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RÉSUMÉ

Cette note technique à caractère mathématique est une introduction aux
ondelettes, un des outils d’analyse du signal. Son objectif est d’initier le lecteur
à la théorie des ondelettes. Elle se découpe en deux parties. La première pose
les bases théoriques des ondelettes. La deuxième partie traite des logiciels im-
plémentés pour travailler avec les ondelettes.

SUMMARY

This note aims to introduce wavelets, a signal processing tool. Its objective
is to make known the wavelet theory. This note is divided in two parts. The first
one briefly presents the wavelet theory. The second part concerns the wavelet
softwares.

1. INTRODUCTION

L’analyse par ondelettes est apparue au début des années 80. En réalité,
celle-ci ne repose pas sur une nouvelle idée originale. Cette théorie est un travail
pluridisciplinaire qui a réuni des ingénieurs, des mathématiciens et des physi-
ciens ayant développé des idées semblables dans leur domaine respectif. La syn-
thèse mathématique a débouché sur des résultats nouveaux, qui ont apporté des
perspectives plus larges dans chaque discipline originelle. A l’époque actuelle, la
plupart des chercheurs scientifiques ont déjà entendu parler des ondelettes. Dans
la majorité des congrès traitant de l’analyse du signal et de l’image, de la sta-
tistique, de la mathématique, etc., des conférences au sujet des ondelettes sont
données. Pourquoi ? Dans cette note, nous étudions la raison de la popularité de
cet outil, mais aussi ses limites.

∗Chargée de cours à l’Université de Liège, Gembloux Agro-Bio Tech (Unité de Statistique,
Informatique et Mathématique appliquées à la bioingénierie)

1



Après cette introduction, le paragraphe 2 concerne la théorie de base des
ondelettes. Ensuite, avant de conclure, le paragraphe 3 commente différents lo-
giciels permettant d’utiliser les ondelettes.

2. QU’EST-CE QU’UNE ONDELETTE ?

Ce paragraphe donne les fondements de la théorie des ondelettes. Nous
commençons par justifier la popularité de la transformée en ondelettes en la
comparant à la célèbre transformée de Fourier. En effet, la transformée de Fou-
rier est bien connue dans le monde scientifique : de nombreux mathématiciens,
physiciens ou ingénieurs l’utilisent ou l’ont utilisée à un moment ou un autre
et son efficacité ne fait plus aucun doute. Dans un second temps, nous donnons
la définition mathématique de la transformée (continue) en ondelettes et dans
un troisième temps, nous étendons la transformée (continue) en ondelettes aux
signaux discrets et finis. En réalité, c’est souvent cette dernière qui est utilisée
grâce à ses puissants algorithmes. Finalement, nous parlerons de la transformée
en ondelettes dans le cas de données multidimensionnelles comme les images,
ainsi que de la transformée en ondelettes invariante par translation.

2.1. Avantages de la transformée en ondelettes par rapport à la transformée de
Fourier

La théorie de Fourier repose sur le fait que les fonctions montrant un cer-
tain degré de régularité peuvent être représentées par une combinaison linéaire
de sinus et cosinus. Les coefficients de cette combinaison linéaire donnent une
information au niveau des fréquences présentes dans le signal.

Considérons deux exemples.

Premièrement, les séries de Fourier sont habituellement utilisées pour es-
timer le spectre des fréquences d’un signal donné en fonction du temps. En
médecine, l’électrocardiogramme d’un patient malade diffère de celui d’un pa-
tient sain. Cette différence, parfois très difficile à repérer lorsque l’électrocardio-
gramme est donné en fonction du temps, devient évidente lorsque celui-ci est
donné en fonction des fréquences, c’est-à-dire lorsqu’on regarde ses coefficients
de Fourier. Mais les séries de Fourier donnent la quantité de chaque fréquence
présente dans le signal pour l’ensemble de la période d’observation. La théorie
de Fourier devient donc inefficace pour un signal dont le spectre des fréquences
varie considérablement dans le temps.

Deuxièmement, les séries de Fourier sont aussi utilisées pour approximer
des fonctions. Certaines fonctions régulières ont une série de Fourier économique,
autrement dit elles sont bien approximées avec peu de coefficients de Fourier.
Mais comme les fonctions sinus et cosinus ont un support infini, la série de Fou-
rier ne fonctionne pas bien quand elle doit décrire localement une fonction qui
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montre des discontinuités. Nous verrons plus tard que, contrairement à la trans-
formée de Fourier, l’analyse par ondelettes offre une large gamme de fonctions
de base parmi lesquelles on peut choisir la plus appropriée pour une application
donnée.

Avant de donner une définition d’une ondelette et de sa transformée, nous
présentons un exemple qui illustre certains de ses avantages sur la transformée
de Fourier. La colonne de gauche de la figure 1 (d’après Charles, 2003) montre
le graphe de trois fonctions dans l’espace direct (représentation temporelle) :
une fonction sinus, une fonction "blok" et une fonction plus complexe connue
sous le nom de "chirp". La colonne du milieu montre les transformées de Fourier
discrètes de ces fonctions dans l’espace de Fourier (représentation fréquentielle).
Finalement, la colonne de droite montre les transformées en ondelettes. La même
ondelette a été utilisée pour les trois fonctions.

