden-
tiquement distribuées possédant une moyenne nulle et une variance 2. Dans
MALLAT, 1988, Mallat explique que le filtre de Wiener généralisé donne esti-
mateur suivant pour A :

A= Z<X, V5,005,505 k (14)
ik
ot 05 = AR iimi itére de perf lobal : le "M
Gk = |<)\7'¢’j,k>|2+‘72 minimise un critere de perrormance giobal @ le ean

Integrated Squared Error (MISE)", E(||A — A||2). Notons €, la valeur minimum
du MISE. Cette méthode est théorique. Elle ne peut pas étre implémentée car
il est impossible de calculer (X,; ). Notons que le role du facteur 6; (< 1)
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consiste a seuiller les coefficients (X, ;) dans le but d’enlever le bruit de ces
coeflicients et par conséquent d’enlever le bruit de X.

Estimateur simple
L’estimation de 6, peut étre simplifiée en restreignant ses valeurs a 0 ou
1. Si le MISE est minimisé sous cette contrainte, il peut étre montré que

0, = { 1si [(A\ )2 > o?
PV 0 (N e |? < 02

(15)

Malheureusement, cet estimateur-ci requiert le calcul de (X, 1, ) et n’est dés
lors pas implémentable. Ce seuillage est appelé le seuillage simple et son erreur,
E€simple, Satisfait :

€simple > €aq > €Si7nple/2~ (16)

Estimateur par seuillage de Donoho-Johnstone
Afin d’obtenir un estimateur de A implémentable, Donoho et Johnstone ont
suggéré un estimateur par seuillage fort ot 8;; prend les valeurs suivantes :

0. :{ 1si ‘<X7wj,k)>| >T
ok 0si [(X,¢jp) =T

ot le seuil T est égal a /2log(n) o.

(17)

Cette derniére valeur a été choisie pour T' sur base de I’argument suivant.
Sous I’hypothése nulle Hy : A = 0, I’équation 12 devient X = W, qui implique
a son tour que (W,v; k) = (X,9;1). Afin d’obtenir A = 0, nous devons dés
lors avoir T' > [(W, 4, )|. Cependant, sous I’hypothése alternative H, : A # 0,
nous devons étre prudents afin d’éviter des valeurs de seuil trop grandes qui
mettraient tous les coefficients a zéro, spécialement dans les cas ou (X, ;) #
(W, ¢; k). Donoho et Johnstone (DONOHO et JOHNSTONE, 1994) ont suggéré une
valeur de seuil ayant une grande probabilité d’étre juste au-dessus de la valeur
maximum prise par [(W,;)|. Choisir T = y/2log(n) o permet de satisfaire
cette contrainte puisque :

o log(log(n)) B
n oo “logn) SRl = T) =1, (18)

et loa(l
i Log(log(n))

Jim =N =0 (19)

Donoho et Johnstone ont aussi montré que le MISE de leur estimateur par
seuillage est simplement relié & I'estimateur simple présenté ci-dessus :

€thresholding = E(HA - 5‘thresholaiing||%) S (2log(n) + 1)(02 + 6simple)' (20)

L’estimateur par seuillage de Donoho-Johnstone donne lieu & un algorithme de
filtrage en trois étapes :
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1. la décomposition des observations dans une base d’ondelettes,
le T-seuillage de tous les coefficients,
3. lapplication de I'inverse de la transformée par ondelettes

sur les coefficients seuillés.

o

En plus de T, d’autres paramétres doivent étre choisis : I’échelle gros-
siére et la famille d’ondelettes. Johnstone propose [logz(n) — loga(logio(n))]
pour le choix de léchelle grossiére L (dans DoNOHO, 1996) ; Juditsky suggeére
[loga(n) — loga(in(n))] (dans JUDITSKY, 1994). Un choix éclairé de la famille
d’ondelettes est de prendre une famille donnant un nombre maximum de co-
efficients d’ondelettes (A, ;) proches de zéro. De cette maniére, le signal A
est concentré sur un petit nombre de grands coefficients et le signal n’est pas
confondu avec le bruit qui est uniformément répandu sur tous les coefficients
d’ondelettes. Le seuillage est plus efficace. Afin d’obtenir un nombre maximum
de petits coefficients d’ondelettes, il faut étre attentif & trois critéres dans le
choix de 'ondelette.

1. Il est préférable de choisir une ondelette qui posséde beaucoup de moments
nuls. Par définition, une ondelette avec m moments nuls est orthogonale
aux polynomes de degré m — 1. En fait, on peut démontrer que si le signal
est régulier et si l'ondelette choisie posséde assez de moments nuls, alors
les coefficients d’ondelettes seront petits pour les fines échelles.

