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ABSTRACT

A new ”self-calibrated” statistical analysis method has been developed for the reduction of

nulling interferometry data. The idea is to use the statistical distributions of the fluctuating null

depth and beam intensities to retrieve the astrophysical null depth (or equivalently the object’s

visibility) in the presence of fast atmospheric fluctuations. The approach yields an accuracy much

better (about an order of magnitude) than is presently possible with standard data reduction

methods, because the astrophysical null depth accuracy is no longer limited by the magnitude of

the instrumental phase and intensity errors but by uncertainties on their probability distributions.

This approach was tested on the sky with the two-aperture fiber nulling instrument mounted on

the Palomar Hale telescope. Using our new data analysis approach alone - and no observations

of calibrators - , we find that error bars on the astrophysical null depth as low as a few 10−4 can

be obtained in the near infrared, which means that null depths lower than 10−3 can be reliably

measured. This statistical analysis is not specific to our instrument and may be applicable to

other interferometers.

Subject headings: Instrumentation: high angular resolution and interferometers, Methods: data

analysis and statistical

1. Introduction

Since the first discovery of an exoplanet around a solar-type star (Mayor & Queloz 1995), the quest to

find earth-like exoplanets and, even more importantly detect the presence of life on them became a major

topic in astrophysics. However, the direct imaging of such systems is very challenging because of the high

spatial resolution and dynamic range required. One possible way to overcome these difficulties is to use

nulling interferometry (Bracewell 1978). In this approach, one destructively combines the light coming from

two or more apertures in order to dim the bright on-axis starlight and reveal faint objects or structures in

the immediate vicinity.

The analysis of interferometric data in general, and nulling interferometric data in particular (Colavita

et al. 2009), is a complex task because accurate calibration of the instrument is needed to extract the sci-

entific information. In the case of interferometric nulling, the quantity of interest is the astrophysical null

depth (Na), which is the inverse of the rejection ratio, and directly relates to the target’s spatial brightness
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distribution. In practice however, the measured interferometric null depth is not strictly equal to the astro-

physical null depth, because of the effects of instrumental noise and error sources such as phase differences,

intensity mismatch and global intensity fluctuations. It had been thought that a proper determination of

the astrophysical null depth requires the mean values of these instrumental error sources to be accurately

known, e.g. (Serabyn 2000; Lay 2004). The classical method used for deriving astrophysical null depths - and

visibilities - has therefore been to average different sequences recorded on the science star and estimate the

instrumental bias by observing a calibrator star (Colavita et al. 2009). This technique has been extensively

used for years for both classical and nulling interferometry, but suffers from well known limitations: (i), the

final accuracy depends on the scientific knowledge of the calibrator star, (ii), the accuracy is limited by the

stability of the observing conditions and (iii), calibrator observations are time consuming.

To circumvent these limitations, we describe here a new method of calibrating astrophysical null depths,

based on measuring the properties of the observed null depth distribution. The basic idea is to record a time

sequence of the rapid null depth fluctuations, and then retrieve the underlying astrophysical information by

modeling the observed statistics of the null depth distribution. Using such a statistical analysis, we show in

the following that it is possible to retrieve astrophysical null depths with much better accuracy than classical

approaches allow. Moreover, our initial stellar observations indicate that this statistical approach does not

require any observation of calibrator stars, at least down to null depth measurement accuracies as low as a

few 10−4 (the exact number depends on the instrument set-up being used). In this paper, we first explain

the principle and theory of this new statistical data analysis strategy, and then apply it to initial astronom-

ical null data obtained with the Palomar Fiber Nuller (PFN) (Serabyn & Mennesson 2006; Serabyn et al.

2006; Mennesson et al. 2006; Martin et al. 2008), a nulling-based interferometric “coronagraph” developed

at the Jet Propulsion Laboratory. However, we emphasize that the new reduction method can potentially

be applied to any null and/or visibility measurements in general.

2. The statistics of the null depth

2.1. The expression for the null

We begin from the expression for the observed null depth of a two beam interferometer for a point

source in the presence of error sources, as given by Serabyn (2000). In the case of two planar monochro-

matic wavefronts, the combined stellar intensity measured at constructive interference (+) and destructive

interference (-) at time t is given by :

I∗±(t) =
1

2

[
I∗1 (t) + I∗2 (t)± 2 cos (∆φ(t)) cos (αrot)

√
I∗1 (t)I∗2 (t)

]
(1)

= 〈I∗(t)〉
[
1± cos (∆φ(t)) cos (αrot)

√
1− (δI(t))

2

]
(2)

where I∗1 (t) and I∗2 (t) are the individual stellar intensities of beams 1 and 2 at the beam combiner, respec-

tively, 〈I∗(t)〉 = (I∗1 (t) + I∗2 (t))/2 is the average input beam intensity, δI(t) = (I∗1 (t)− I∗2 (t))/(I∗1 (t) + I∗2 (t))

is the fractional deviation from the mean intensity, ∆φ(t) = φ1(t) − φ2(t) is the relative phase delay, and

αrot the relative polarization rotation angle.
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The null depth, defined as the inverse of the rejection ratio, is given by:

N(t) =
I∗−(t)

I∗+(t)
=
I−(t)− Ib(t)
I+(t)− Ib(t)

(3)

where I±(t) are the constructive and destructive interference intensities including the background level and

Ib(t) is the background intensity collected by the interferometer. If ∆φ(t), δI(t) and αrot are all << 1, the

null depth for a point source in the absence of background can be approximated by:

N(t) ' 1

4

[
(δI(t))2 + (∆φ(t))2 + αrot(t)

2
]

(4)

For a source of finite extent, the observed null depth also depends on the astrophysical null depth Na,

determined by the leakage of the source spatial brightness distribution through the null fringe pattern1. For

small values of Na, the observed null depth can be expressed as (Serabyn 2000) 2:

N(t) ' Na + 1
4

[
(δI(t))2 + (∆φ(t))2 + αrot(t)

2
]

(5)

Sometimes, interferometers do not measure the background intensity Ib(t) nor the constructive interference

term I+(t) at the same time as the destructive signal I−(t), but the observing procedure provides some

estimates of their values which we denote as Îb(t) and Î+(t), while Î∗+(t) = Î+(t) − Îb(t). This means that

one does not access the actual null, but an estimate of it given by:

N̂(t) =
I−(t)− Îb(t)
Î+(t)− Îb(t)

= N(t)
I∗+(t)

Î∗+(t)
+
Ib(t)− Îb(t)

Î∗+(t)
(6)

or

N̂(t) = Ir(t)N(t) +Nb(t) (7)

where Nb(t) = (Ib(t)− Îb(t))/Î∗+(t) is the background induced instantaneous error in the estimated null and

where Ir(t) = I∗+(t)/Î∗+(t) is the relative intensity deviation at time t.

