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Abstract—Since the days the investigating officers used ’pin
maps” to locate and to think about crime events, crime
mapping has become widespread thanks to spatial analysis
mainly supplied by GIS-like software. In particular these
methods suit well to geographic profiling devoted to crime
series characterised by a single offender and hence limited
space and time variability. Although spatial techniques are
now regularly performed to delineate an offender’s area of
residence, the temporal dimension is underemployed due to
the wider uncertainty of time records. This paper proposes a
methodology based on a least-squares adjustment in order to
cope with this temporal issue for determining the most probable
offender’s residence. Moreover, a chi-square test is described to
check the significance of the solutions suggested by the method.
The process is carried out on the real road network which
has been discretised (rasterised) for computing convenience.
Three simulations show the validity of the reasoning. Finally
the main time and speed assumptions introduced in the model
are discussed paving the way for further research.
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I. INTRODUCTION

Among the domains where the quality of spatial and tem-
poral data especially affects operational performance analy-
sis, crime mapping is probably one of the most intriguing to
the general public. Its premises date back to the 19th century,
but the analysis offered by GIS allowed geographic profiling
to expand only in recent decades. Geographic profiling is
defined as a methodology of investigation that uses the
locations of a series of connected crimes to determine the
criminal’s most probable area of residence [1]. In addition to
psychologist profiling, it is nowadays widely used in serious
crime investigations.

The temporal dimension of geographic profiling has been
underexploited while recent criminal literature underlines
the importance of simultaneously addressing both spatial
and temporal aspects of crimes (several references in [2]).
Uncertainty in temporal data largely explains their under-
utilization. The failure to capture temporal details by the
police [3], the practical and/or psychological inability of the
victim to specify the time of a crime, and the variability
of the offenders’ behaviour are the main causes of the low

reliability of temporal data. If temporal information is pro-
cessed in conjunction with spatial information, errors may
appear on space (sought-after criminal’s place of residence,
crime location), on time (starting time of the criminal from
his/her residence, time of the crime) and on speed (travel
from criminal’s residence to crime site).

This paper precisely deals with the modelling of the
inaccuracies of the recorded times of crime for providing
geographic profiling with a new method exploiting spatio-
temporal convergence. In order to address this issue, the pa-
per is organised as follows. The context, Section II, describes
the situation in which the offender’s anchor site can be
determined thanks to temporal information. It also specifies
the temporal, behavioural and spatial assumptions required
to limit the variation of spatial and temporal parameters.
In Section III, we present the basic isotropic methodology
used to locate the criminal’s most probable area of residence.
Then we analyse the least-squares solution for the gener-
alization of the diffusion process on an anisotropic space.
Subsequently a chi-square test is proposed in order to assess
the validity of the improved method. The reasoning is then
illustrated in Section IV by simulation processes generating
variances in the data sets.

The consequences of the assumptions introduced in the
previous process are discussed in Section V and method-
ological solutions are considered in order to raise these hy-
potheses. Finally, the conclusion in Section VI summarises
the bringing-in of this article.

II. CONTEXT

The context chosen for this research is dictated by real
facts relating to multiple rapes perpetrated by the same au-
thor, at different dates and for several years within a reduced
spatial and temporal variability: crimes spread across an area
limited to a radius of a few tens of kilometres, and are
perpetrated in a winter time slot ranging between 7.00 and
7.30 AM. The narrow time slot during which the crimes
were committed suggests a strong but likely assumption,
i.e. a constant departure time from a single anchor point. By
modelling the travel time from each crime site, it should then
be possible to identify, back in time, the location with similar



departure time. This one is assumed to be the offender’s
anchor point.

Concerning the offender’s spatial behaviours, two kinds
of scenarii could be explored. According to the criminal
profile and the crime type, the offender can take advantage of
an opportunity during his daily activities (theory of routine
activity in environmental criminology [4]) or, conversely, he
prepares the crime beforehand by a precise location.