2. Il est préférable de choisir une ondelette avec un petit support. En fait, si
le signal contient une singularité en ¢, et si t, est dans le support de 1, 1,
le coefficient d’ondelette correspondant sera grand. La taille du support
de 'ondelette et le nombre de moments nuls sont a priori indépendants.
Cependant, nous pouvons prouver que les contraintes qui sont imposées sur
les ondelettes orthogonales impliquent que si ’ondelette posséde p moments
nuls, son support sera au moins de taille 2p — 1. Par conséquent, il existe
un compromis entre le nombre de moments nuls et la taille du support
de 'ondelette. Si le signal posséde des singularités isolées mais est régulier
entre les singularités, il est préférable de choisir une ondelette avec un
grand nombre de moments nuls afin de produire un grand nombre de petits
coefficients. Si le nombre de singularités augmente, il est préférable de
diminuer la taille du support et, par conséquent, de réduire le nombre de
moments nuls.

3. Finalement, dans le choix de 'ondelette, nous devons aussi faire attention
a la régularité de I'ondelette. Celle-ci a principalement une influence esthé-
tique sur 'erreur introduite durant le seuillage des coefficients d’ondelettes.
Une erreur réguliére est toujours moins visible qu'une erreur irréguliére.
C’est pourquoi 'ondelette de Haar est rarement utilisée avec le seuillage
de Donoho-Jonhstone.

Nous terminons cette section relative au filtrage d’un bruit normalement
distribué avec quelques remarques. Notons premiérement qu’un seul seuil est
proposé pour tous les coefficients d’ondelettes. Notons également que nous ne
mentionnons ici que 'estimateur par seuillage fort de Donoho-Johnstone. Il existe
Pestimateur par seuillage doux de Donoho-Johnstone (DONOHO, 1996). La pro-
priété générale du seuillage doux est qu’il assure avec une grande probabilité que

13



Iestimateur est au moins aussi régulier que le signal & estimer. Cependant, il pro-
duit souvent une plus grande erreur quadratique que le seuillage fort. Finalement,
notons aussi que le seuil T dépend de la variance o qui est souvent inconnue. Mal-
lat (MALLAT, 1988) propose de l'estimer par & = 5g-r= Median(|(X, ¥1 ;)| )o<j<n/2-
La figure 4 montre le seuillage d’une fonction bruitée utilisant les seuillages doux
et fort de Donoho-Johnstone. Cet algorithme peut étre généralisé a plusieurs di-
mensions comme illustré dans la figure 5. Le succés de cette technique par rap-
port aux autres est lié a sa meilleure complexité algorithmique et a ses meilleurs
résultats principalement lorsque le signal & estimer est singulier.

(a) (b)
70
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 EL |
20
10 i

|

% 1000 2000 3000 4000 % 1000 2000 3000 4000
70 — 70
60 60
50 sof |
40 ‘ 40
30 ] 30
20 | 1 20
10 ‘l‘\ 10
% 1000 2000 3000 4000 % 1000 2000 3000 4000

(c) (d)

Figure 4. (a) : signal original; (b) : signal bruité; (c) : estimation avec un seuillage
fort; (d) : estimation avec un seuillage doux.
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Figure 5. (a) : signal original; (b) : signal bruité; (c) : estimation par ondelettes
avec un seuillage fort.
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2.1.2. Filtrage du bruit de Poisson : Anscombe et Kolaczyk

Il est souvent raisonnable de considérer le bruit de signaux expéri-
mentaux comme étant normalement distribué. Cependant, dans des techniques
ou la détection implique un processus de comptage (comme en spectroscopie :
les données correspondent au nombre d’électrons détectés comme une fonction
de leur perte d’énergie), les données sont mieux modélisées par une distribution
de Poisson. Malgré son grand nombre d’applications, peu d’études ont été réali-
sées sur le filtrage du bruit de Poisson. Ceci est probablement da a la difficulté
d’étudier des signaux avec une variance non constante.

Modéle
Nous considérons un processus de Poisson (p.p.) non-homogene sur [a, a +
np] (a € R,ne€ IN,p € R) :

N; = N(a,t] ~ Po(A((a,t])) (21)
ou A((a,t]) = f; A(s)ds VYt € [a,a+np] et A est intensité du p.p. Considérons

que ce processus est observé a intervalles de taille p. Ces observations peuvent
étre considérées comme un ensemble de comptage cumulatif : No, Nojp, .., Nognp-

Nous notons alors X; = Ng(i+1)p—Nayip (i = 0,...,n—1). Celles-ci sont des va-
riables aléatoires de Poisson indépendantes : X; ~ Po()\;) ou \; = ;:Z.SH)p A(t)dt

doit étre estimé. Ceci explique pourquoi le comptage de particules suit habituel-
lement une distribution de Poisson. La distribution de Poisson ne posséde qu’un
seul paramétre, A, et est notée Po(A).