For small values of Na, δI(t), ∆φ(t) and αrot(t), one can use Equation 5 for N(t), and the estimated null

N̂(t) can be approximated by:

N̂(t) ' Ir(t)

[
Na +

1

4
[(δI(t))2 + (∆φ(t))2 + (αrot(t))

2]

]
+Nb(t) (8)

Although it does not correspond exactly to the actual instantaneous null level (which we cannot measure

unless all peak and background measurements are made simultaneously), N̂(t) is the basic measured quantity

derived from the observations which is used in this paper. All that matters for the accuracy of our data

analysis is that we have: (i) the correct description of N̂(t) as a function of the astrophysical null and

instrumental noise terms, i.e. Eq. 8 and (ii) some way to evaluate these various noise terms (or more exactly

their distributions), which is the object of the following section.

1For a given baseline orientation, the astrophysical null Na can be expressed in terms of the source complex visibility V as

Na = (1− |V|)/(1 + |V|).
2The theory we present here can be extended for larger values of Na, and of the error sources by keeping the full expression

of I∗± in the definition of the null depth.
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Fig. 1.— Illustration of the construction of the null distribution from the individual contributions. The phase

and intensity terms (resp. (∆φ)2/4 and (δI)2/4) are first summed which corresponds to the convolution of

their respective probability distribution. The astrophysical null is then added. This step corresponds to the

convolution by a dirac function. As a result, the probability distribution is translated horizontally by Na.

The last step consists in multiplying (∆φ)2/4 + (δI)2/4 + Na by the relative intensity uncertainty Ir. The

final distribution of the reconstructed null depth is represented by the black curve. The different curves

represent realistic individual distributions of the phase and intensity errors, the astrophysical null and their

sum. For each instrumental error terms ∆φ(t), δI(t) and Ir(t), a Gaussian distribution is assumed.

2.2. Analytical model for the statistical distribution of null values

Because it would be extremely difficult to zero out or perfectly calibrate all instantaneous error terms,

we take here the opposite tack, and ask what can be learned from the observed distribution of the null

depth fluctuations. We thus begin by deriving the mathematical expression for the probability distribution

corresponding to the null depth estimate given by equations 6, 7 and 8 when the relative phase, the intensity

mismatch, the background, and the relative intensity all fluctuate randomly with small amplitudes.

We first assume that the polarization term, αrot(t), is constant, so that we can neglect its time vari-

ability in the statistical analysis. For symmetrically placed beams within a common aperture, polarization

mismatches should be small compared to phase and intensity errors, and this approximation is valid down

to null levels of 10−4 or lower (Haguenauer & Serabyn 2006; Martin et al. 2008)3. Neglecting this term, the

measured null (Eq. 8) then consists of the sum of three terms multiplied by a fourth, and then the product

3For long baseline interferometers, the polarization effect can be measured on calibrator stars and accurately corrected as it

generally varies slowly over time.
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is added to a fifth term. Of these, only the astrophysical null term is fixed (for a given baseline vector).

We next assume that the remaining error terms in Eq. 8 - the relative intensity uncertainty Ir(t), the beam

intensity mismatch δI(t) , the beam differential phase ∆φ(t) and the background uncertainty terms are

uncorrelated random variables (this assumption is justified in Sect. 4.3). We further assume here that each

of these have normal distributions (see sections 4.1, 4.2 and 4.4 for a complete description of the probability

distributions of these terms), with means µi and standard deviations σi. Each individual probability density

function (PDF) is then given by:

fi(zi) =
1√

2πσi
e

−(zi−µi)
2

2σ2
i (9)

where the index i refers equally to the Ir(t), δI(t), ∆φ(t) and Nb(t) distributions, and where zi is the

corresponding random variable.

However the δI(t) and ∆φ(t) distributions do not appear linearly but quadratically in the null distri-

bution. In the case where δI(t) and ∆φ(t) both follow normal distributions, the PDFs of (δI(t))2/4 and

(∆φ(t))2/4 are given by:

fi(
z2
i

4
) =

1√
2πσi

e−(4zi+µ
2
i )/2σ

2
i

√
4zi

cosh

(
µi
√

4zi
σ2
i

)
(10)

The two distributions, (δI)2/4 and (δφ)2/4, are illustrated in Fig. 1 for realistic values of their means

and standard deviations. The next step in building the nulling PDF is to sum the phase and the intensity

mismatch distributions. If (∆φ(t))2 and (δI(t))2 are two independent random variables, the density function

fδI2/4+∆φ2/4(y) is given by the convolution of their respective density functions (Rohatgi 1976). If we denote

y as being (z2
∆φ2 + z2

δI2)/4, this convolution can be expressed as follows:

f δI2
4 + ∆φ2

4

(y) = (f∆φ2

4

⊗ f δI2
4

)(y) (11)

=

∫ +∞

−∞
f∆φ2

4

(y1)f δI2
4

(y − y1) dy1 (12)

Adding the astrophysical null term, Na, in Eq. 12 then corresponds to a further convolution of Eq. 12

with a Dirac function δ(Na). The result is simply a translation of the density function by Na (see Fig 1):

f δI2
4 + ∆φ2

4 +Na
(y) = f δI2

4 + ∆φ2

4

(y −Na) (13)

Now folding the effect of the relative intensity uncertainty Ir(t) into the expression for the measured null (Eq.

6), one computes the distribution of the product of Ir(t) with
(
(δI(t))2/4 + (∆φ(t))2/4 +Na

)
. Assuming

these are uncorrelated random variables (Rohatgi 1976), the resulting null depth distribution is:

fN̂ (zIr ) =

∫ +∞

−∞

1

|y|
f δI2

4 + ∆φ2

4 +Na
(y)fIr

(
zIr
y

)
dy (14)

The analytical solution for this integral exists for phase and intensity fluctuations following Gaussian

distributions. However, the distribution fN̂ (zIr ) displays a singularity for y = 0.
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The final expression of the measured null distribution (see Eq. 8) is obtained by convolving Eq. 14 with

the equivalent background null depth distribution fNb :

fN̂ (N) = fN̂ (zIr )⊗ fNb(zNb) (15)

Summarizing all the steps described in this section, the final analytical expression for the measured null

depth can be retrieved from the individual distributions as follows:

fN̂ (N) = fNb ⊗
[∫ +∞

−∞

1

|y −Na|
fIr

(
f δI2

4

⊗ f∆φ2

4

⊗Na
)]

(16)

The measured null distribution expressed by Eq. 16 depends on 9 independent parameters: the means

and standard deviations of the 4 error distributions, and the astrophysical null. In the simpler case of a

system where only a phase error impacts the measured null distribution, the null PDF depends only on

three parameters: the mean and standard deviation of the phase error and the astrophysical null. Figure 1

illustrates that µ∆φ and σ∆φ define together the Full Width at Half Maximum (FWHM) and the skewness

of the PDF, while Na only changes its horizontal position.

2.3. Fitting strategies

Two methods can be used to generate null depth distributions to be fitted to the data. In the first

one, referred to hereafter as the ”analytical method”, the distribution is generated analytically using the

measured means and standard deviations of the background and intensity distributions. The second method,

called the numerical method, generates simulated distributions using the measured intensity and background

distributions, together with simulated phase error sequences having normal distributions, according to Eq. 8.