The first behaviour can use several types of travel between
the criminal’s place of residence and the site of crime
(circuit or zigzag for example). The second behaviour, on
the other hand, strongly favours the direct travel between
his residence and the site of crime i.e. the use of the
shortest path on the road network. In our context, the crime
locations and the times they were committed suggest that
the criminal has made a very specific location prior to each
crime corresponding to the second behaviour. It is therefore
possible to favour a “star” pattern in the journeys between
the criminal’s anchoring site and the sites of crimes.

Regarding the spatial assumptions, the extending area
of crime is too large to consider a pedestrian behaviour.
Assuming car as mode of transportation, the journeys-to-
crime are limited to the road network and only crimes carried
in its vicinity are considered. All the points of the network
are then candidates to host the offender’s anchor point.

III. DETERMINING THE GEOGRAPHICAL ORIGIN OF A
SERIAL OFFENDER

Our research question is defined as follows: is it possible
to determine the geographical origin of a serial offender
taking into account the temporal uncertainty of the crime
data? The analysis is based on the temporal, behavioural
and spatial assumptions described in the context.

This section analyses firstly the research question with
a simplified reasoning. Then it introduces gradually the
complexity of real cases in order to clearly identify the
various issues relating to the problem.

A. Isotropic diffusion case

1) Definition of the problem: n criminal events occurred
at places with known coordinates (z;, y;) and at recorded
times ¢; (with ¢ = 1 to n). The purpose of the analysis is
to determine the offender’s origin, assumed to be his/her
residence, and his/her constant time of departure. The prob-
lem contains three unknowns: x and y the coordinates of
the offender’s residence and ¢, the time of departure from
this residence. In the specific case of isotropic diffusion and
constant velocity v, the problem is analytically formulated
as follows:
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In the case described above, we may identify a solution
for this problem according to the least-squares adjustment

(LSA) in order to take into account the variability of the
t;. This variability has multiple sources: a bad estimation
given by the victims, some waiting time before acting for
the offender, small variations in his time of departure.

2) Least-squares formulation: Residuals v; were added
to the n observation equations:
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According to least-squares theory [5], [6], these equations
are linearised:
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where (2°,y°) is an approximation of the residence coor-
dinates and Dy the corresponding distance to the crime ¢
location. These n equations can be written in matrix form:
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The Jacobian matrix A contains the equations partial deriva-
tives with respect to the unknowns. The vectors z, v and
w gather respectively the unknowns, the residuals and the
independent terms.
The least-squares solution is then given by
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where Z is the estimation of x constituting the solution in
the least-squares sense .

By definition, this solution minimises the sum of the
squares of the residuals (SSR): vTy min

B. Diffusion on the network

The previous section shows that the simplified problem
can be solved with the LSA. However, we assumed an
isotropic diffusion on a continuous space. In real situa-
tions the road network conditions the path followed by the
offender. Therefore we need to generalise the problem to



any diffusion process, which from a practical standpoint, is
treated by a discretisation of space. Equation 2 becomes:

t+di(x,y) =t + v (10)

where d;(z,y) are the travel times or the delays between the
origin (x,y) and the crime 4. The travel time or equivalently
the potential starting time at any point of the network
toi(x,y) is estimated numerically. The solution will be
obtained semi-analytically. Let us denote by (z, y) the mean
of the potential starting times between homologous locations
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then the least-squares solution is the triplet (z,y,(x,y))

minimising the SSR:
Vv = (Hx,y) = to(z,y))* min (12)
i=1
C. Statistical validation

According to least-squares hypotheses, residuals follow
a normal distribution. Consequently, the SSR follows a x?
distribution with n — p degrees of freedom (with n the
number of observations and p, the number of unknowns).
Therefore the following x? test was built to determine
the upper bound of the SSR below, which the area can
potentially contain the offender’s residence.

vy < (n—p) o, (13)

o2 is the a-priori variance chosen according to the uncer-

tainty attributed to the recorded ¢;. In first approach, we
postulate that the uncertainty is similar for all the observed
times (¢;). Indeed, this uncertainty influences the trust we
attribute to the identified solution.