Algorithme d’Anscombe

L’algorithme d’Anscombe transforme les données X; en utilisant la trans-
formation de Anscombe Y; = 21/X; + 3/8. Celle-ci rend les données quasi gaus-
siennes avec un niveau de bruit relativement constant de 1 (STARCK, MUR-
TAGH, Bujaoul, 1998). Ensuite, il procéde comme si les données possédaient
réellement un bruit gaussien. La méthode de Donoho et Johnstone avec le seuil
T = \/2log(n) est utilisée. Cet algorithme est critiqué pour son lissage excessif
aux fines échelles et son lissage timide aux grandes échelles. Ceci est illustré a la
figure 7.

Algorithme TIPSH

Kolaczyk a développé un algorithme visant & fournir une alternative a
I’algorithme d’Anscombe, finement adaptée aux signaux plongés dans un bruit
de Poisson, plus particuliérement les signaux correspondants aux explosions de
rayons Gamma. Kolaczyk a proposé d’étendre la solution de Donoho-Johnstone
au cas de Poisson. De facon semblable au filtrage d’un bruit normalement dis-
tribué (voir équation 14), nous savons que 5\7 estimateur de A, peut s’écrire :

5‘ = Z<X7 wj,k>9j,k¢j,k, (22)
ik
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ou {9; r};r représente I'ensemble des fonctions formant une base orthonormée
d’ondelettes. Kolaczyk généralise ’estimateur par seuillage de Donoho-Johnstone

en imposant
1si (X, ¥yu)| > T

O =1 0 sinon. (23)
Kolaczyk trouve un seuil dépendant de I’échelle j qu’il note alors ¢; :
t; =279/ {log(n;) + \/log?(n;) + 2log(n;)A*27} (24)

ott n; = 2777 et \* est un réel constant défini plus tard.

L’algorithme final procéde selon les trois mémes étapes que 'algorithme de

Donoho-Johnstone :
1. la décomposition des observations dans une base d’ondelettes de

Haar,
2. le t;-seuillage a chaque échelle des coefficients relatifs aux détails
3. lapplication de la transformée de Haar inverse aux coefficients
seuillés.
Cependant, les estimateurs utilisant la base de Haar ont tendance a ressembler
a une fonction en escalier. Ceci est dii a la nature de l'ondelette de Haar. Cela
pourrait étre un probléme quand A posséde un certain degré de régularité. Kolac-
zyk suggeére alors d’utiliser la transformée en ondelettes de Haar invariante par
translation qui évite ce probléme. L’algorithme résultant de Kolaczyk est appe-
lée "Translation Invariant Poisson Smoothing using Haar Wavelets", ou TIPSH.
Pour plus de détails sur celui-ci, le lecteur pourra se référer aux articles de Ko-
laczyk (KoLACZYK, 1996 et KOoLACZYK, 1997).

Dauns ses articles (KOLACZYK, 1996 et KOLACZYK, 1997), Kolaczyka étudié
les signaux d’explosions de rayons Gamma. Ce genre de signal est caractérisé
par un fond relativement constant et par des pics abrupts occasionnels. Deux
illustrations sont données en figure 6. Kolaczyk a choisi ’hypothése nulle A = A\*
qui correspond au fond sans les pics. C’est toujours le cas avec des explosions
de rayons Gamma. Il estime \* en prenant la moyenne d’au moins 60% des ob-
servations. Ceci est justifié par le fait que ces observations sont une partie du
fond. C’est pourquoi elles sont des réalisations de Po(\*). Kolaczyk a réalisé une
simulation pour ses signaux et a déclaré que le MISE est minimisé en choisis-
sant un paramétre L petit quand on utilise le seuillage fort et une valeur pour
L moyenne quand on utilise le seuillage doux (dii au biais important dans ce
cas). Les figures 8 et 7 présentent certains résultats obtenus avec les algorithmes
TIPSH et Anscombe.

Ces deux figures nous permettent de comparer 'algorithme TIPSH et ’al-
gorithme standard basé sur la transformation d’Anscombe. Nous voyons que I’ap-
proche standard lisse trop le signal aux fines échelles et pas assez aux échelles
grossiéres. Kolaczyk affirme que son algorithme TIPSH a une plus petite er-
reur que ’erreur obtenue avec la transformation d’Anscombe, et que le biais est
particuliérement réduit. Ces deux arguments rendent TIPSH particuliérement
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Figure 6. Deux explosions de rayons Gamma (simulation). D'aprés CHARLES, 2003.
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Figure 7. Estimation des fonctions d’intensité correspondant a la figure 6 au moyen
de I'algorithme d'Anscombe. D'aprés CHARLES, 2003.
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Figure 8. Estimation des fonctions d’intensité correspondant a la figure 6 au moyen
de I'algorithme TIPSH. D’aprés CHARLES, 2003.

séduisant.