For illustration, we apply our techniques to data obtained with the Palomar Fiber Nuller (PFN), a deployable

near infrared (' 2.16 microns) interferometric coronagraph developed at the Jet Propulsion Laboratory

and recently installed at the Palomar Hale telescope (Serabyn & Mennesson 2006; Serabyn et al. 2006;

Mennesson et al. 2006; Martin et al. 2008). As described in the following sections, this method strongly

reduces both statistical and systematic errors and can avoid the observation of calibrator stars (depending

on the instrument). Therefore we call them respectively the analytical and numerical self-calibrated methods.

2.3.1. Analytical Self Calibrated Method (ASC)

The first strategy makes use of theoretical expression 16 to calculate null depth distributions, assuming

that all instrumental terms follow gaussian statistics. No temporal data sequences are simulated, only the

null probability distribution, which depends on nine parameters: the astrophysical null, and the mean and

standard deviations of the four gaussian error terms (relative phase, intensity mismatch, relative intensity

and background variations). The number of unknown parameters depends on the exact interferometric

configuration and must be kept as small as possible in order to give a unique solution to the problem. In

most interferometers, the individual beam intensities and the background intensity are monitored as part of

the observing sequence, which leaves only three free parameters to be fitted: the mean and standard deviation

of the phase error and the astrophysical null depth. In the case of the PFN, two symmetrically placed sub-

apertures on the primary mirror are interfered, and using a rapidly spinning wheel, interleaved (< 200

milli-sec) sequences of the interferometrically combined (nulled) signal, the individual beam intensities and
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Fig. 2.— Left : Fit using the analytical self calibration method on a dataset obtained on α Boo with the

PFN in July 2009. The astrophysical null corresponding to the best fit is 0.0136 ± 0.0002. Right : Same fit

but using the numerical self calibration approach. Note that the simulated distribution now presents more

structure, as it integrates the actual distributions of background and intensity terms. The astrophysical null

corresponding to the best fit is 0.0137± 0.0003.

the background are recorded. Using this data, we fit the recorded relative intensity mismatch δI(t), relative

intensity Ir(t) and background Nb(t) with Gaussian profiles (see Sect. 4 for validation of this hypothesis).

The resultant mean and standard deviation values are then injected into Eq. 16. The remaining three free

parameters of Eq. 16, i.e. the differential phase parameters µ∆φ , σ∆φ, and the astrophysical null Na, are

then adjusted so as to fit the calculated curve to the observed null (Eq. 6) distribution. As detailed in section

2.5, except for the marginal case where the phase fluctuations are close to 0 (typically σ∆φ < 0.005 rad),

only one combination of these 3 parameters provides a suitable fit to the observed null data distribution.

The pair (µ∆φd , σ∆φd) defines both the FWHM and the skewness of the modeled null distribution, while

Na adjusts the horizontal position of the distribution peak (see Fig. 1) and only one combination of µ∆φ,

σ∆φ and Na, fits the distribution.

Figure 1 illustrates the construction of the analytical null depth distribution from the individual distributions

while Fig. 2 (left) illustrates the analytical fitting strategy on a nulling sequence measured on the sky with

the PFN. After being fitted by Gaussian distributions, µδI , σδI , µIN , σIN , µNB and σNB are injected into

Eqs. 9 and 10 to compute their impact on the measured null distribution. The influence of the intensity

mismatch is represented by the grey long dashed curve in Fig. 1. Assuming a Gaussian distribution of the

phase error as well, different values of µ∆φ, σ∆φ and Na are used to generate distribution curves. The impact

of their distributions is also illustrated in Fig. 1 by the grey dashed and dotted curve for the phase error

and by the grey plain curve for the astrophysical null. All these distributions are finally combined together

according to Eq. 16. The resulting black curve can then be compared to the measured distribution (Fig. 2).
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2.3.2. Numerical Self Calibration Method (NSC)

Unlike the ASC, the numerical self-calibration approach (NSC) does not make any assumption about

the distributions of the intensity mismatch, background and total intensity terms, which are assumed to be

measured within the null sequence or close in time. Instead of fitting the distribution of these three measured

signals by gaussian distributions, we use the data - and hence actual distributions - recorded for each of these

quantities and inject them directly into Eq. 8.

In the case of the PFN for instance, interleaved (<100 milli-sec) measurements of the individual beams,

interferometric (close to null) and background intensities are recorded over sequences of a few minutes.

Although the background and individual beam signals are not recorded exactly at the same time as the null,

their distributions can be measured with very high fidelity. In order to fit a sequence of observed null values,

we combine these observed distributions with a generated random phase error (with a normal distribution) of

the same size (same number of data points) according to (Eq. 8). We only make two assumptions when using

this method: (i) the differential phase follows a Gaussian distribution, (ii) the individual beam intensities are

uncorrelated. The latter condition, which seems valid for the PFN measurements (see Sect. 4), implies that

the distribution of the differential intensity term δI(t) derived from I∗1 (t) and I∗2 (t′) measured at different

times, is the same as if the individual intensities were measured simultaneously. The main advantage of the

numerical technique is that the data monitored by the instrument (i.e. the individual beam intensities and

the background) are directly injected into the model. Therefore, no matter what the real distributions are

for those terms, no bias is introduced into the modeled probability distribution. However, as the random

generation of the differential phase vector produces slightly different distributions and best fit parameters

for different seeds, the numerical method adds some intrinsic uncertainty. This ”fitting noise” is computed

by generating many random phase errors and measuring the standard deviation of the resulting best fit

astrophysical null depths. This uncertainty adds quadratically to the statistical error defined in the next

section. Consequently, the final error bar quoted on the astrophysical null derived by the numerical method is

slightly larger than in the analytical case, but the potential sources of bias are reduced. Figure 2, right panel,

shows an example of probability distribution fitting (same α Boo sequence as above) using the numerical

method.

2.4. Error bars and residual comparison

In this section, we compare the results obtained with the two fitting approaches. To perform this

comparison, we make use of the retreived parameter corresponding to the best fits, the goodness of the fit

and the relative residuals between the models and the data. To compute the goodness of the fit and derive

the optimum fit parameters, we minimize a reduced Pearson χ2 quantity, defined as:

χ2 =
1

Nbins − 4

n∑
i=1

(
fObs
N̂

(i)− fTheo
N̂

(i)
)2

fTheo
N̂

(i)
(17)

where fObs
N̂

and fTheo
N̂

are respectively the observed and theoretical null probability distributions and Nbins−4

is the number of independent degrees of freedom. Following usual recommendations for robust fitting of

probability distributions (Cochran 1954; Rayson et al. 2004), we use a number of histogram bins equal to

'
√
Npts, where Npts is the number of measurement points over the full range of observed null values. Also,

only the largest null depth interval for which the occurence within each bin is ≥ 5 is used for the fitting.

Unlike the NSC, the probability distribution obtained with the ASC method must be re-scaled prior to
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computing the χ2 to ensure that the total number of occurences in the theoretical distribution corresponds

to the total number of measurements within the dataset. Mathematically, it comes down to introducing

a scaling factor C to match the integral of the observed and theoretical distributions over the domain of

definition. i.e.

C .

∫ 1

Nmin

fTheo
N̂

(n) dn =

∫ 1

Nmin

f Obs
N̂

(n) dn (18)

where Nmin is the minimum observed null value of the distribution4.