La représentation graphique de la transformée en ondelettes requiert cer-
taines explications. Les coefficients d’ondelettes sont dessinés dans un graphe
X-Y, leur valeur est codée comme suit : noir, gris et blanc pour les coefficients
positifs, nuls et négatifs respectivement. L’axe horizontal représente l’échelle de
temps, qui est équivalente à l’échelle de temps de la colonne de gauche. L’axe
vertical montre une quantité appelée la résolution (ou échelle) ; il correspond à la
largeur du support temporel sélectionné par l’ondelette. Ceci veut dire que cela
fonctionne comme pour une carte. Une grande échelle correspond à un grand
support et donc à une vue globale non détaillée du signal et une petite échelle
correspond à un petit support et donc à une vue détaillée d’une partie du signal.
La résolution est souvent mieux comprise comme la réciproque de la fréquence.
Ainsi une résolution fine (petite résolution, petite échelle) correspond à une haute
fréquence et une résolution grossière (grande échelle) correspond à une basse
fréquence. Souvent, dans un signal, ce qui est à petite échelle (et donc grande
fréquence) apparaît de temps en temps comme des pics et ce qui est à grande
échelle (et donc basse fréquence) est présent tout au long du signal. Dès lors,
cette représentation délai-résolution donne de l’information temps-fréquence. Par
exemple, un point noir au délai 600 et à la résolution 100 spécifie que la fonction
varie autour de la fréquence 1/100 dans un voisinage du temps 600, voisinage
dont la taille vaut à peu près 100.

Regardant la transformée en ondelettes de la fonction blok, on voit immé-
diatement qu’il y a des hautes fréquences dans les régions contenant des dis-
continuités, et seulement des zéros ailleurs. La transformée de Fourier montre
certaines hautes fréquences mais ne donne aucune indication sur le moment où
cela se passe. On peut aussi observer que les coefficients en ondelettes de la fonc-
tion sin, W(sin), et de la fonction blok, W(blok), se ressemblent à basse fréquence
et deviennent très différentes quand la résolution devient petite. Notons aussi
comment les transformées de Fourier des fonctions blok et chirp se ressemblent
quelque peu, tandis que leur transformée en ondelettes donne une image diffé-
rente avec plus d’informations. Toutes ces observations montrent la supériorité
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potentielle de la représentation en ondelettes par rapport à la transformée de
Fourier.

La fonction sinus peut être représentée par un seul coefficient de Fourier, ce
qui n’est pas pris en compte par la transformée en ondelettes. Si un signal peut
être exprimé comme une combinaison linéaire d’un petit nombre d’harmoniques,
l’analyse de Fourier restera plus efficace que les ondelettes pour des tâches telles
que compression de données ou filtrage du bruit. D’un autre côté, la transformée
en ondelettes des fonctions blok et chirp montre de nombreux coefficients nuls (en
gris) indiquant une représentation économique de ces signaux. Ceci montre que
les ondelettes sont une alternative à l’analyse de Fourier et non un remplacement.

Même le calcul de la transformée en ondelettes est efficace. Alors que la Fast
Fourier Transform (FFT) requiert O(n log n) opérations avec n la longueur du
spectre, la Fast Wavelet Transform (FWT) calcule les coefficients en ondelettes
en O(n) opérations quand n = 2J , J ∈ IN. Dans son article, Strang (Strang,
1993) réalise une comparaison plus approfondie entre la transformée de Fourier
et la transformée en ondelettes.

En conclusion, la transformée en ondelettes offre la possibilité d’analyser
un signal simultanément dans le domaine du temps et celui des fréquences. Est-
ce intéressant ? La réponse dépend de l’application et de la nature du signal.
La transformée de Fourier d’un signal donné indique quelle quantité de chaque
fréquence se trouve dans le signal mais ne nous indique pas à quel moment
dans le temps ces fréquences se passent. L’information temps-fréquence n’est
pas nécessaire quand le signal est stationnaire (signal dont le contenu de la
fréquence ne change pas dans le temps) mais devient nécessaire pour un signal
non-stationnaire.

Au restaurant, nous devenons rapidement insensibles au bruit de nos voi-
sins ; mais un brusque silence nous rappelle leur présence. Notre attention est
attirée par les événements momentanés, par opposition aux phénomènes perma-
nents que nous ignorons vite. La priorité accordée aux événements momentanés
est probablement une stratégie de notre cerveau pour sélectionner les informa-
tions importantes, parmi le grand nombre de données auxquelles nous sommes
exposés. La stratégie des ondelettes se base sur cette constatation. Le traitement
du signal classique quant à lui s’est surtout concentré sur l’étude d’opérateurs
invariants dans le temps ou dans l’espace. Cela a conduit à la suprématie de la
transformée de Fourier dans l’analyse du signal.

2.2. Définition de la transformée en ondelettes

Dans cette section, nous introduisons les concepts de base de l’analyse en
ondelettes. Nous présentons d’abord les ondelettes et leurs premières propriétés.
Ensuite, nous discutons de la transformée continue en ondelettes. En illustration,
la transformée en ondelettes de Haar sera traitée en détails.