IV. SIMULATIONS

We chose to work in raster mode as all the pixels of
the road network could potentially be candidates for the
anchor point. Indeed, the raster mode is suitable to represent
a spatially continuous phenomenon. Besides, this mode
is compatible with parallel developments explained in the
perspectives. Three simulations, implemented on ArcGis 9.3
(Spatial Analyst) are performed to illustrate the reasoning
with the ¢; obtained from a randomly chosen residence and
starting time.

The first simulation considers the ¢; without uncertainty
while the two others introduce two different precisions
corresponding to variance of 2 and 5 on the ;.

Spatial data concerning the road network and the sites of
crimes are available with high precision (5 m). By contrast,
there is no information on the network load and therefore
on the varying vehicle speeds on the different parts of the
network at crime times. In order to isolate the temporal
uncertainty coming from the times of crime, a constant

speed of 50 km / h was set for this application. It is worth
noting that a constant velocity could correspond to a motorist
looking for potential targets as well as, for a lower speed,
to a pedestrian movement.

A. Evaluation of times corresponding to the crime events

(ti)

The first step of the simulation is to determine four
plausible times of crime at four distinct locations respecting
the assumption of a constant departure time from an unique
location.

o We first arbitrarily choose a location for the offender’s
residence and a unique time of departure corresponding
to 7 AM.

o We build a cost surface corresponding to the crossing
time at an assumed constant speed of 50 km/h. The
surface is generated in raster mode with a 10-m pixel
resolution. A cost of 0.072 is assigned to every pixel
of the rasterised network, corresponding to the time
required to travel one meter at this speed of 50km/h.

o The cost distance from the offender’s residence d is
calculated in each cell of the network as a sum of
costs per cell ¢;. We computed the cost distance using
the function ”Cost Distance” in ArcGis based on the
following algorithm [7].

cj=cx*r (14)
with ¢ the unit cost and r the cell resolution
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where a; is the accumulative cost to move from cell j
to cell 7 + 1 (cf. Fig. 1) and

if the movement is horizontal or vertical

1
k= { V2 if the movement is diagonal
(16)
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where j is the current pixel on the way between the
origin and the destination and m is the number of pixels
on this same way.

o The departure time is added to the calculated cost
distance to generate the crossing time of each cell in
the network.

o Four crime sites are randomly selected on the network
and their crossing time is considered as the crime time
(n =4).
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Figure 1. Horizontal and verical node calculations. [7]

The pixel candidate for the residence with the exact values of t
= o

Zoom on the residence

Actual residence

| @ crimesites
|+ Leastsquares solution
| SSR (seconds?)
| M ose1- 4061
B ¢te1-50e3
| 5643 1.0e44
« | I 11eva- 50044
A [ 5e+4-25e+6 o ) hm

Figure 2. The almost-overlap of the actual residence and the least-squares
solution, minimizing the sum of the suared residuals (SSR), illustrates the
validity of the least-squares adjustment.

B. LSA for the exact values of t;

The potential starting time for each observation ¢; in every
cell of the network ¢, ; is evaluated by reverse processing
(regressive time from the crime sites through the road
network using the same cost). This step generates four
images that will be used as input for the LSA.

As explained in Section III-B, the pixel average of these
images is calculated. This corresponds to the average starting
time for the analysed crimes. The residuals consist in the
differences between this average ¢ and each observation toi
computed at every pixel of the network. The least-squares
solution of the system is the cell that minimises:

—to)” (18)
i=1

and should ideally be equal to 0.