2.2. Analyse en ondelettes croisée et cohérence par ondelettes

L’analyse en ondelettes croisée et la cohérence par ondelettes sont deux
méthodes permettant de découvrir des liens dans le domaine temps-fréquence
entre deux signaux.

La transformée en ondelettes continue d’'un signal discret x = (¢, )1<n<n
avec t, = not est I'ensemble de ses coefficients d’ondelettes. Ceux relatifs aux
détails valent

N-1 .
WX(n,5) = —r= 3wl ()
\/% i=0 5t
ot * indique le complexe conjugué lorsqu’on travaille avec une ondelette com-
plexe. Dans l’analyse en ondelettes croisée ou la cohérence par ondelettes, la
transformée en ondelettes continue est souvent utilisée avec 'ondelette de Mor-
let (qui est complexe).
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2.2.1. Spectre de puissance en ondelettes

Le spectre de puissance en ondelettes d’un signal x est défini comme
PX(n,s) = [W¥X(n,s)

Il permet de quantifier 'importance de la variabilité du signal expliquée par
I'ondelette a chaque pas de temps et a chaque échelle.

S. Jenouvrier de I’équipe "Ecologie des oiseaux et des mammiféres marins"
(CNRS) (JENOUVRIER, 2004) a étudié, au moyen du spectre de puissance en
ondelettes, les périodicités des variations de la taille de la population de trois
espéces d’oiseaux marins (Figure 9). Le spectre de puissance se retrouve dans la
figure 10.

Fulmar A.

I P Y ] BT

Pétrel H.

@
ﬁqtgft:ﬁﬁﬁfzﬁﬁﬁ

EY

Mombre de couples

Manchot E.
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annees

Figure 9. Taille de la population de trois espéces d'oiseaux marins. D'aprés JENOU-
VRIER, 2004.
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Figure 10. Spectres de puissance correspondant a la figure 9. D'aprés JENOUVRIER,
2004.
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Habituellement, les scientifiques utilisent un code de couleur. Les couleurs
orangées signifient que la série temporelle étudiée présente des fortes variations
dans les périodicités correspondantes. A I'inverse, les couleurs bleutées refletent
de faibles variations de la série temporelle dans les périodes considérées. Afin
de quantifier si les périodicités mises en évidence dans les régions orangées sont
significatives, et non pas obtenues par le simple fait du hasard, on utilise des mé-
thodes de ré-échantillonage (méthodes bootstrap). Les périodicités significatives
sont indiquées par une ligne noire pour le seuil 5 pourcent (c’est a dire que 1’on
a b pourcent de risque que la périodicité observée soit le fait du hasard) et par
une ligne noire pointillée pour le seuil 10 pourcent. Ce sont ces lignes qui sont
importantes & visualiser et que I’on remarque sur la figure 10.

Les périodicités des variations du nombre de couples de manchot empereur,
de pétrel des neiges et de fulmar antarctique, sont similaires (autour de 3 et 5
ans) et ne sont pas constantes au cours du temps. L’analyse d’ondelettes met
en évidence des changements brusques de périodicité autour de 1980. Ces résul-
tats suggérent un changement de régime de ’environnement & la fin des années
1970. Pendant ce changement de régime, des fortes anomalies chaudes auraient
profondément affecté les populations d’oiseaux marins. Un mécanisme probable
peut étre une modification de la périodicité du cycle de la glace qui entrainerait
une diminution importante des proies consommeées par ces oiseaux, et par des
effets en cascade dans la chaine alimentaire, des changements brusques des po-
pulations de prédateurs supérieurs.

Considérons un autre exemple tiré de GRINSTED, MOORE, JEVREJEVA,
2004. Les images ont été reproduites via le package MatLab disponible &

www.pol.ac.uk/home/research /waveletcoherence.

Nous désirons examiner le possible lien entre 1’étendue de la glace dans la mer
Baltique et ’échange de masse athmosphérique entre I’Arctique et le Nord At-
lantique. Pour cela, nous disposons de deux mesures : I'oscillation arctique (AO)
qui caractérise I’échange de masse atmosphérique décrit ci-dessus et I’étendue
de glace maximum annuel (BMI). Ces deux séries sont illustrées en figure 11.