4



Figure 1. Comparaison entre la transformée de Fourier et la transformée en onde-
lettes de trois fonctions. (D’après Charles, 2003).
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Une ondelette est une fonction oscillante (ce qui explique le mot "onde")
de moyenne nulle, appelée ψ, possédant un certain degré de régularité et dont le
support est fini (ce qui explique le mot "ondelette", qui veut dire petite onde).
Plusieurs exemples sont montrés dans la figure 2. L’ondelette mère ψ génère une

Figure 2. Exemples d’ondelette ψ(t). (D’après Charles, 2003).

famille d’ondelettes :

{ψu,s(t) =
1√
s
ψ(
t− u
s

)}
(u,s)∈IR×IR+

0

(1)

où u est le paramètre du temps (délai) et s le paramètre d’échelle. L’ondelette
ψu,s est simplement l’ondelette mère ψ translatée de u et dilatée (contractée si
s < 1) par s. Par conséquent, quand l’échelle s augmente, la résolution augmente.
Ceci veut dire que le support de la partie non-nulle de l’ondelette mère augmente.
Le coefficient multiplicateur 1√

s
permet d’avoir une formule de conservation de

l’énergie du signal (
∫
|f(t)2|dt = 2

Cψ

∫ +∞
0

∫
|Wf(u, s)|2dudss2 avec Cψ etWf(u, s)

définis plus tard). De plus, il est habituellement supposé que la condition suivante
est vérifiée :

Cψ =

∫ +∞

0

‖Ψ(ω)‖2

ω
dω < +∞ (2)

où Ψ est la transformée de Fourier de ψ. Cette condition d’admissibilité impose
pour les fonctions de L2(IR) que ψ(t) soit de moyenne nulle. On peut imposer
en outre des conditions de régularité telles que des moments multiples nuls∫ +∞

−∞
tkψ(t)dt = 0

et donc des propriétés de décroissance et de convergence vers 0 à l’infini de ψ(t)
et de sa transformée de Fourier.

Nous introduisons le lien entre les ondelettes et les coefficients d’on-
delettes par l’exemple suivant. Pour des raisons didactiques, nous choisissons
l’ondelette de Haar et une fonction f en escalier sur les intervalles [k, k + 1)
définis par les naturels k ∈ IN. L’ondelette de Haar est représentée dans la figure
2. La fonction f est représentée dans la partie supérieure de la figure 3. Sur
chaque intervalle [k, k + 2), la fonction f prend deux valeurs. Si nous calculons
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la moyenne arithmétique de ces deux valeurs sur chacun de ces intervalles (du
style [j.21, (j + 1).21) pour j ∈ IN), nous obtenons une approximation grossière
du signal original. Celle-ci est notée approx1(f) et est représentée dans la figure
3. L’opération réalisée sur chaque intervalle est (a + b)/2 si a est la première
valeur prise sur l’intervalle et b la seconde valeur prise sur cet intervalle. Dans le
but de retrouver f à partir de cette approximation approx1(f), il est nécessaire
de conserver la différence entre f et approx1(f). Dès lors, sur chaque intervalle,
l’opération réalisée est (−a + b)/2. Cette valeur est affectée par un signe néga-
tif pour obtenir a : a+b

2 −
−a+b

2 = a et par un signe positif pour obtenir b :
a+b
2 + −a+b

2 = b. Ces différences sont stockées dans details1(f) qui est visible
dans la figure 3. La somme de approx1(f) et de details1(f) est égale à la fonc-
tion originale f .

A présent, regardons comment les ondelettes prennent place dans ces pro-
cessus de moyenne et de différence. L’ondelette mère de Haar est à la base du
processus de différence qui est décrit par (−1.a + 1.b)/2. L’ondelette de Haar,
ψ(t), qui est représentée dans la figure 2 stocke ces deux nombres -1 et 1. En
réalité, l’ondelette de Haar est définie comme

ψ(x) =

 −1 si 0 ≤ x < 1/2
1 si 1/2 ≤ x < 1
0 sinon.

(3)

Le processus de moyenne est lié au processus de différence. De la même façon,
nous lions l’ondelette "père" φ à l’ondelette mère ψ. En ce qui concerne l’onde-
lette de Haar, celle-ci est définie comme

φ(x) =

 1 si 0 ≤ x < 1/2
1 si 1/2 ≤ x < 1
0 sinon.

(4)

Cela correspond au processus de moyenne (1.a+1.b)/2. Les deux nombres 1 sont
stockés dans φ.

Nous pouvons évidemment recommencer ce processus de décomposition sur
approx1(f) en calculant la moyenne arithmétique sur chaque intervalle du style
[j.22, (j+1).22) dans le but d’obtenir approx2(f) et details2(f). De nouveau, en
sommant approx2(f), details2(f) et details1(f), nous retrouvons le signal origi-
nal f . Les détails correspondent aux coefficients d’ondelettes W (f). Dans notre
exemple, nous avons décomposé f en une approximation grossière à l’échelle 22

et en détails à l’échelle 22 et 21. En fait, les intervalles choisis ont une longueur
de 21 pour le premier pas de décomposition et une longueur de 22 dans le second
pas. Si nous stoppons le processus de décomposition à cette étape, nous disons
que 22 est l’échelle grossière. C’est l’échelle de la dernière approximation.

De manière plus générale à présent, les coefficients d’ondelettes sont le
résultat d’un produit scalaire entre le signal et les différentes ondelettes ψu,s de
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Figure 3. Décomposition en ondelettes de Haar d’un simple signal en escalier.
(D’après Charles, 2003).

8



la famille d’ondelettes :

approx1(i) =

∫
φ1,i(x)f(x)dx = 〈φ1,i, f〉

et
details1(i) =

∫
ψ1,i(x)f(x)dx = 〈ψ1,i, f〉.