Overall, the analysis of different datasets with both fitting methods provided similar results, with reduced

χ2 ranging between 1 and 1.5, meaning reasonably good statistical agreement between the model and the

observations. The computation of realistic error bars must combine two different components which add

quadratically: (i) statistical (random) errors and (ii) systematic errors. Systematic errors, such as those

arising from slow drifts in the experimental set-up (quasi-statics, e.g. (Colavita et al. 2009)), are not captured

by the statistical analysis of a single sequence, and will be discussed in Sect. 3. A thorough description of

the different sources of quasi-static errors will also be presented in Sect. 4. We only compute and quote

statistical errors in this section.

For an individual sequence, the statistical uncertainty σstat on the derived astrophysical null is assessed

using the χ2 statistical properties (see Press et al. (2007), §15.6.4). Na is varied around its optimal value

while the χ2 is minimized by adjusting the other two parameters. The error bar on Na corresponds to the Na
variation required to increase the reduced χ2 by a tabulated increment based on the desired confidence level

and the number of degrees of freedom in the fit. A 68.3% confidence level was adopted on the quoted error

bar, and the analysis of the covariance of the fit with the other two parameters (i.e. µ∆φ and σ∆φ) is presented

in the Appendix. This estimation of the retrieved parameters error bars is only valid if the observed null

values are affected by zero mean gaussian noise. As a sanity check, we then also conducted a bootstrapping

analysis -independent of the actual noise properties -, resampling and replacing the observed null values to

generate many (500) ”fake” sequences. Analyzing the corresponding histograms yields astrophysical null

(68.3% confidence interval) statistical uncertainties similar to those derived using the χ2 approach.

As an illustration, the left panel of Figure 2 shows the best analytical self-calibrated fit (black curve) to

the null distribution observed (grey dashed line and squares) on the bright star α Boo with the PFN (one

particular two minute long sequence). The reduced χ2 is 1.17 and the derived astrophysical null calculated

with a 1σ confidence interval is 0.0136 ± 0.0002 (see Appendix A for more details).The error bar quoted

here is the statistical error only. The main advantage of this analytical fitting method is its mathematical

consistency and precision. However, it assumes normal and uncorrelated noise distributions for all noise

sources, instead of injecting their observed distributions into the model. These assumptions will be justified

and explained in Section 4. Another characteristic of this approach is that because of the 1/|y| term in

Eq. 14, the distribution is not defined for a null depth N = 0. However this issue can be solved by simply

removing the bin containing N = 0 during the fitting process.

The right panel of Figure 2 represents the best fit obtained with the numerical approach on the same

α Boo dataset. The reduced Pearson’s χ2 is 1.23. The derived astrophysical null depth is Na = 0.0137 ±
0.0003, in excellent agreement with the value obtained using the analytical approach and gaussian statistics

4The null depth in interferometry is generally considered to be defined between 0 and 1. However, the instantaneous

measured null can be < 0 because of the background fluctuations. This is why the limit of integration must be defined between

the minimum measured null depth and 1.
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Fig. 3.— Relative error ((fObs
N̂
−fTheo

N̂
)/fObs

N̂
) between the fitted null distributions and the measured one as

a function of the null depth. The grey curve with circular markers, represents the relative error relative to

the analytical self calibrated method while the black curve with square markers represents the relative error

obtained with the statistical method. Both relative residuals are similar with rms values ' 0.05.

for all instrumental terms. The quoted error bar accounts for both the statistical uncertainty and the

numerical ”fitting noise” discussed in section Sect. 2.3.2

To complete this comparison, Figure 3 shows the relative difference between the measured null distri-

bution and the distribution obtained with both the analytical method (grey curve, circular markers) and

the numerical fitting method (black curve, square markers). As can be seen on this figure, the two different

statistical data reduction methods are very equivalent in terms of accuracy: the relative residuals between

their distributions and the measured one are similar. This is particularly true for small null depth values

(N < 0.05) where most of the astrophysical information is located. Overall, this comparison shows that very

similar results are obtained on α Boo with the analytical an numerical methods.

2.5. Amplitude of the fluctuations

In this section, we demonstrate the conditions that must be fulfilled by the error fluctuations in order to

produce a distribution that can be fitted by a unique combination of the parameters. For that, we consider

the simpler case where only phase errors are present.

First, let us consider the extreme case of a perfectly stable system (σ∆φ = 0) but with an error on the phase

shift (µ∆φ 6= 0). The measured null distribution is then a Dirac function that peaks at N̂ = Na + (µ∆φ)2/4

(see Fig. 4). Therefore, only the sum, Na + (µ∆φ)2/4, can be determined but not the astrophysical null.

Of course, using a statistical approach for analyzing perfectly constant data does not make much sense and

is not realistic. However, it shows that the phase fluctuations must have a minimal amplitude to make

a statistical approach applicable. Now, let us consider the more realistic case of a system having both a

phase fixed bias and phase fluctuations. Eq. 10 expresses the impact of phase fluctuations on the null

depth distribution. From this equation, it can be seen that the larger the fluctuations, the broader the
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Fig. 4.— Simulated null depth distributions for an astrophysical null of 0.01, a constant mean phase error

of 0.3 rad, and different values of the phase error rms. All the other error sources have been set to 0.

corresponding distribution (see Fig. 4). If the FWHM of this distribution is smaller than the bin size used

for computing the null distribution, it appears as a Dirac function (which corresponds to a fixed phase error)

and the fitted parameters cannot be found. Now, if the phase distribution can be properly sampled in several

bins, the three parameters that must be fitted (µ∆φ, σ∆φ and Na) can be retreived. More importantly, the

solution found is unique. For small phase fluctuations, Eq. 10 can be approximated by a Gaussian function

whose FWHM is 2
√

2 ln 2 × σ∆φ
√
µ∆φ. The criterion for a unique solution to our fit is therefore that this

FWHM is larger that a few (k) times the histogram bin size (i.e. k bin size < 2
√

2 ln 2× σ∆φ
√
µ∆φ). From

this equation, it can be seen that for larger mean phase offsets, the minimum phase fluctuation required to

meet this criterion decreases. This is due to the fact that the null depth depends quadratically on the phase

error. In practice, simulations have shown that the phase distribution must be sampled over at least 6 bins

(k ≥ 6). Fig. 5 shows, on simulated datasets, the minimum amplitude of the phase fluctuations required as

a function of the mean phase error for a bin size of 0.001. This bin size directly depends on the number of

data points available within a dataset (see Sect. 2.3.1). It means that increasing the observing time (and

therefore the number of data points within a dataset) allow the use of smaller bin sizes and hence even

easier parameter retrieval. In this figure, a fit is considered successful when all three parameters are found

within some a priori tolerable error. For Na, it means that the error is smaller than the histogram bin size.