Leur spectre de puissance respectif se trouve dans la figure 12. Les contours
noirs désignent le seuil de 5 pourcent et le cone d’influence ot les effets de bords
peuvent se faire sentir est estompé. Il y a des caractériques communes dans les
deux spectres de puissance comme le pic significatif dans la période 5 ans au-
tour de 1940. Les deux séries ont aussi une haute puissance dans la période 2-7
ans dans l'intervalle de temps 1860-1900, bien que pour I’AO la puissance ne
dépasse pas le niveau de 5 pourcent. Il y a également une haute puissance dans
la période 8-16 ans dans les années 1950-2000. Cependant, la similitude entre ces
deux shémas est assez faible et il est difficile de dire si ce qu’il y a en commun
résulte d’une simple coincidence. Ceci justifie I'intérét de 'analyse en ondelettes
croisée développée ci-dessous.
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Figure 11. Séries temporelles AO (au-dessus) et BMI (en-dessous).
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Figure 12. Spectres de puissance des séries temporelles AO et BMI.

2.2.2. Analyse en ondelettes croisée

L[’analyse en ondelettes croisée est utilisée pour analyser le lien entre deux
signaux & partir d’un spectre de puissance commun. L’analyse en ondelettes
croisée de deux signaux x = z(t,) et y = y(t,) est définie par

WXY (n,s) = WX(n, s)WY¥*(n, s)

ot WY*(n, s) est le complexe conjugué de WY (n, s). La puissance en ondelettes
croisée est dés lors définie par |[WXY (n,s)|. Il faut cependant faire attention
qu'un coefficient de la puissance en ondelettes croisée peut étre élevé car le
spectre de puissance en ondelettes des deux signaux est élevé ou que le spectre
de puissance en ondelettes d’un seul signal est trés élevé.

La différence de phase entre les deux signaux est définie par

I(S())

o(n,s) = arctan(m).

ou S est un opérateur de lissage ressemblant & I’ondelette mére.

L’analyse en ondelettes croisée de 'AO et du BMI est visible dans la figure
13. La phase est représentée par des fleches (orientée a droite : en phase, orientée
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a gauche : antiphase). Nous voyons que les caractéristiques communes trouvées
par le spectre de puissance se retrouvent ici comme étant significatives. Pour
conclure & une relation de cause a effet, il faut que les phénoménes enregistrés
soient en phase ou en antiphase. Cela nous rassure donc de voir que tous les sec-
teurs avec une puissance commune significative sont en antiphase. Ainsi, BMI
pour une grande partie refléte AO. En dehors des régions a puissance significa-
tive, nous avons beaucoup d’antiphase. Nous spéculons donc qu’il y a un lien

plus fort entre ’AO et le BMI que ce que nous montre ’analyse en ondelettes
croisée.

Peariod

1860 1830 1800 1920 1840 1860 1580

Figure 13. Analyse en ondelettes croisée des séries AO et BMI.

2.2.3. Analyse de cohérence par ondelettes

[’analyse de cohérence par ondelettes a le méme but que celui de la puis-
sance en ondelettes croisée. Elle trouve des régions dans ’espace temps-fréquence
ot les deux signaux covarient mais n’ont pas nécessairement une haute puissance
commune. La cohérence par ondelettes de deux signaux est décrite par

XY n.s
Roins) = —SC
»2) S(Wx(n,s))S(WY(n,s))

S S

ou S est un opérateur de lissage ressemblant a ’ondelette mére. Cet opérateur
est important sinon R?(n, s) = 1. R?(n,s) donne une valeur comprise entre 0 et
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1 qui fournit une information sur la relation entre les deux signaux. Des résul-
tats différents pour ’analyse en ondelettes croisée et pour ’analyse de cohérence
permet d’identifier des régions dans I'espace temps-fréquence avec des probables
petites puissances. Les régions de puissance commune petite sont des régions
avec une petite analyse croisée mais avec une haute cohérence.

La racine carrée de la cohérence de ’AO et du BMI est montrée en figure
14. En comparaison avec I’analyse croisée, une plus large région est considérée
comme significative et toutes ses régions montrent une antiphase. Les oscillations
de ’AO sont manifestées dans le BMI de 2-20 ans, suggérant que le BMI refléte
I'AO.
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Figure 14. Cohérence de I'AO et du BMI.

2.3. Utilisation d’ondelettes pour la déconvolution

Dans beaucoup de techniques spectroscopiques, les spectres peuvent étre
modélisés comme la convolution bruitée d’une fonction instrumentale avec un
vrai signal & estimer. En principe, cette estimation du vrai signal pourrait étre
trouvée a travers la déconvolution.