La notation 〈a, b〉 fait référence au produit scalaire de a et b dans un espace
de Hilbert. Ils mesurent donc la similarité entre le signal et les ondelettes de
la famille choisie. La décomposition en ondelettes d’un signal associe au signal
ses coefficients d’ondelettes. Elle a pour but de fournir une bonne information
temps-fréquence de ce signal à l’utilisateur. Ceci a pu être vu dans la section
précédente avec la représentation graphique de la transformée en ondelettes.

Le processus général de décomposition en ondelettes est basé sur le schéma
de décomposition décrit ci-dessus. Ceci est lié à un processus de reconstruction
qui recalcule le signal à partir des coefficients en ondelettes. Quand la condition
exprimée dans l’équation 2 est vérifiée, il peut être montré (Mallat, 1988) que
toute fonction f appartenant à l’espace des fonctions de carré intégrables L2(IR)
satisfait :

f =
1

Cψ

∫ s0

0

∫ +∞

−∞
Wf(u, s)ψu,s du

ds

s2
+

1

s0Cψ

∫ +∞

−∞
Lf(u, s0)φu,s0du (5)

où Wf(u, s) vaut 〈f, ψu,s〉 ∀(u, s) ∈ IRxIR+
0 et représente une mesure de la

variation de f dans un voisinage de u dont la taille est propor-
tionnelle à s ; ceux-ci sont appelés coefficients d’ondelettes re-
latifs aux détails ;

φ est appelée fonction d’échelle ou fonction père de la famille
d’ondelettes ;
elle est liée à ψ par ‖Φ(ω)‖2 =

∫ +∞
1
‖Ψ(sω)‖2 dss ;

Lf(u, s) vaut 〈f, φu,s〉 ∀(u, s) ∈ IRxIR+
0 et représente une approxima-

tion à basse fréquence de f à l’échelle s ; ceux-ci sont appelés
coefficients d’ondelettes relatifs à l’approximation ;

s0 ∈ IR est choisi par l’utilisateur et est appelé échelle grossière ;
elle détermine l’approximation basse fréquence.

Ceci implique que tout signal de carré intégrable peut être décomposé
dans une famille d’ondelettes au moyen de coefficients, certains de ceux-ci sont
relatifs à une approximation grossière Lf(u, s0) du signal à l’échelle s0 tan-
dis que d’autres sont relatifs aux détails montrés aux résolutions plus fines,
{Wf(u, s)}0≤s<s0 . Les coefficients d’ondelettes contiennent dès lors une infor-
mation locale en temps et en fréquence. Cette propriété rend les ondelettes par-
ticulièrement efficaces pour la plupart des tâches de traitement du signal. La
figure 4 représente un signal synthétique simulant un signal induit par un pro-
cessus de réplication de l’ADN chez les mammifères. On distingue les quatre
"toits d’usine". Elle représente également ses coefficients en ondelettes relatifs
aux détails. Les quatre "toits d’usine" sont retrouvés principalement grâce aux
coefficients d’ondelettes à fine échelle. La figure 5 reprend le signal de la figure
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4 auquel un bruit gaussien a été rajouté et représente également les coefficients
d’ondelettes du signal bruité.

Figure 4. Décomposition en ondelettes d’un signal simulant un processus de répli-
cation de l’ADN chez les mammifères.

Il est important de noter qu’il est possible de construire des ondelettes mère
ψ telle que leur famille

{φL,k(t) ∪ ψj,k(t)}
(k,j)∈ZZ2

,j≤L,L∈ZZ (6)

avec

ψj,k(t) =
1√
2j
ψ(
t− 2jk

2j
), φj,k(t) =

1√
2j
φ(
t− 2jk

2j
) (7)

forme une base orthonormale dans L2(IR). Notons que, dans ce cas orthonormal,
le paramètre d’échelle s est discrétisé en 2j et le paramètre de délai (translation)
u est discrétisé en 2jk. Une base orthonormale assure que l’information contenue
dans les coefficients d’ondelettes est non-redondante, et par là améliore l’effica-
cité de la représentation en ondelettes. Les ondelettes orthonormales permettent
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Figure 5. Décomposition en ondelettes d’un signal bruité simulant un processus de
réplication de l’ADN chez les mammifères.
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aussi la formulation d’algorithmes de transformées en ondelettes très rapides
dont on parlera dans la section suivante concernant les signaux discrets et finis.

2.3. Transformée en ondelettes d’un signal discret fini

Dans cette section, nous discutons de la transformée en ondelettes
discrète et nous parlons brièvement du calcul de cette dernière. Nous nous at-
tardons sur la transformée de Haar.

Comme une transformée continue en ondelettes peut être calculée à par-
tir d’un signal continu, une transformée discrète en ondelettes peut être cal-
culée à partir d’un signal discret. Une fois encore, certains coefficients d’onde-
lettes, cL, sont liés à l’approximation grossière du signal à l’échelle L, tandis
que d’autres, {dj}j , sont liés aux détails à des résolutions plus fines. Comme
résultat, la représentation en ondelettes d’un signal discret est identique à celle
d’un signal continu. Le lien entre le monde continu des ondelettes et le monde
discret est le suivant. Le signal discret c0 = x est considéré comme une moyenne
d’une certaine fonction f pondérée par les noyaux d’échelle φ2L(t− n) : c0(i) =
〈f(t), φ2L(t − i)〉. Par conséquent, pour tout j ≥ L, cj(i) = 〈f(t), φ2j (t − i)〉 et
dj(i) = 〈f(t), ψ2j (t− i)〉.