For the two other parameters, it means that their effect on the null depth (∆φ2/4) is also smaller than

the histogram bin size. It is interesting to note that even small fluctuations compared to the mean phase

errors are sufficient to retrieve the astrophysical null depth with a very good accuracy. This also means that

it is possible to measure Na even if the fluctuating phase error never reaches zero, and so even when the

true astrophysical null value is never reached. Finally it is important to note that the results obtained with

the PFN illustrating this paper correspond to parameter combinations located well within the ”parameters

retrieved” zone of Fig. 5.
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Fig. 5.— For Na = 0.01 and a bin size of 0.001, this plot represents, as a function of the mean phase error, the

minimum value of the phase rms required to fit unambiguously the distribution and retrieve the astrophysical

null Na. Note that on real data obtained with the PFN, we are located well within the parameters retrieved

zone (see Sect. 2.3.1 and after).

3. On sky performance: classical vs. statistical reduction methods

In order to investigate the validity and accuracy of our statistical data reduction approach, we applied

it to astronomical data obtained with the PFN during a July 2009 observing run. In order to evaluate the

astrophysical null accuracy achieved with our statistical analysis, we present here the results obtained on a

series of consecutive independent measurements of α Boo with the PFN. We explore both the repeatability

of the results (precision assessment), and their consistency with values previously reported by long baseline

interferometry (accuracy and bias assessment).

We use here a set of five independent null sequences recorded on α Boo with the PFN in July 2009, and

compare the astrophysical nulls, Na, and precisions derived from (i) the ”classical” null (or visibility) data

reduction method and (ii) from the probability distribution analysis. We then compare our results with the

stellar diameter measurement obtained on this same star with long baseline interferometry (LBI), discussing

the aspects of accuracy and systematic errors.

3.1. Classical reduction method

Very few nulling data from ground based telescopes have been analyzed so far, as only two nulling

interferometers are operating: the Keck Interferometer Nuller (Colavita et al. 2009) and the BLINC Nuller

(Hinz et al. 2000). Until now, the method used to analyse nulling data was analogous to that used for

calibrating visibility measurements. The principle is to first evaluate the null depth observed on the science

target by averaging the fluctuating instantaneous null depth over a significant number of points. This

measurement is biased due to the fast fluctuations of phase and intensity errors. The same measurement is

then conducted on a calibrator star of well known diameter, located close to the science target and with a
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Fig. 6.— Null depth fluctuations measured on the α Boo dataset. The dashed dotted line represents the

highest null depth value which is taken into account in the classical data reduction approach. The dashed

line corresponds to the mean null depth of the sequence prior to calibration (' 0.035) and the dotted line

to the astrophysical null that is measured by the numerical statistical method (0.0137± 0.0003).
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Fig. 7.— Comparison between astrophysical null values obtained with both classical and statistical (nu-

merical) data analysis approaches on αBoo with the PFN. Left panel: results obtained using the classical

reduction. The results drift significantly over time and the individual null depth error bars obtained on each

dataset are 0.02. The mean measured astrophysical N is 0.0123± 0.008. Right panel: results obtained using

the statistical method. The measured nulls are very stable, with individual error bars around 0.0003. The

mean astrophysical null measured is 0.0132±0.00013, where the error bar assumes no systematic uncertainties

(see text for details). Note that the y scale is different in the two figures.
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similar magnitude at the wavelength of observation (Mérand et al. 2005). For both stars, the measured null

depth 〈N(t)〉 is the sum of the astrophysical null Na and the mean instrumental null 〈Ni(t)〉 averaged over

the sequence:

〈N(t)〉 = Na + 〈Ni(t)〉 (19)

〈Ncal(t+ ∆t)〉 = Na, cal + 〈Ni, cal(t+ ∆t)〉 (20)

where the astrophysical null depth on the calibrator star (Na, cal) is assumed to be known thanks to an

accurate photosphere model or from independent interferometric observations. Therefore, assuming that the

instrumental null is constant, one estimates the scientific target’s astrophysical null as:

Na = Na, cal + 〈N(t)〉 − 〈Ncal(t+ ∆t)〉 (21)

Obviously, the accuracy on Na depends both on the calibrator’s astrophysical null uncertainty and on the

stability of the instrumental null (or the ability to extrapolate its value accurately based on bracketing

calibrator observations).

The method used to emulate a ”classical analysis” of our null data is the following. First the ”bad” (large

instantaneous nulls) data points within each dataset are rejected, both for the target and the calibrator.

Only the data having null values between the minimum measured null Nmin and Nmin+σN are kept, where

σN is the rms of the null data (see Fig 6, dash-dot line). This is also called the sigma clipping method.

The null depth of an individual object sequence is then computed as the mean of the remaining data points

(see Fig 6, dashed line). The same approach is applied to both the scientific target and the calibrator data,

and the calibrated astrophysical null depth is then computed using Eq. 21. The black stars in Figure 7,

left panel, represent the calibrated null depths obtained with this classical data analysis on five consecutive

αBoo datasets. These data have been calibrated using five datasets obtained on α Her. The error bar on the

individual measurements is given by the quadratic sum of the target statistical error, the systematic error

and the calibrator total error (statistical error and diameter uncertainty). The individual statistical error

bars are computed from the variance of the null depth fluctuations within each dataset (after applying data

clipping) and are equal to 0.018 on α Boo. The systematic error is more difficult to calculate and can be

assessed both by comparing the measured null depth with the one expected from previous measurements of

α Boo’s stellar diameter and by comparing the individual statistical errors with the variance of the null over

the 5 datasets. Assuming no/low systematics and averaging over the 5 data points, the astrophysical leakage

measured on αBoo is 0.0123± 0.008 (see Table 1). The significant slow drift of the measured nulls in Fig. 7,

left panel clearly illustrates that the classical method is very sensitive to the instrumental/ seeing conditions

and to the fact that the calibrator was only observed after the five α Boo sequences and not in between

them. The large error bars derived -even in the quite optimistic case of no systematics- demonstrate that

in fact, with the short PFN interferometric baseline and when using the classical data reduction method, α

Boo’s near infrared diameter can not be measured reliably .

3.2. Statistical reduction method

On the other hand, our statistical data analysis approach uses the whole range of null values recorded

and neither uses nor requires any calibration star. Using the same five αBoo datasets, the individual

astrophysical nulls measured using statistics have much smaller individual error bars (0.0003), and are very

stable over the whole two hours of observation (Fig 7, right panel). Using the 5 datasets obtained on α Boo,

a set of (Na,i, σstat,i) best fitting values is derived. From that ensemble, we compute the weighted mean value
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of Na with weights wi = 1/σ2
stat,i . The weighted mean astrophysical null value derived over the full sequence

is 0.0132. Assuming no systematic errors and simply propagating the individual error bars (σstat,i), the final

statistical error bar is given by σ−2
stat =

∑
i σ
−2
stat,i and amounts to 0.00013. This yields an astrophysical null

estimate of Na = 0.0132± 0.00013 for α Boo (see Table 1).

Of course, systematic errors can be present in the data, for instance arising from slow drifts in the

experimental set-up (quasi-statics) which are not captured by the statistical analysis of a single sequence.