Une approche bien connue pour la déconvolution est basée sur la trans-
formée de Fourier MALLAT, 1988. Le théoréme de convolution affirme que si le
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signal enregistré f = g h (g convolué par h), alors F' = GH ou F, G et H sont
les transformées de Fourier de f, g et h. Si h est le signal a retrouver et g la
fonction instrumentale, ceci permet que h soit la transformée de Fourier inverse
de (F/G). Cette technique ne fonctionne vraiment pas bien quand G a de trés
petites valeurs, comme montré dans la figure 15. Dans cet exemple, les trés pe-
tites valeurs mises a zéro par l'ordinateur ont été mises a la plus petite valeur
de Vordinateur différente de zéro par notre algorithme. De plus, cela fonctionne
vraiment mal sur des signaux expérimentaux car cela agit souvent comme un
amplificateur de bruit et dés lors cela requiert un filtrage drastique comme vu
dans la figure 16.

g the instrumental function G the Fourier Transform of g h the true signal
0.02 1.5 0.06
0.015 i
0.04
0.5
0.01
0 - r
0.02
0.005
-0.5
0 -1 0 J
-500 0 500 1000 ~5 0 5 -500 0 500 1000
the frace f=g*h signal estimated by Fourier
0.02 0.03

20 24

0.005 0
0 -0.01 L
-500 0 500 1000 -500 0 500 1000

Figure 15. Modéle : f = g x h. Mauvaise déconvolution par Fourier due aux trés
petites valeurs de G (la transformée de Fourier de g). Le vrai signal h n'est pas
retrouvé. D'aprés CHARLES, 2003.

Dans le domaine des ondelettes, nous avons une formule similaire. Dans le
cas continu, nous obtenons

Wf(u,s) = (g% Wh(.,s))(u); Lf(u,s)= (g% Lh(.,s))(u).
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g the instrumental function G the Fourier Transform of g h the true signal
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Figure 16. Modéle : f = gxh+ W ou W est le bruit. Mauvaise déconvolution par
Fourier due aux petites valeurs de G (la transformée de Fourier de g) et di au bruit.
Le vrai signal h n'est pas retrouvé. D'aprés CHARLES, 2003.
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Dans le cas discret, utilisant une transformation en ondelettes non-orthogonales,
nous avons

dl = (g=dly k)l =(gxcf; ) (k). (25)

Malheureusement, nous pouvons voir que, contrairement & la transformée de
Fourier ou le produit de convolution se transforme en un simple produit, le pro-
duit de convolution est préservé par la transformée en ondelettes.

Cependant, un résultat théorique existe dans le cas d’une convolution par
une gaussienne. Nous supposons que f(t) = (fo*g,)(t) oul g, est une gaussienne

de variance o2 :
1 12

e 202,

-(t) =
9o (1) 5

2

Soit 1 = (—1)"0™) avec O(t) = Ae”3-%. Nous avons

2
Wf(ms)z(%)”ﬁwjfo(u,so) avec so — +%

Ces formules permettent de retrouver les coefficients d’ondelettes de fy et dés
lors de retrouver f en utilisant la transformée en ondelettes inverse.

Mais les ondelettes interviennent principalement dans des procédés itéra-
tifs de déconvolution. Une solution simple au probléme de déconvolution serait
d’optimiser les moindres carrés : miny, | f — g * h||?. Cependant, ce probléme est
mal posé au sens de Hadamard : la solution n’est pas unique et n’est pas stable.
De faibles variations du signal observé f vont entrainer de fortes variations du
signal restauré h. Une procédure assez standard pour éviter ces instabilités ou
pour "régulariser" le probléme est de modifier la fonction & minimiser de facon
a ce qu’elle contienne I'erreur mais aussi une certaine connaissance a priori de
ce que pourrait étre la solution. Si, par exemple, on sait que h doit avoir une
petite a-norme, la fonction & minimiser devient

If =g hll* + plhll2

ol i est une constante positive appelée paramétre de régularisation. La solution
basée sur les ondelettes est de minimiser

1f =g hl* + ) i ldi sl

Jik

ou {d; i }; représente 'ensemble des coefficients en ondelettes de la fonction h.
Si on sait que la fonction h posséde une représentation en ondelettes creuse dans
une certaine base orthonormée d’ondelettes, alors >, yu( k) lld;jk||P sera petit.
Le probléme de déconvolution est donc transformé en un probléme d’optimisa-
tion qui est résolu de facon itérative. La figure 17 illustre ce principe. Pour plus
d’information, voir DAUBECHIES, DEFRISE, DEMOL, 2004.
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Figure 17. (a) g; (b) f: (c) h et h estimé; (e) f bruité;(f) h et h estimé pour f
bruité.

2.4. Utilisation des ondelettes pour la compression

Réduire un litre de jus de fruit & quelques grammes de poudre concentrée
est typiquement une compression avec perte. Le goiit de la boisson reconstituée
est semblable au gotit du jus de fruit initial mais a souvent perdu de sa finesse.
Dans le compression de signaux ou d’images, nous sommes confrontés au méme
compromis entre qualité et compression. Les applications principales concernent
le stockage de données et la transmission & travers des canaux & bande passante
limitée (MALLAT, 1988).