Les bases orthonormales en ondelettes permettent une analyse multiréso-
lution se basant sur des algorithmes de décomposition et de reconstruction très
rapides pour un signal discret fini. Le pas de décomposition calcule les coefficients
d’ondelettes {c, d} d’un signal x par l’application successive de filtres passe-bas
(Lo) et passe-haut (Hi) suivi par un sous-échantillonnage d’un facteur 2 (↓ 2),
en partant avec l’hypothèse que c0 = x. Le schéma général de l’algorithme est :

c0 →Lo↓ 2→ c1 →Lo↓ 2→ c2 →Lo↓ 2→ . . . →Lo ↓ 2→ cJ
↘Hi↓ 2→ d1 ↘Hi↓ 2→ d2 ↘Hi ↓ 2→ . . . ↘Hi ↓ 2→ dJ

(8)

Le filtre passe-bas enlève du signal les hautes fréquences pour ne garder que les
basses fréquences. Le filtre passe-haut a l’effet inverse. Le sous-échantillonnage
ne garde qu’une valeur sur deux, celles rejetées étant identiques au signe près
(voir figure 3). Les coefficients en ondelettes sont stockés dans un vecteur comme
dans la figure 6 où n = 16 (J = 4) et L = 3 pour cet exemple-là.

Le processus de reconstruction calcule alors un signal x à partir des coeffi-
cients en ondelettes {c, d}, en insérant des zéros entre les échantillons (↑ 2), en
appliquant les filtres (Lo′, Hi′) et en additionnant les résultats (+). Le schéma
général est :
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1 x(1)
2 x(2)
3 x(3)
4 x(4)
5 x(5)
6 x(6)
7 x(7)
8 x(8)
9 x(9)
10 x(10)
11 x(11)
12 x(12)
13 x(13)
14 x(14)
15 x(15)

16 = 24 x(16)

⇒

1 c3(1)
24−3 c3(2)

24−3 + 1 d3(1)
24−3 + 21 d3(2)
24−2 + 1 d3−1(1)
24−2 + 2 d3−1(2)
24−2 + 3 d3−1(3)
24−2 + 22 d3−1(22)
24−1 + 1 d3−2(1)
24−1 + 2 d3−2(2)
24−1 + 3 d3−2(3)
24−1 + 4 d3−2(4)
24−1 + 5 d3−2(5)
24−1 + 6 d3−2(6)
24−1 + 7 d3−2(7)
24−1 + 23 d3−2(23)

Figure 6. Décomposition orthonormale unidimensionnelle en ondelettes (J = 4,
L = 3).

cJ ↑ 2→Lo′ +→ cJ−1 ↑ 2→Lo′ +→ cJ−2 ... ↑ 2 →Lo′ +→ c0
dJ ↑ 2 ↗Hi′ dJ−1 ↑ 2 ↗Hi′ dJ−2 ... ↑ 2 ↗Hi′

(9)

Ces deux algorithmes sont connus comme étant les algorithmes de Mallat.

Nous illustrons l’algorithme de Mallat avec la transformée en ondelettes de
Haar. Le filtre passe bas (Lo) possède deux coefficients non nuls égaux à 1/

√
2

en n = −1 et n = 0 ; le filtre passe haut (Hi) possède deux coefficients non nuls
dont un est égal à −1/

√
2 pour n = −1 et l’autre est égal à 1/

√
2 pour n = 0.

Nous remarquons que ces filtres correspondent respectivement aux fonctions φ
et ψ (voir équations 3 et 4) mis à part le facteur multiplicatif 1/

√
2. Ce facteur

1/
√

2 est nécessaire pour la normalisation de la base d’ondelettes (voir équation
7). C’est pourquoi, le processus de décomposition peut être simplement défini
par les deux formules (10, 11) et en supposant c0,k = xk ∀ k = 0...n−1 (n = 2J) :

cj+1,k =
1√
2

(cj,2k + cj,2k+1) 0 ≤ k ≤ 2J−(j+1) − 1, (10)

dj+1,k =
1√
2

(−cj,2k + cj,2k+1) 0 ≤ k ≤ 2J−(j+1) − 1. (11)

Les coefficients en ondelettes cj+1 relatifs à l’approximation grossière à
l’échelle 2j+1 représente une sorte de moyenne du signal et les coefficients en
ondelettes dj+1 relatifs aux détails représentent une différence entre les com-
posantes du signal. Notons que la longueur de cj+1 et dj+1 est la moitié de
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la longueur de cj et dj . En fait, il n’est pas nécessaire de stocker deux fois la
moyenne des deux valeurs et deux fois leur différence.