The result is presented in Fig. 2. The obtained minimum
is slightly different from O and located in the cell just
next to the one containing the arbitrary chosen residence.
The result can still be considered as valuable despite this
difference explained by the algorithm used to calculate the
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Figure 3. The offender’s residence is located inside the area delineated

by the x? threshold on the sum of the squared residuals (SSR).

cost distance. Indeed, the cost is calculated from the cell next
to the one containing the residence and its value depends on
the precision of the cell resolution.

C. Introduction of the uncertainty on the t;

We choose two a-priori variances of 5 and 10 correspond-
ing respectively to uncertainties of 2°15” and 3°10”. The
new values of ¢; consistent with these variances, respectively
i 2min and t; 5mqn, are presented in Tab. I. The potential
starting time in every cell of the network is then updated
using the methodology previously described in order to
evaluate in each cell the new value of SSR. Figures 3 and
4 illustrate the result of the test described in Equation 13
using a probability level of 95 %. The least SSR value, the
least-squares solution, does not correspond to the arbitrary
offender’s residence because of the introduced uncertainties.
Nevertheless it is worth noting that this place remains
located inside the area delineated by the thresholded value
of the x? test.

In addition, the search for the criminal can be prioritised
in this area.

V. DISCUSSION OF THE ASSUMPTIONS AND
PERSPECTIVES

The previous analyses are based on several assumptions
that are not necessarily encountered in real life.

Firstly, it assumes an offender’s constant starting time.
This is certainly the most restrictive hypothesis as it renders
useless any attempt to solve crime series where the crime
locations are close to each other while the crime times are
very different. Therefore, other hypotheses than a constant
departure time of the offender have to be considered. The
minimization of the variances of the journey times from



Table T

SIMULATION PARAMETERS

Crime event | Distance (km) | Travel time Exact t; t; with a variance of 5 | ¢; with a variance of 10
1 5.11 6°08” 07:06:08 07:08:22 07:10:08
2 15.89 19°04” 07:19:03 07:16:37 07:21:31
3 12.31 14°46” 07:14:46 07:16:46 07:11:46
4 8.50 10’12~ 07:10:12 07:07:58 07:07:12
Value of the upper bounds calculated from the xZ (seconds?) 215693 431385

The pixel candidate for the residence with
a variance of 10
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Figure 4. The delineated area widens and moves with the change of

temporal uncertainty.

the offender’s anchor point could be analysed with a quite
similar methodology.

Secondly, an identical time uncertainty is attached to every
observation. In practice some events may be recorded with
better precision than others: a witness can corroborate the
information given by the victim; the time of the event can be
constrained by the victim’s activity schedule; etc. In order to
consider such a variable time uncertainty, a solution could be
obtained thanks to a weighted LSA [5]. Indeed the relative
confidence attributed to each crime time could be computed
as the ratio of the a priori variance and the corresponding
time variance. These weights introduced in the resolution
process would then modify the estimation of the unknowns
as well as the SSR analysed in the x? test.

A third assumption deals with the speed supposed to be
constant going through the road network. If this assumption
can be considered acceptable for pedestrian journeys, it is
not the case for an offender travelling by car. Car cruising
speed varies considerably on a network according to a
number of parameters depending notably on the spatial
environment (urban street, rural road, etc.) and on temporal
conditions (time of the day, day of week, etc.). Most of
these parameters are well identified in the traffic engineer-
ing literature [8]-[10] and may then be exploited by our
methodology with very little changes. However the speed

at a precise place and moment can only be approximated
by the dedicated algorithms (e.g., multi-agent system) [11],
[12]. Consequently the errors inherent to speed are added to
the time uncertainties on the events and they are merged in
the residual values provided by the LSA.

Besides, crimes are generally not committed on the road
as considered in this application, but either in discrete
locations in the vicinity of the road where the victims are
driven, or in the victims’home. The path covered by foot
by the criminal on and out of the road can reach tens to
hundreds of meters. A research trying to model this kind
of trips is under progress, aiming to achieve a cost surface
using raster images of land uses at a metric or decametric
resolution.