Un codeur par transformée décompose un signal dans une base orthogonale
et quantifie les coefficients de décomposition, c¢’est-a-dire que ces coefficients sont
remplacés par des valeurs proches mais appartenant a un ensemble déterminé.
La quantification est donc I’étape dans laquelle on pert réellement de I'informa-
tion mais qui fait gagner beaucoup de place. La distortion du signal reconstitué
est minimisée par une optimisation de la quantification, de la base et de I’allo-
cation de bits. Pour information, une image en niveaux de gris a typiquement
5122 pixels, chacun codé sur 8 bits. Actuellement, les meilleurs algorithmes de
compression d’images sont des codages par transformée, sur des bases de cosi-
nus (jpeg standard) ou d’ondelettes (jpeg2000). L’efficacité de ces bases vient
de leur capacité a construire des approximations non linéaires précises a ’aide
de quelques vecteurs non nuls. Avec moins de 1 bit par pixel, on reconstruit
des images visiblement parfaites. A 0.25 bit par pixel, I'image reste de bonne
qualité. A titre d’exemple, la vitesse de compression d’une image 60*480%24 sur
un pentium est de 3s pour le format jpeg standard et de 1s pour le format jpg
2000.
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En illustration, I'image 18 est compressée suivant le jpeg standard (figure
19) et suivant jpeg2000 (figure 20). Les deux images compressées ont la méme
taille (16k). On remarque sur la figure 19 des artefacts de pixels 8x8 un peu
partout. Le résultat est également assez mauvais autour du texte. Le ratio moyen
de compression pour un jpeg standard est de 1 :25 alors que pour un jpeg2000
il est de 1 :50.

Figure 19. Image de la figure 18 compressée avec jpeg.
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Figure 20. Image de la figure 18 compressée avec jpeg2000.

2.5. Autres utilisations des ondelettes

Les ondelettes ont de nombreuses autres applications qui n’ont pas été
expliquées dans cette note. Elles peuvent par exemple aider dans la classification
de signaux. Si le but est de classifier des signaux monodimensionnels selon des
classes de signaux invariantes par translation, la classification peut se faire par
arbre de décision ot le dictionnaire de questions est :

Qj,Q,J,G(X) =1
<= il existe deux extrema locaux de la transformée a 1’échelle j tels que

{ d<|u—up| <d
min{| < ¢j7uivX >7| < wj,umX > |} > 0.
Si le but est la segmentation d’une image, elle peut se faire en suivant les étapes :

1. extraction (au moyen d’ondelettes) de vecteurs de caractéristiques de I'image
sur des fenétres aléatoires,

2. itération du calcul des vecteurs jusqu’a stabilisation du réseau de neurones,
3. K-Means non supervisé sur les vecteurs.

Les ondelettes peuvent aussi étre utiles dans la détection automatique de
singularités d’un signal grace aux lignes de modulus maxima. Elles peuvent étre
utiles dans la détection automatique des contours dans une image par une ver-
sion multiéchelle de l'algorithme de Canny. Elles sont également utilisées avec
efficacité dans le domaine des séries temporelles, de I'interpolation, etc.
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3. EN GUISE DE CONCLUSION

Dans cette note technique, nous avons développé diverses applications
de base de la transformée en ondelettes. La régression et 'estimation de la den-
sité par ondelettes semblent étre une bonne alternative a la méthode des noyaux.
L’efficacité des ondelettes dans les méthodes de filtrage est incontestable, que ce
soit pour un modéle gaussien ou un modéle poissonien. L’analyse cohérente par
ondelettes est utilisée pour examiner le lien possible entre deux signaux. En dé-
convolution, les ondelettes sont efficaces lorsque le probléme est transformé en
un probléme d’optimisation. Quant & la compression via les ondelettes, son ef-
ficacité est universellement reconnue car les ondelettes sont & la base du format
jpeg2000. Les ondelettes sont donc un outil qui peut étre utilisé dans un grand
nombre de domaines différents. Son succés provient non seulement de son ana-
lyse temps-fréquence mais aussi de ses algorithmes rapides.

BIBLIOGRAPHIE

ADRIAN P., ANAND R. [2008]. Maximum Likelihood wavelet density estimation
with application to image and shape matching. IEEE Transaction on image
processing, 17(4) :458-468.

CeNcov N.N. [1962]. Evaluation of an unknown distribution density from ob-
servations. Doklady, 3 :1559-1562.

CHARLES C. [2003]. Some wavelet applications to signal and image processing.
PhD Thesis. FUNDP.