Pour le processus de reconstruction, le filtre Lo′ a deux coefficients non-nuls
égaux à 1/

√
2 pour n = 0 et n = 1 ; le filtre Hi′ a deux coefficients non-nuls

dont l’un est égal à 1/
√

2 en n = 0 et l’autre est égal à −1/
√

2 en n = 1. Plus
simplement, nous avons ces formules :

cj,k =
1√
2

(cj+1,k/2 − dj+1,k/2) pour k pair et 0 ≤ k ≤ 2J−j − 1, (12)

cj,k =
1√
2

(cj+1,(k−1)/2+dj+1,(k−1)/2) pour k impair et 0 ≤ k ≤ 2J−j−1. (13)

Enfin, la figure 7 représente le signal digital du chant d’un oiseau (signal
discret de longueur 213 provenant de WaveLab). Elle représente également ses
coefficients en ondelettes relatifs aux détails calculés par l’algorithme de Mallat
avec l’ondelette Coiflet 4 et L = 3. On constate que le nombre de coefficients
diminue à chaque échelle et que seules les deux premières échelles ont des coef-
ficients significatifs.

2.4. Transformée en ondelettes de signaux multidimensionnels

2.4.1. Transformée en ondelettes de signaux bidimensionnels

A chaque base orthonormée d’ondelettes {ψj,n}(j,n)∈ZZ2 de L2(IR), on pour-

rait associer une base séparable orthonormée d’ondelettes de L2(IR2) :

{ψj,n(x)ψl,m(y)}
(j,l,n,m)∈ZZ4 .

Les fonctions ψj,n(x)ψl,m(y) associent l’information à deux échelles différentes
2j et 2l le long de x et y, ce que l’on préfère souvent éviter. Les multirésolutions
séparables conduisent à une autre construction de bases d’ondelettes séparables,
dont les éléments sont des produits de fonctions dilatées à la même échelle. Nous
définissons

φ1(x, y) = φ(x)φ(y) (14)

et

ψ1(x, y) = φ(x)ψ(y), ψ2(x, y) = ψ(x)φ(y), ψ3(x, y) = ψ(x)ψ(y). (15)

Nous notons

φ1j,n,m =
1

2j
φ1(

x− 2jn

2j
,
y − 2jm

2j
) (16)

et pour 1 ≤ k ≤ 3

ψkj,n,m =
1

2j
ψk(

x− 2jn

2j
,
y − 2jm

2j
). (17)
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Figure 7. Décomposition en ondelettes d’un signal digital du chant d’un oiseau
("Tweet" de WaveLab avec J = 13) avec l’ondelette Coiflet 4 et L = 3.
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La famille d’ondelettes

{φ1L,n,m, ψ1
j,n,m, ψ

2
j,n,m, ψ

3
j,n,m}n,m,j∈ZZ3

,j≤L,L∈ZZ (18)

est une base orthonormée de L2(IR2).

De nouveau, toute fonction de L2(IR2) peut être décomposée dans cette
base au moyen de coefficients appelés coefficients d’ondelettes. Les coefficients
d’ondelettes correspondant à φ1L,n,m, noté c1L, sont liés à l’approximation gros-
sière du signal à l’échelle L, tandis que les autres coefficients correspondant à
ψkj,n,m, notés {dkj }j , sont liés aux détails à des résolutions plus fines : {d1j}j cor-
respondant aux détails horizontaux, {d2j}j correspondant aux détails verticaux,
{d3j}j correspondant aux détails diagonaux.

Evidemment, l’algorithme de transformée en ondelettes rapide défini pour
des signaux unidimensionnels discrets et finis dans la section précédente, appelé
algorithme de Mallat, est étendu à deux dimensions (O(n2) avec n = 2J et n2
désigne le nombre d’éléments de l’image). L’étape de décomposition calcule les
coefficients d’ondelettes c1L, {d1j , d2j , d3j}j≤L du signal x par la procédure suivante.
Nous définissons c10 = x et posons j = 0. Les lignes de c1j sont premièrement
convoluées avec les filtres Lo et Hi et sous-échantillonnées par 2 comme dans le
cas unidimensionnel (voir équation 8). Les colonnes de ces deux images de sortie
sont alors convoluées respectivement avec Lo et Hi et sous-échantillonnées, ce
qui donne 4 images sous-échantillonnées c1j+1, d1j+1, d2j+1, d3j+1. Nous itérons
cette étape pour 0 ≤ j < L. La représentation en ondelettes de l’image x est
alors composée de 3L+ 1 sous-images :

[cL, {d1j , d2j , d3j}1≤j≤L]. (19)

Le processus de reconstruction est obtenu par une procédure similaire. Les co-
lonnes de c1j et d1j (j = L) sont sur-échantillonnées par 2 (voir équation 9),
convoluées avec Hi′ et Lo′ et additionnées. De même, les colonnes de d2j et d3j
(j = L) sont sur-échantillonnées par 2 (voir équation 9), convoluées avec Hi′
et Lo′ et additionnées. Les lignes de ces deux images résultat sont alors sur-
échantillonnées et convoluées respectivement avec Hi′ et Lo′ et additionnées, ce
qui donne l’image c1j−1. L’image originale est retrouvée à partir de la représenta-
tion en ondelettes dans l’équation 19 en itérant ce processus pour L > j ≥ 0. Les
coefficients en ondelettes sont stockés dans une matrice comme dans la figure 8
où n = 8 (J = 3) et L = 2. Des exemples de cet algorithme rapide pour des
signaux finis discrets bidimensionnels sont illustrés dans les figures 9 et 10. Dans
ces figures, il est facile de voir que d1, d2, d3 représentent les détails verticaux,
horizontaux et diagonaux respectivement.