The fact of raising assumptions modifies the assessment of
the total time error. The method presented herewith should
therefore be part of a more comprehensive approach to
error propagation. In this respect the use of a modified
Monte Carlo algorithm to train different types of Bayesian
neural networks and to estimate uncertainty limits [13], is
considered.

VI. CONCLUSION

This study develops a methodology for determining the
most probable area for an offender’s residence assuming
a constant starting time. The process is performed on a
rasterised road network crossed at constant speed and the
method, which is based on a LSA, is able to include the
uncertainty affecting the recorded times of the crimes. A x?
test also described herewith allows to check the significance
of the value presented by the residence locations (pixels)
suggested by the method.

This method allows to test a hypothesis of constant
starting time for the offender’s spatial behaviour at a constant
travelling speed. A geographic profile can only be built on
eliminating progressively some hypothesis concerning this
behaviour.

The analysis is supported by three simulations: the first
one assumes exact values for the crime times, while the oth-
ers introduce a variability in the crime times corresponding
to variances of 5 and 10 respectively. The simulations show
that the identified solutions lie in the vicinity of the correct
location in a way adequately described by the 2 statistic.



ACKNOWLEDGMENT

The researches achieved by M. Trotta and B. Bidaine are
funded under F.R.S.-FNRS fellowships (Belgian National
Fund for Scientific Research).

(1]

(2]

(3]

[4

—_

(5

—

[6

—_

(71

(8]

(9]

(10]

(11]

(12]

(13]

REFERENCES

K. Rossmo, Geographic profiling. Boca Raton.: CRC Press,
2000.

T. Grubesic and E. Mack, “Spatio-temporal interaction of
urban crime,” Journal of Quantitative Criminology, vol. 24,
no. 3, pp. 285-306, 2008.

P. J. Brantingham and P. L. Brantingham, “Anticipating the
displacement of crime using the principles of environmental
criminology,” pp. 119-148, 2003.

P. Brantingham and P. Brantingham, ‘“Notes on the geometry
of crime,” in Environmental Criminology, B. P.L. and B. P.J.,
Eds. Beverly Hills: Sage, 1981, pp. 27-54.

C. Ghilani, Adjustment Computations: Spatial Data Analysis,
2nd ed. John Wiley & Sons, 2010.

P. Sillard, Estimation par moindres carrés, ser. Collection
ENSG . IGN. Paris: Hermes Sciences Publications, 2001.

ESRI, “Arcgis resource center. how cost distance
tools work,” 1999-2010. [Online]. Available:
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html.
Consulted on the 23th October 2010

W. Homburger, J. Hall, W. Reilly, and E. Sullivan, Fundamen-
tals of Traffic Engineering, 16th ed. University of Berkeley,
Institute for Transportation Studies, 2007.

H. Miller and S.-L. Shaw, Geographic Information Systems
for Transportation. Oxford University Press, 2001.

J.-C. Thill, Geographic Information Systems in Transporta-
tion Research. Pergamon, 2000.

E. Groff, “Characterinzing the spatio-temporal aspects of
routine activities and the geographic distribution of street rob-
bery,” in Artificial Crime Analysis System. Using Computer
Simulation and Geographic Information Systems, L. Liu and
J. Eck, Eds. New York: Information Science Reference,
2008, pp. 226-251.

F. Balbo and S. Pinson, “Dynamic modeling of a disturbance
in a multi-agent system for traffic regulation,” Decision Sup-
port Systems, vol. 41, no. 1, pp. 131-146, 2005.

F. L. Xuesong Zhang, R. Srinivasan, and M. V.
Liew, “Estimating uncertainty of streamflow simulation
using bayesian neural networks,” Water Resour. Res.,
vol. 45, no. 2, p. 16, 2009. [Online]. Available:
http://dx.doi.org/10.1029/2008 WR007030