CHARLES C., LECLERC G., PIREAUX J.-J. RAsSON J.-P. [2003]. Wavelets appli-
cations in surfaces sciences.. Surface and Interface analysis.

COCQUEREZ J.P., PHILIPP S. [1995]. Analyse d’images : filtrage et segmentation.
Masson.

DAUBECHIES L., DEFRISE M., DE MoL C. [2004]. An iterative thresholding al-
gorithm for linear inverse problems with a sparsity constraint. Communi-
cations on Pure and Applied Mathematics, vol. LVII, 1413-1457.

DELOUILLE V. [2002]. Nonparametric stochastic regression using design-adapted
wavelets. Thése de doctorat, Université Catholique de Louvain.

DononO D.L., CorrMAN R.R. [1995]. Translation-invariant denoising. Wavelets
and Statistics, A. Antoniadis and G. Oppenheim, Springer-Verlag.

DELYON B., JUDITSKY A. [1993]. Wavelet estimators, global error measures :
revisited. Technical report, irisa-inria.

DonoHO D.L., JOHNSTONE LM. [1994]. Ideal spatial adaptation via wavelet
shrinkage. Biometrika, 81 :425-455.

DonNoHO D.L., JOHNSTONE I.M., KERKYACHARIAN G., PICARD D. [1996]. Den-
sity estimation by wavelet thresholding. The annals of statistics, 24 :508-
539.

DonNoHO D.L. [1996]. Denoising via soft thresholding. IEEE Trans. Inf. Theory,
41 :613-627.

33



GRINSTED A., MOORE J.C., JEVREJEVA S. [2004]. Application of the cross wa-
velet transform and wavelet coherence to geophysical time series. Nonlinear
Processes in Geophysics, 11 :561-566.

HuaNG W. [2003]. Wavelet regression with an emphasis on singularity detection.
Master of Science. Texas.

IZENMAN A. [1991]. Recent developments in nonparametric density estimation.
JASA 86, 413 :205-224.

JENOUVRIER S. [2004]. Influence de la variabilité environnementale sur les stra-
tégies démographiques des populations de prédateurs supérieurs : la com-
munauté d’oiseaux marins en antarctique. Thése de doctorat. Université
Paris 6.

JUDITSKY A. [1994]. Wavelet estimators : adapting to unknown smoothness.
IRISA Publication interne, 815.

Koraczyk E.D. [1994] Wavelet methods for the inversion of certain homoge-
neous linear operators in presence of noisy data. PhD thesis, Stanford Uni-
versity.

Kovraczyk E.D. [1996] Estimation of intensities of burst-like poisson processes
using haar wavelets. Biometrika, 46 :352-363.

KoraczyK E.D. [1997] Non-parametric estimation of gamma-ray burst intensi-
ties using Haar wavelets. The Astrophysical Journal, 483 :340-349.

Koraczyk E.D. [1998] A method for wavelet shrinkage estimation of certain
poisson intensity signals using corrected thresholds. Statistica Sinica, :119-
135. Biometrika, 46 :352-363.

MALLAT S. [1988]. A wavelet tour of signal processing. Academic Press.

MULLER P., VIDAKOVIC B. [1998]. Bayesian Inference with wavelets : Density Es-
timation. Journal of Computational and Graphical Statistics, vol. 7, 4 :456-
468.

Nowak R.D., BARANIUK R.G. [1997]. Wavelet-domain filtering for photon ima-
ging systems. Proc. SPIE, Wavelet Applications in Signal and Image Pro-
cessing V, 3169 :55-66.

Nowak R.D., HELLMAN R., NowaKk D., BARANIUK R.G. [1996] Wavelet-domain
filtering for nuclear medicine imaging. Proc. SPIE Imaging Conf., pages
279-290.

PINHEIRO A., VIDAKOVIC B. [1997]. Estimating the square root of a density via
compactly supported wavelets. Computational statistics and data analysis,
25 :399-415.

RENAUD O. [1999]. Density estimation with wavelets : variability, invariance and
discriminant power. PhD Thesis. Ecole polytechnique fédérale de Lauzanne.

SILVERMAN B.W. [1986]. Density Estimation for Statistics and Data Analysis.
Chapman and Hall.

STARCK J.L., MURTHAG F., Buaour A. [1998]. Image Processing and Data
analysis. The multiscale approach. Cambridge University Press.

TiMMERMANN K.E., Nowak R.D. [1999]. Multiscale modeling and estimation of
poisson processes with application to photon-limited imaging. IEEE Tran-
sactions Information Theory, Special Issue on Multiscale Signal Analysis
and Its Applications, 45 :846-862.

34



TRIBOULEY K. [2008]. Practical estimation of multivariate densities using wa-
velet methods. Statistica Neerlandica, 19(1) :41-62.

35