However, conversely to the classical method case, no obvious long term drift is visible versus time. The

weighted standard deviation computed over the sequence is 0.0004, in fairly good agreement with the quoted

individual error of 0.0003, pointing to small systematics if any. This weighted standard deviation can also

serve as an estimate of the systematic error per individual measurement, e.g. (Colavita et al. 2009). The

systematic error on the mean is likely smaller than that per individual measurement, but we do not have

enough data to check for such reduction of the systematics wrt the number of measurements. Consequently,

we estimate the final error bar on α Boo’s measured astrophysical null to be at the few 10−4 or lower.

Another way to estimate systematics and constant biases is to compare the astrophysical null derived

by the statistical method with previous measurements obtained by long baseline interferometry (LBI). This

is the object of the following section. A detailed description of the potential sources of quasi-static errors as

well as their impact on the null depth is also presented in section 4. Finally, observations of calibrators can

obviously be used in conjunction with the statistical data analysis to further reduce the effect of residual

biases.

3.3. Comparison to LBI data

For a naked star represented by a limb darkened disk of diameter θLD with a limb darkening coefficient

Aλ, the observed astrophysical null is given by (Absil et al. 2006, 2011)

Na,LD =

(
πBθLD

4λ

)2(
1− 7Aλ

15

)(
1− Aλ

3

)−1

(22)

where λ is the central wavelength of observation and B the baseline length. For the PFN, these values are

2.16 µm and 3.20 m, respectively. This expression can be simplified in the case of uniform disk models by

setting Aλ = 0.

LBI measurements of α Boo in the K band (where limb darkening effects and corresponding uncertainties

are reduced) provide very accurate results. We use the value of 20.91 ± 0.08 mas derived by FLUOR/IOTA

(Perrin et al. 1998; Lacour et al. 2008). This value is also very consistent with the previous measurement of

20.95 ± 0.20 mas obtained at I2T (di Benedetto & Rabbia 1987).

Using the 0.350 linear limb darkening coefficient predicted in the K band for a 4300K giant star with

log g = 2.0 (Claret et al. 1995), we get an astrophysical null depth of 0.01314 ± 0.00010 at the PFN

baseline. This is excellent agreement with or measured value of 0.001320 ± 0.00013 ( or ± 0.0004 when

being conservative wrt systematics) reported above, which corresponds to a limb darkened diameter of 20.96

± 0.09 mas (see Table 1). The discrepancy between the PFN and LBI α Boo measurements is then at the

10−4 level, and within the error bars of each measurement. This demonstrates that in the illustrative case

of α Boo, our measurement is not only precise but also very accurate. It suggests that if any bias is present

in our calibrator-free measurements of α Boo, they are at the few 10−4 level or below. A similar analysis of

PFN data using the statistical reduction method confirms this result on a larger sample on 8 bright giants/
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Table 1: Comparison between limb darkened (LD) diameters found by the PFN using both the classical and

the numerical statistical data reduction method and by long baseline interferometry. Note that the null

depth value given for LBI is an equivalent null on a 3.4 m baseline derived from the measurement of the

angular diamter.

Method Name Na θ[mas]

Classic. nulls αBoo 0.0123± 0.008 20.25+6.4
−9.8

Stat. nulls. αBoo 0.0132± 0.00013 20.96± 0.09

LBI vis. αBoo 0.0131± 0.00010 20.91± 0.08

supergiants (Mennesson et al. in preparation). In comparison, the very best 1σ null accuracy reported by

long baseline interferometry is ' 0.002 in the mid-infrared (Colavita et al. 2009), and ' 0.0025 in the near

infrared (Kervella et al. 2004), (equivalent to a visibility accuracy of 0.005 for an unresolved source). This

indicates that using the self-calibrated data reduction approach, a gain of an order of magnitude in null (or

visibility) accuracy can be achieved.

In fact there is little that is specific to the PFN instrument in our approach, and the statistical data

reduction method could in principle be applied to any 2-beam interferometer working around null with a

fringe tracker. Since null and visibility measurements are equivalent, the statistical analysis may thus also

prove useful to regular long baseline visibility interferometry (Mennesson et al. in prep).

4. Possible limitations

We explore in this section some possible limitations of the statistical data reduction technique, which may

appear when trying to measure very deep astrophysical null depths. Limitations arise from well identified

sources: temporal effects, chromatic effects, and deviations from the assumptions used in the modeling.

There are only two assumptions made in the self calibration technique: no temporal correlation between the

individual beam intensities, and Gaussian distribution of the error sources 5. In the following, we investigate

these different effects, assess their contributions to the final null depth estimates, and suggest some mitigation

techniques.

4.1. Intensity distributions

Conversely to the numerical method, where the measured relative intensity uncertainty Ir(t,∆t) and

intensity mismatch δI(t) are directly injected into the model, the analytical approach assumes these distri-

butions to be Gaussian and computes their mean and standard deviation to feed the analytical expression

of the measured null distribution (see Sect. 2.2). Therefore a possible limitation of the analytical approach

could occur if these distributions are not Gaussian.

Fig. 8 shows typical relative intensity uncertainty and intensity mismatch distributions measured with the

PFN. While the left hand panel compares the Ir(t) measured distribution (grey crosses) with a Gaussian

5Note that in the case of the numerical method, only the phase error distribution must be assumed to be Gaussian.
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Fig. 8.— Left: The top panel shows a comparison between the measured relative intensity uncertainty

distribution (grey crosses) with the best fit of this distribution obtained with a gaussian distribution (black

curve). The gaussian fit matches almost perfectly the measured distribution (except in the wings). The

goodness of the fit is excellent with χ2 = 0.9993. Bottom panel: relative residual between the fit and the

data ((IObs − IGauss)/IObs).Right: The same comparison but for the relative intensity mismatch. The grey

crosses represent the measured δI(t) distribution while the black curve represent the gaussian distribution

that best fits the measured distribution. Once again, the fit is excellent with a χ2 of 0.9952. Bottom panel,

relative residual between the observed intensity mismatch and the best Gaussian fit.

distribution (black curve), the right hand one does the same for the δI(t) distribution. As can be seen, both

distributions can be reliably fitted by a Gaussian distribution. The goodness of the fit reduced χ2 values

are ' 0.99 for both Ir(t) and δI(t). The bottom panel of these two figures illustrates the relative residuals

between the observed distribution and the best Gaussian fit. For both fits, the residuals are close to zero

for the whole central part where most of the information is located. Such a good agreement between the

measured distributions and Gaussian distributions makes us confident these assumptions are justified and

can be used but we note that a very slight skewness may be present.

4.2. Background distribution

The analytical self-calibration method (unlike the NSC which uses the recorded background level), make

the assumption that the distribution of the background level is normal and fits a gaussian profile on the

recorded data to feed the analytical expression of the estimated null depth (Eq. 16). However, background

drifts can occur during observations either because of instrumental (e.g. electronic drifts) or observational

reasons (the background depending on the sky position and time of observation) and can cause biases in

the determination of the null depth. Figure 9 represent the distribution of the equivalent background null

measured on α Boo over 2 minutes. The grey squares represent the actual measured distribution while the

black curve is the best Gaussian fit corresponding to this distribution. Once again, the goodness of the fit

is excellent with a χ2 ' 0.98. However it must be stressed that this assumption is only verified for the
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Fig. 9.— Comparison between the distribution of the background induced instantaneous error and a Gaussian

profile. The quality of the fit between the Gaussian model and the Nb distribution is good with a χ2 = 0.98.

particular PFN observations illustrated in this paper, and must be checked when using other instruments.