2.4.2. Transformée en ondelettes de signaux multidimensionnels

La transformée en ondelettes et les algorithmes de Mallat peuvent
être généralisés à toutes les dimensions par une procédure similaire. Cependant,
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x(1, 1) x(1, 2) x(1, 3) x(1, 4) x(1, 5) x(1, 6) x(1, 7) x(1, 8)
x(2, 1) x(2, 2) x(2, 3) x(2, 4) x(2, 5) x(2, 6) x(2, 7) x(2, 8)
x(3, 1) x(3, 2) x(3, 3) x(3, 4) x(3, 5) x(3, 6) x(3, 7) x(3, 8)
x(4, 1) x(4, 2) x(4, 3) x(4, 4) x(4, 5) x(4, 6) x(4, 7) x(4, 8)
x(5, 1) x(5, 2) x(5, 3) x(5, 4) x(5, 5) x(5, 6) x(5, 7) x(5, 8)
x(6, 1) x(6, 2) x(6, 3) x(6, 4) x(6, 5) x(6, 6) x(6, 7) x(6, 8)
x(7, 1) x(7, 2) x(7, 3) x(7, 4) x(7, 5) x(7, 6) x(7, 7) x(7, 8)
x(8, 1) x(8, 2) x(8, 3) x(8, 4) x(8, 5) x(8, 6) x(8, 7) x(8, 8)

⇓
c2(1, 1) c2(1, 2) d22(1, 1) d22(1, 2) d21(1, 1) d21(1, 2) d21(1, 3) d21(1, 4)
c2(2, 1) c2(2, 2) d22(2, 1) d22(2, 2) d21(2, 1) d21(2, 2) d21(2, 3) d21(2, 4)
d12(1, 1) d12(1, 2) d32(1, 1) d32(1, 2) d21(3, 1) d21(3, 2) d21(3, 3) d21(3, 4)
d12(2, 1) d12(2, 2) d32(2, 1) d32(2, 2) d21(4, 1) d21(4, 2) d21(4, 3) d21(4, 4)
d11(1, 1) d11(1, 2) d11(1, 3) d11(1, 4) d31(1, 1) d31(1, 2) d31(1, 3) d31(1, 4)
d11(2, 1) d11(2, 2) d11(2, 3) d11(2, 4) d31(2, 1) d31(2, 2) d31(2, 3) d31(2, 4)
d11(3, 1) d11(3, 2) d11(3, 3) d11(3, 4) d31(3, 1) d31(3, 2) d31(3, 3) d31(3, 4)
d11(4, 1) d11(4, 2) d11(4, 3) d11(4, 4) d31(4, 1) d31(4, 2) d31(4, 3) d31(4, 4)

Figure 8. Décomposition bidimensionnelle en ondelettes orthonormées (J = 3, L =
2).

quand la dimension augmente, la performance de l’analyse par ondelettes peut
diminuer. Prenons deux exemples. Premièrement, nous avons vu que seulement
trois orientations sont privilégiées (horizontal, vertical et diagonal) en dimension
2. Deuxièmement, l’efficacité des algorithmes de Mallat qui sont rapides est due
au stockage des données. Ceci peut être un problème pour de grandes données
multidimensionnelles. Pour pallier ces inconvénients, de nombreux chercheurs se
sont inspirés de la théorie des ondelettes et ont proposé des alternatives appe-
lées : ridgelets, shearlets, curvelets, bandlets, etc. Celles-ci ne font pas l’objet de
cette note.

2.5. Transformation en ondelettes invariantes par translation

En reconnaissance de formes, il est important de construire des repré-
sentations du signal qui sont invariantes par translation à cause de la difficulté de
la recherche de la forme si sa représentation dépend de sa localisation. Quand une
forme est translatée, ses descripteurs numériques devraient être translatés mais
pas modifiés. Des transformées en ondelettes continues fournissent des représen-
tations invariantes par translation, mais échantillonner de manière uniforme le
paramètre de translation détruit cette invariance par translation. Il y a beaucoup
de stratégies pour maintenir l’invariance par translation d’une transformée en
ondelettes discrète.

Dans cette section, nous décrivons l’algorithme invariant par translation
bien connu de Coifman et Donoho (Donoho et Coifman, 1995). Cet algo-
rithme pour signal discret fini (longueur n = 2J) est le suivant. A la place
d’avoir n coefficients en ondelettes comme dans la figure 6, nous avons (L+ 1)n
coefficients d’ondelettes. En fait, nous avons n coefficients relatifs à l’approxima-
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Figure 9. Décomposition en ondelettes d’un hexagone blanc sur fond noir avec L=2
(J=9). Les pixels noirs, gris et blancs correspondent respectivement à des coefficients
en ondelettes positifs, nuls et négatifs.
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Figure 10. Décomposition en ondelettes d’une photo d’un champ avec L=2 (J=9).
Les pixels noirs, gris et blancs correspondent respectivement à des coefficients en
ondelettes positifs, nuls et négatifs.
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1 x(1)
2 x(2)
3 x(3)
4 x(4)
5 x(5)
6 x(6)
7 x(7)
8 x(8)
9 x(9)
10 x(10)
11 x(11)
12 x(12)
13 x(13)
14 x(14)
15 x(15)

16 = 24 x(16)

⇒

1 c3(1) d1(1) d2(1) d3(1)

2 c3(2) d1(2) d2(2) d3(2)

3 c3(3) d1(3) d2(3) d3(3)

4 c3(4) d1(4) d2(4) d3(4)

5 c3(5) d1(5) d2(5) d3(5)