4.3. Correlation issues

In our statistical (both numerical and analytical) self-calibrated method (section 2.2.1), we made the

assumptions that the different noise terms (background, differential intensity, overall intensity and differ-

ential phase) were temporally uncorrelated, so we could compute the theoretical null distribution from the

individual noise distributions.

The cross-correlation of the intensity and phase terms is difficult to estimate. However, the optical/ near

infrared coherence length of the atmosphere is generally much smaller than the distance between an interfer-

ometers sub-apertures. Consequently, as the interferometric baseline increases, an even smaller correlation is

expected between differential phase and intensity. Even with the compact PFN system, the typical value for

the Fried’s radius is 70 cm (Roddier 1983) at 2.2 microns, to be compared with an interferometric baseline of

3.4 m. In the case of single-mode fiber injection, the intensities of the individual beams are primarily driven

by the local tip-tilt and overall phase corrugations of the individual apertures, and have no relation to the

differential phase between the apertures. This suggests that the absence of correlation between the different

noise terms is to first order justified both for the PFN, and long baseline interferometry in general.

The actual amount of correlation between the two beam intensities can be assessed by comparing the

correlation of I1(t) with I1(t+∆t), I2(t) with I2(t+∆t) and I1(t) with I2(t+∆t). Figure 10 illustrates such a

comparison for a typical dataset obtained with the PFN. For time delays close to zero both beam intensities
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Fig. 10.— Typical intensity correlation measured during an observation with the PFN. The dashed dark-grey

line correspond to the correlation between the beam1 intensity at time t (I1(t)) and the same beam intensity

at time t+∆t (I1(t+∆t)). The dashed light-grey line represent the same correlation but computed for beam

2 and the black line is the correlation between the two different beams intensities for different time delays.

are of course perfectly correlated with themselves (dark and light grey dashed curves). The correlation then

decreases following a gaussian like curve until typical time delays of ∼ 0.2 s are reached. The correlation is

then very close to zero (< to a couple of percent). This information directly gives us an indication of the

atmospherical conditions. Indeed, as long as the turbulent cells stay above the individual apertures, some

correlation will remain between the beam intensity measurements at times t and t + ∆t. Considering that

our apertures are 1.5 m wide, we expect to lose completely the correlation between I1(t) (resp. I2(t)) and

I1(t+ ∆t) (resp. I2(t+ ∆t)) when ∆t is such that the turbulent cell has moved by more than 1.5 m. Given

the correlation time obtained from Fig. 10, we can infer a wind speed during the observations of ∼ 7.5 m/s

which is consistent with typical conditions at Palomar Observatory. On the other hand, the profile of the

correlation between I1(t) and I2(t + ∆t) is completely different. Indeed, the measured values are always

under 5%, even at short time delays. We can therefore quantitively confirm that even for interferometric

observations with small baselines and operated under good atmospheric conditions, no significant correlation

exists between the two beam intensities.

There is no physical reason why the background should correlate with any of the other terms. However

it is possible that background intensity and the beam intensities are correlated to some extent if they are

measured sequentially on the same detector (remanence). Such an effect depends on the hardware used

for each instrument. We have computed its effect on the PFN measurements by computing the correlation

between the mean beam intensities and background measurements over each chop cycle. We find that the

correlation, if any, is smaller than 5%.



– 20 –

4.4. Differential phase distribution

For both statistical reduction techniques presented, the differential phase - computed at the central

observing wavelength, see section 4.6- is assumed to exhibit a Gaussian distribution over the recorded nulling

sequence. The validity of this assumption is difficult to assess from our data. As long as the instrument

tracks around a constant optical path difference (OPD) position, it seems a reasonable assumption. In the

case of the PFN, the two beams come from the same AO corrected wavefront. Tracking a single OPD

comes down to the fact that the AO system, which essentially acts as a fringe tracker, tries to maintain the

same reference flat wavefront over the sequence. Some studies have shown that indeed, the phase residuals

after a AO system are Gaussian, which supports our assumption (Cagigal & Canales 2000). If for some

reason the fringe tracker or AO system loses lock, or if the OPD is obviously oscillating between several

distinct positions, the resulting distribution will no longer be Gaussian, and the corresponding data should

be discarded. The reduced Pearson χ2 defining the quality of the probability distribution fit (Eq. 17) is a

good quantitative tool to assess the validity of the gaussian OPD distribution. If the measured χ2 are much

larger than one, the error bars on the final astrophysical ND should be increased accordingly. Determining

the potential bias caused by any departure from a Gaussian OPD distribution is beyond the scope of this

paper, but can likely play a role for measuring reliable nulls at very low levels.

4.5. Temporal effects

The nulling expression established above (Eq. 8) is valid for instantaneous nulls. However, a photometer

or camera will work with a limited frequency response or a finite individual integration time δt. In practice,

this means that even when all of the instrumental terms of Eq 4 go through zero instantaneously, the

measured null will in general be higher. Assuming that the polarization mismatch term is negligible, the

best measurable null at any time t will be limited to:

Nmin =
σ2
δI(t,dt) + σ2

∆φ(t,dt)

4
(23)

where σ2
δI(t,dt) and σ2

∆φ(t,dt) are respectiveley the variance of the intensity mismatch and of the differential

phase, both measured over a time interval δt. The effect of finite temporal integration is then to cause

a (positive) bias to the observed null depth. If the individual integrations are short enough compared to

the typical fluctuation timescale, this bias can be kept to a very low level. Moreover, it could be at least

partially calibrated via observations of reference stars. In the case of the PFN for instance, we use 2-10

ms individual integrations, to be compared with ' 100 ms for the typical coherence time of atmospheric

turbulence at K band. Using a Kolmogorov spectrum for the turbulence, and using the PFN short baseline,

we find for instance that the atmospheric phase rms is less than 1 nm over 10 ms, limiting the minimum null

depth ' 2× 10−6 . Similarly, the intensity mismatch term follows atmospheric timescales, and its variance

over 10 ms is not expected to cause any significant bias either. Laboratory nulling experiments with fiber

nuller set-ups have already produced 10 ms nulls at the ' 10−6 level with visible laser light (Haguenauer

& Serabyn 2006), and 10−4 nulls with dual polarization broad-band light over the full K band. In the

latter case, dispersive and/ or polarization effects are likely dominating the error budget, and the effect

of finite integration is not found to play a role up to 50 ms. Finally, astrophysical nulls at the 0.001 (or

even slightly lower) level have been measured on Vega with the PFN (Mennesson et al. , in prep.), showing

experimentally that temporal effects are at most at this level (and probably much smaller) on the PFN. The
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optimum individual integration time is thus a trade-off between sensitivity and dynamic range.

4.6. Chromatic effects

Usually, interferometric / nulling observations are conducted over a finite spectral bandwidth. We

concentrate here on the effects of the chromatic phase term, expected to dominate over the chromatic

aspects of intensity or polarization mismatch. For a polychromatic observation, the phase error (∆φ(t)) is

the sum of the piston error calculated at band center (∆φc(t)) and the chromatic phase error (∆φλ(λ, t)).