6 c3(6) d1(6) d2(6) d3(6)

7 c3(7) d1(7) d2(7) d3(7)

8 c3(8) d1(8) d2(8) d3(8)

9 c3 (9 ) d1 (9 ) d2 (9 ) d3 (9 )
10 c3 (10 ) d1 (10 ) d2 (10 ) d3 (10 )
11 c3(11) d1 (11 ) d2 (11 ) d3(11)
12 c3(12) d1 (12 ) d2 (12 ) d3(12)
13 c3(13) d1 (13 ) d2(13) d3(13)
14 c3(14) d1 (14 ) d2(14) d3(14)
15 c3(15) d1 (15 ) d2(15) d3(15)
16 c3(16) d1 (16 ) d2(16) d3(16)

Figure 11. Décomposition en ondelettes orthonormales invariante par translation et
unidimensionnelle (J = 4, L = 3).

tion et n coefficients relatifs aux détails à chaque échelle. Ceux-ci sont stockés
dans une matrice comme dans la figure 11 où n = 16 (J = 4) et L = 3.

Comment ces coefficients sont-ils calculés ? En fait, tous les coefficients en onde-
lettes invariants par translation relatifs à l’approximation (détails resp.) à une
échelle j d’un signal sont des coefficients en ondelettes de Mallat relatifs à l’ap-
proximation (détails resp.) à une échelle j d’une version translatée du signal
original. Nous définissons x(n − i + 1) . . . x(n)x(1)x(2) . . . x(n − i) le signal ori-
ginal (x(1) . . . x(n)) translaté à droite de i unités. Par exemple dans la figure
11, les coefficients d’ondelettes invariant par translation écrit en gras sont les
coefficients de Mallat du signal original. Les coefficients d’ondelettes invariant
par translation écrits en italique sont des coefficients d’ondelettes de Mallat du
signal original translaté à droite de un. Les coefficients d’ondelettes invariant par
translation soulignés sont les coefficients d’ondelettes de Mallat du signal original
translaté à droite de 2. Ces coefficients invariants par translation sont facilement
calculables par un algorithme rapide semblable à l’algorithme de Mallat. Il s’ef-
fectue en O(n log(n)). Remarquons que si nous translatons le signal original, ses
coefficients invariants par translation sont les coefficients invariants par transla-
tion du signal original permuté.

3. LOGICIELS POUR ONDELETTES

L’expérimentation numérique est indispensable pour comprendre la portée
des résultats et des algorithmes de traitement du signal. WaveLab est une boîte
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à outils programmée dans l’environnement numérique de Matlab. Ce logiciel est
disponible gratuitement sur internet. LastWave est un autre environnement de
traitement du signal et de l’image en ondelettes, écrit en C, par Emmanuel Bacry
et ses collaborateurs. Il est gratuit et n’utilise aucun autre logiciel commercial.
Enfin d’autres logiciels gratuits existent. Des liens vers de nouveaux logiciels
ainsi que des informations sur la Wavelet Digest Newsletter sont disponibles sur
http ://www.wavelet.org.

3.1. WaveLab

WaveLab est une bibliothèque de fonctions MatLab portant sur les onde-
lettes et les transformées temps-fréquence associées. Elle est maintenue et amé-
liorée à l’Université de Stanford par David Donoho et ses collaborateurs. Elle
nécessite l’achat de Matlab, qui offre un environnement interactif de calcul nu-
mérique et de visualisation. La version 0.800 de WaveLab comprend plus de 800
fichiers, dont des programmes, des données, de la documentation, qui peuvent
être téléchargés à http ://www-stat.stanford.edu/∼wavelab. Des versions sont dis-
ponibles pour les stations de travail Unix, Linux, Macintosh et PC (Windows)
(Mallat, 1988).

3.2. LastWave

LastWave est un environnement de traitement du signal et de l’image,
écrit en C pour les ordinateurs X11/Unix et Macintosh. Ce logiciel est gratuit
et autonome et ne nécessite pas de logiciel commercial additionnel, et peut être
obtenu sur Internet à http ://wave.cmap.polytechnique.fr/soft/LastWave/. Last-
Wave a été créé et est maintenu par Emmanuel Bacry à l’Ecole Polytechnique
en France. Il comprend un langage en ligne de commande, et un langage gra-
phique orienté objet de haut niveau pour afficher des objets simples (boutons,
chaînes,...) et plus complexes (signaux, images, transformées en ondelettes, plans
temps-fréquence,...). Les procédures numériques et les commandes sont regrou-
pées dans des boîtes à outils indépendantes. Une documentation en ligne exhaus-
tive est disponible. De nouvelles commandes peuvent être ajoutées par le langage
de commande ou des procédures en C. Ce logiciel évolue rapidement avec des
boîtes à outils qui proviennent d’utilisateurs sur Internet (Mallat, 1988).

4. EN GUISE DE CONCLUSION

Dans cette note technique, nous avons mis en évidence le mécanisme
des ondelettes. En réalité, nous avons défini la transformée en ondelettes, nous
avons souligné ses propriétés et fourni des illustrations. Les avantages de l’analyse
du signal par ondelettes et son efficacité ont été remarqués par une comparaison
avec la transformée de Fourier. A ce stade, nous pouvons conclure que le succès
des ondelettes provient non seulement de son analyse temps-fréquence mais aussi
de ses algorithmes rapides.
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