Serabyn (2000) has demonstrated that the influence of these phase errors on a polychromatic null depth

measurement is given by

Nφ(t) =
∆φ2

c(t)

4
+Nchrom (24)

where Nchrom =
∫ λmax
λmin

∆φ2
λ(λ,t)
4 dλ is the chromatic null bias . So even in the case where the differential

phase at the center of the band is zero, a positive bias is present (either constant or slowly varying, see

below) , and one measures Nφ(t) = Nchrom. This additive bias directly impacts the astrophysical null depth

measurement.

In the case of the PFN, this chromatic term is minimized by inserting glass plates of different thickness in

each of the two beams. The chromatic bias is experimentally found to be lower than 10−4 in the laboratory.

On the sky, the dispersive phase is no longer a strictly static term coming from the instrument. It is

also impacted by differential atmospheric refraction across the band, and varies over the night according

to the target’s position with respect to zenith. Detailed calculations are beyond the scope of this paper,

but this effect is small (< 10−4) across the K band with the PFN short baseline when observing within

20 degrees of zenith. Additionally, solutions exist to strongly reduce or completely eliminate this effect:

disperse over several spectral bins, always orient the interferometric baseline perpendicular to the refraction

direction (trivial on a single-dish interferometer with multiple sub-apertures), or use atmospheric dispersion

compensators at the telescope. Moreover, this refraction effect is fortunately very repeatable, and can be

precisely calibrated by observing reference stars at the same zenith angle.

4.7. Summary of limitations

The assumptions proper to the analytical method (gaussian distribution of background and intensity

terms, correlation issues) seem all individually valid in the case of the PFN. The analytical method also

provides very similar results to those obtained by the numerical method, which makes fewer assumptions.

The assumption that the differential phase follows a gaussian distribution can not be directly checked with

the PFN data, but seems reasonable wrt theoretical expectations.

Temporal and chromatic effects (as well as polarization effects, which we completely ignored for the

PFN), may come into play at the 10−4 level, even more when considering the application to LBI which uses

very long non common beam paths. However, these systematic effects - slowly varying for the most part-,

can be either minimized by instrumental design, or strongly reduced via observations of calibrator stars.

A more serious limitation to the reduction method presented is that its ultimate sensitivity may be
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limited by the small integration times needed to freeze the phase and intensity fluctuations. Infrared cameras

with very low read noise will definitely help. Taking long sequences will also help, up to the point where

systematics will dominate. More work is clearly needed to understand the trade-off between individual

integration time, sensitivity and final accuracy.

5. Conclusions

The theory of a new data reduction method for interferometric nulling (or visibility) observations has

been presented in this paper. Based on the analysis of null distributions, this technique allows the retrieval of

high dynamic range astrophysical null depth measurements, at contrast levels far exceeding the usual limits

set by mean instrumental performance and fluctuations. The ultimate performance of this statistical data

reduction depends on the specific design of the interferometric instrument and on the observing strategy.

This technique is potentially applicable to any interferometric set-up using a fringe tracking capability and

any type of beam recombination (co-axial or multi-axial) into a single-mode waveguide. Applying our data

reduction method to stellar observations obtained at K-band (' 2.2 microns) with the first generation fiber

nulling instrument installed at the Palomar 5 m (Hale) telescope, we demonstrated for the first time that:

(i) deep and accurate nulling is not restricted to mid-infrared wavelengths but may be extended to the

near infrared domain, providing substantial gains in resolution and sensitivity and (ii) nulling accuracies

significantly lower than 10−3 (systematics and statistical errors included) can be achieved, without any

observation of calibrator stars. Although this remains to be further validated with an optimized instrument,

simulations suggest that this new analysis will enable direct detection of faint structures at the ' 10−4 level

within the near diffraction limit of large AO equipped ground based telescopes, i.e at angular separations

ranging from ' 20 to 150 mas. Implications for high accuracy long baseline interferometry, both from the

ground and from space, remain to be quantitatively explored. But since the statistical approach allows the

detection of astrophysical signals well below the mean contrast level and its rms fluctuations, we anticipate

that the instrumental stability requirements could be strongly relaxed. This implies that the constraints on

intensity and phase fluctuations may be strongly reduced. This is a most attractive prospect for deep nulling

interferometry from space. A similar statistical analysis may also be conducted successfully for regular

coronagraphic instruments (Riaud & Hanot 2010).
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A. Confidence intervals and covariance

In section 2.3, we described our fitting strategies, and developed the minimization process used to fit

the distribution corresponding to an individual null sequence. The statistical error bar σstat on the derived

astrophysical null depth is then determined by applying small fluctuations to Na around its best fit value.

For every new value of Na, the two other parameters (µ∆φ and σ∆φ) are adjusted to minimize the χ2. As

the number of degrees of freedom of our system is known and is Nbins− 4, it is possible to calculate the ∆χ2

relative to a certain confidence level. The error bars are generally evaluated for 1σ confidence levels, and

so we use this criteria. σstat corresponds to the increment in Na required to increase the reduced χ2 from

its minimum value χ2
min to χ2

min + ∆χ2. For the dataset obtained on αBoo with the PFN, the 1σ error bar

corresponds to a very small χ2 increment, ∆χ2 = 0.07 and we find σstat = 3× 10−4 for the NSC (see Fig.11,

left). Another way of calculating the error bars consist in using bootstrapping methods. We double-checked

our confidence interval using this technique and found similar error bars (' 3× 10−4). This error bar takes

into account the fitting noise that is not present for the ASC.
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Fig. 11.— Left: variation of the reduced χ2 – measuring the goodness of the fit to the observed data – as

a function of the astrophysical null depth Na. The mean and standard deviation of the phase error are left

as free parameters, and adjusted to minimize the χ2 for each new value of Na. Center: projected χ2 map of

our model in the Na vs µ∆φ plane. For each point, σ∆φ is chosen to minimize the χ2. Right: same map but

projected in the Na vs σ∆φ plane. For these two maps, the contours are over-plotted for each χ2 intervals

of 0.5.

The central and right panels of Fig. 11 represent the normalized χ2 of our fits projected in two different

parameters planes (i.e. Na vs. µ∆φ for the central panel and Na vs. σ∆φ for the right one). The contours on

these maps are displayed for increments of the χ2 of ∆χ2 = 0.5. These maps illustrate the covariance of the

fits with the two free parameters: the mean and standard deviation of the phase error fluctuations. They

show that relatively large variations on the fitted values of these phase parameters, between 0.05 and 0.1

rad, only produce a marginal effect on the measured astrophysical null, smaller than 10−3, but produce very

large effects on the fit quality. This result is important as it clearly illustrates the resilience of our approach

to possible error on the assessment of the phase fluctuations.
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Kervella, P., Coudé du Foresto, V., Segransan, D., & di Folco, E. 2004, in Society of Photo-Optical Instru-

mentation Engineers (SPIE) Conference Series, Vol. 5491, Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference Series, ed. W. A. Traub, 741–+
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